llvm-project/llvm/test/Transforms/ScalarRepl/basictest.ll

31 lines
777 B
LLVM
Raw Normal View History

if an alloca is only ever accessed as a unit, and is accessed with load/store instructions, then don't try to decimate it into its individual pieces. This will just make a mess of the IR and is pointless if none of the elements are individually accessed. This was generating really terrible code for std::bitset (PR8980) because it happens to be lowered by clang as an {[8 x i8]} structure instead of {i64}. The testcase now is optimized to: define i64 @test2(i64 %X) { br label %L2 L2: ; preds = %0 ret i64 %X } before we generated: define i64 @test2(i64 %X) { %sroa.store.elt = lshr i64 %X, 56 %1 = trunc i64 %sroa.store.elt to i8 %sroa.store.elt8 = lshr i64 %X, 48 %2 = trunc i64 %sroa.store.elt8 to i8 %sroa.store.elt9 = lshr i64 %X, 40 %3 = trunc i64 %sroa.store.elt9 to i8 %sroa.store.elt10 = lshr i64 %X, 32 %4 = trunc i64 %sroa.store.elt10 to i8 %sroa.store.elt11 = lshr i64 %X, 24 %5 = trunc i64 %sroa.store.elt11 to i8 %sroa.store.elt12 = lshr i64 %X, 16 %6 = trunc i64 %sroa.store.elt12 to i8 %sroa.store.elt13 = lshr i64 %X, 8 %7 = trunc i64 %sroa.store.elt13 to i8 %8 = trunc i64 %X to i8 br label %L2 L2: ; preds = %0 %9 = zext i8 %1 to i64 %10 = shl i64 %9, 56 %11 = zext i8 %2 to i64 %12 = shl i64 %11, 48 %13 = or i64 %12, %10 %14 = zext i8 %3 to i64 %15 = shl i64 %14, 40 %16 = or i64 %15, %13 %17 = zext i8 %4 to i64 %18 = shl i64 %17, 32 %19 = or i64 %18, %16 %20 = zext i8 %5 to i64 %21 = shl i64 %20, 24 %22 = or i64 %21, %19 %23 = zext i8 %6 to i64 %24 = shl i64 %23, 16 %25 = or i64 %24, %22 %26 = zext i8 %7 to i64 %27 = shl i64 %26, 8 %28 = or i64 %27, %25 %29 = zext i8 %8 to i64 %30 = or i64 %29, %28 ret i64 %30 } In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough PHIs are in play that instcombine backs off. It's better to not generate this stuff in the first place. llvm-svn: 123571
2011-01-16 14:18:28 +08:00
; RUN: opt < %s -scalarrepl -S | FileCheck %s
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64"
if an alloca is only ever accessed as a unit, and is accessed with load/store instructions, then don't try to decimate it into its individual pieces. This will just make a mess of the IR and is pointless if none of the elements are individually accessed. This was generating really terrible code for std::bitset (PR8980) because it happens to be lowered by clang as an {[8 x i8]} structure instead of {i64}. The testcase now is optimized to: define i64 @test2(i64 %X) { br label %L2 L2: ; preds = %0 ret i64 %X } before we generated: define i64 @test2(i64 %X) { %sroa.store.elt = lshr i64 %X, 56 %1 = trunc i64 %sroa.store.elt to i8 %sroa.store.elt8 = lshr i64 %X, 48 %2 = trunc i64 %sroa.store.elt8 to i8 %sroa.store.elt9 = lshr i64 %X, 40 %3 = trunc i64 %sroa.store.elt9 to i8 %sroa.store.elt10 = lshr i64 %X, 32 %4 = trunc i64 %sroa.store.elt10 to i8 %sroa.store.elt11 = lshr i64 %X, 24 %5 = trunc i64 %sroa.store.elt11 to i8 %sroa.store.elt12 = lshr i64 %X, 16 %6 = trunc i64 %sroa.store.elt12 to i8 %sroa.store.elt13 = lshr i64 %X, 8 %7 = trunc i64 %sroa.store.elt13 to i8 %8 = trunc i64 %X to i8 br label %L2 L2: ; preds = %0 %9 = zext i8 %1 to i64 %10 = shl i64 %9, 56 %11 = zext i8 %2 to i64 %12 = shl i64 %11, 48 %13 = or i64 %12, %10 %14 = zext i8 %3 to i64 %15 = shl i64 %14, 40 %16 = or i64 %15, %13 %17 = zext i8 %4 to i64 %18 = shl i64 %17, 32 %19 = or i64 %18, %16 %20 = zext i8 %5 to i64 %21 = shl i64 %20, 24 %22 = or i64 %21, %19 %23 = zext i8 %6 to i64 %24 = shl i64 %23, 16 %25 = or i64 %24, %22 %26 = zext i8 %7 to i64 %27 = shl i64 %26, 8 %28 = or i64 %27, %25 %29 = zext i8 %8 to i64 %30 = or i64 %29, %28 ret i64 %30 } In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough PHIs are in play that instcombine backs off. It's better to not generate this stuff in the first place. llvm-svn: 123571
2011-01-16 14:18:28 +08:00
define i32 @test1() {
%X = alloca { i32, float } ; <{ i32, float }*> [#uses=1]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0 ; <i32*> [#uses=2]
store i32 0, i32* %Y
%Z = load i32, i32* %Y ; <i32> [#uses=1]
ret i32 %Z
; CHECK-LABEL: @test1(
if an alloca is only ever accessed as a unit, and is accessed with load/store instructions, then don't try to decimate it into its individual pieces. This will just make a mess of the IR and is pointless if none of the elements are individually accessed. This was generating really terrible code for std::bitset (PR8980) because it happens to be lowered by clang as an {[8 x i8]} structure instead of {i64}. The testcase now is optimized to: define i64 @test2(i64 %X) { br label %L2 L2: ; preds = %0 ret i64 %X } before we generated: define i64 @test2(i64 %X) { %sroa.store.elt = lshr i64 %X, 56 %1 = trunc i64 %sroa.store.elt to i8 %sroa.store.elt8 = lshr i64 %X, 48 %2 = trunc i64 %sroa.store.elt8 to i8 %sroa.store.elt9 = lshr i64 %X, 40 %3 = trunc i64 %sroa.store.elt9 to i8 %sroa.store.elt10 = lshr i64 %X, 32 %4 = trunc i64 %sroa.store.elt10 to i8 %sroa.store.elt11 = lshr i64 %X, 24 %5 = trunc i64 %sroa.store.elt11 to i8 %sroa.store.elt12 = lshr i64 %X, 16 %6 = trunc i64 %sroa.store.elt12 to i8 %sroa.store.elt13 = lshr i64 %X, 8 %7 = trunc i64 %sroa.store.elt13 to i8 %8 = trunc i64 %X to i8 br label %L2 L2: ; preds = %0 %9 = zext i8 %1 to i64 %10 = shl i64 %9, 56 %11 = zext i8 %2 to i64 %12 = shl i64 %11, 48 %13 = or i64 %12, %10 %14 = zext i8 %3 to i64 %15 = shl i64 %14, 40 %16 = or i64 %15, %13 %17 = zext i8 %4 to i64 %18 = shl i64 %17, 32 %19 = or i64 %18, %16 %20 = zext i8 %5 to i64 %21 = shl i64 %20, 24 %22 = or i64 %21, %19 %23 = zext i8 %6 to i64 %24 = shl i64 %23, 16 %25 = or i64 %24, %22 %26 = zext i8 %7 to i64 %27 = shl i64 %26, 8 %28 = or i64 %27, %25 %29 = zext i8 %8 to i64 %30 = or i64 %29, %28 ret i64 %30 } In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough PHIs are in play that instcombine backs off. It's better to not generate this stuff in the first place. llvm-svn: 123571
2011-01-16 14:18:28 +08:00
; CHECK-NOT: alloca
; CHECK: ret i32 0
}
; PR8980
define i64 @test2(i64 %X) {
%A = alloca [8 x i8]
%B = bitcast [8 x i8]* %A to i64*
store i64 %X, i64* %B
br label %L2
L2:
%Z = load i64, i64* %B ; <i32> [#uses=1]
if an alloca is only ever accessed as a unit, and is accessed with load/store instructions, then don't try to decimate it into its individual pieces. This will just make a mess of the IR and is pointless if none of the elements are individually accessed. This was generating really terrible code for std::bitset (PR8980) because it happens to be lowered by clang as an {[8 x i8]} structure instead of {i64}. The testcase now is optimized to: define i64 @test2(i64 %X) { br label %L2 L2: ; preds = %0 ret i64 %X } before we generated: define i64 @test2(i64 %X) { %sroa.store.elt = lshr i64 %X, 56 %1 = trunc i64 %sroa.store.elt to i8 %sroa.store.elt8 = lshr i64 %X, 48 %2 = trunc i64 %sroa.store.elt8 to i8 %sroa.store.elt9 = lshr i64 %X, 40 %3 = trunc i64 %sroa.store.elt9 to i8 %sroa.store.elt10 = lshr i64 %X, 32 %4 = trunc i64 %sroa.store.elt10 to i8 %sroa.store.elt11 = lshr i64 %X, 24 %5 = trunc i64 %sroa.store.elt11 to i8 %sroa.store.elt12 = lshr i64 %X, 16 %6 = trunc i64 %sroa.store.elt12 to i8 %sroa.store.elt13 = lshr i64 %X, 8 %7 = trunc i64 %sroa.store.elt13 to i8 %8 = trunc i64 %X to i8 br label %L2 L2: ; preds = %0 %9 = zext i8 %1 to i64 %10 = shl i64 %9, 56 %11 = zext i8 %2 to i64 %12 = shl i64 %11, 48 %13 = or i64 %12, %10 %14 = zext i8 %3 to i64 %15 = shl i64 %14, 40 %16 = or i64 %15, %13 %17 = zext i8 %4 to i64 %18 = shl i64 %17, 32 %19 = or i64 %18, %16 %20 = zext i8 %5 to i64 %21 = shl i64 %20, 24 %22 = or i64 %21, %19 %23 = zext i8 %6 to i64 %24 = shl i64 %23, 16 %25 = or i64 %24, %22 %26 = zext i8 %7 to i64 %27 = shl i64 %26, 8 %28 = or i64 %27, %25 %29 = zext i8 %8 to i64 %30 = or i64 %29, %28 ret i64 %30 } In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough PHIs are in play that instcombine backs off. It's better to not generate this stuff in the first place. llvm-svn: 123571
2011-01-16 14:18:28 +08:00
ret i64 %Z
; CHECK-LABEL: @test2(
if an alloca is only ever accessed as a unit, and is accessed with load/store instructions, then don't try to decimate it into its individual pieces. This will just make a mess of the IR and is pointless if none of the elements are individually accessed. This was generating really terrible code for std::bitset (PR8980) because it happens to be lowered by clang as an {[8 x i8]} structure instead of {i64}. The testcase now is optimized to: define i64 @test2(i64 %X) { br label %L2 L2: ; preds = %0 ret i64 %X } before we generated: define i64 @test2(i64 %X) { %sroa.store.elt = lshr i64 %X, 56 %1 = trunc i64 %sroa.store.elt to i8 %sroa.store.elt8 = lshr i64 %X, 48 %2 = trunc i64 %sroa.store.elt8 to i8 %sroa.store.elt9 = lshr i64 %X, 40 %3 = trunc i64 %sroa.store.elt9 to i8 %sroa.store.elt10 = lshr i64 %X, 32 %4 = trunc i64 %sroa.store.elt10 to i8 %sroa.store.elt11 = lshr i64 %X, 24 %5 = trunc i64 %sroa.store.elt11 to i8 %sroa.store.elt12 = lshr i64 %X, 16 %6 = trunc i64 %sroa.store.elt12 to i8 %sroa.store.elt13 = lshr i64 %X, 8 %7 = trunc i64 %sroa.store.elt13 to i8 %8 = trunc i64 %X to i8 br label %L2 L2: ; preds = %0 %9 = zext i8 %1 to i64 %10 = shl i64 %9, 56 %11 = zext i8 %2 to i64 %12 = shl i64 %11, 48 %13 = or i64 %12, %10 %14 = zext i8 %3 to i64 %15 = shl i64 %14, 40 %16 = or i64 %15, %13 %17 = zext i8 %4 to i64 %18 = shl i64 %17, 32 %19 = or i64 %18, %16 %20 = zext i8 %5 to i64 %21 = shl i64 %20, 24 %22 = or i64 %21, %19 %23 = zext i8 %6 to i64 %24 = shl i64 %23, 16 %25 = or i64 %24, %22 %26 = zext i8 %7 to i64 %27 = shl i64 %26, 8 %28 = or i64 %27, %25 %29 = zext i8 %8 to i64 %30 = or i64 %29, %28 ret i64 %30 } In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough PHIs are in play that instcombine backs off. It's better to not generate this stuff in the first place. llvm-svn: 123571
2011-01-16 14:18:28 +08:00
; CHECK-NOT: alloca
; CHECK: ret i64 %X
}