2016-07-08 18:50:51 +08:00
|
|
|
set(LLVM_LINK_COMPONENTS
|
2020-04-08 00:26:40 +08:00
|
|
|
FrontendOpenMP
|
2016-07-08 18:50:51 +08:00
|
|
|
Support
|
|
|
|
)
|
|
|
|
|
2017-04-06 22:34:07 +08:00
|
|
|
add_clang_unittest(ClangAnalysisTests
|
2019-07-05 18:16:36 +08:00
|
|
|
CFGDominatorTree.cpp
|
2016-07-08 18:50:51 +08:00
|
|
|
CFGTest.cpp
|
2017-04-06 22:34:07 +08:00
|
|
|
CloneDetectionTest.cpp
|
2018-09-12 05:13:20 +08:00
|
|
|
ExprMutationAnalyzerTest.cpp
|
[analyzer] Introduce MacroExpansionContext to libAnalysis
Introduce `MacroExpansionContext` to track what and how macros in a translation
unit expand. This is the first element of the patch-stack in this direction.
The main goal is to substitute the current macro expansion generator in the
`PlistsDiagnostics`, but all the other `DiagnosticsConsumer` could benefit from
this.
`getExpandedText` and `getOriginalText` are the primary functions of this class.
The former can provide you the text that was the result of the macro expansion
chain starting from a `SourceLocation`.
While the latter will tell you **what text** was in the original source code
replaced by the macro expansion chain from that location.
Here is an example:
void bar();
#define retArg(x) x
#define retArgUnclosed retArg(bar()
#define BB CC
#define applyInt BB(int)
#define CC(x) retArgUnclosed
void unbalancedMacros() {
applyInt );
//^~~~~~~~~~^ is the substituted range
// Original text is "applyInt )"
// Expanded text is "bar()"
}
#define expandArgUnclosedCommaExpr(x) (x, bar(), 1
#define f expandArgUnclosedCommaExpr
void unbalancedMacros2() {
int x = f(f(1)) )); // Look at the parenthesis!
// ^~~~~~^ is the substituted range
// Original text is "f(f(1))"
// Expanded text is "((1,bar(),1,bar(),1"
}
Might worth investigating how to provide a reusable component, which could be
used for example by a standalone tool eg. expanding all macros to their
definitions.
I borrowed the main idea from the `PrintPreprocessedOutput.cpp` Frontend
component, providing a `PPCallbacks` instance hooking the preprocessor events.
I'm using that for calculating the source range where tokens will be expanded
to. I'm also using the `Preprocessor`'s `OnToken` callback, via the
`Preprocessor::setTokenWatcher` to reconstruct the expanded text.
Unfortunately, I concatenate the token's string representation without any
whitespaces except if the token is an identifier when I emit an extra space
to produce valid code for `int var` token sequences.
This could be improved later if needed.
Patch-stack:
1) D93222 (this one) Introduces the MacroExpansionContext class and unittests
2) D93223 Create MacroExpansionContext member in AnalysisConsumer and pass
down to the diagnostics consumers
3) D93224 Use the MacroExpansionContext for macro expansions in plists
It replaces the 'old' macro expansion mechanism.
4) D94673 API for CTU macro expansions
You should be able to get a `MacroExpansionContext` for each imported TU.
Right now it will just return `llvm::None` as this is not implemented yet.
5) FIXME: Implement macro expansion tracking for imported TUs as well.
It would also relieve us from bugs like:
- [fixed] D86135
- [confirmed] The `__VA_ARGS__` and other macro nitty-gritty, such as how to
stringify macro parameters, where to put or swallow commas, etc. are not
handled correctly.
- [confirmed] Unbalanced parenthesis are not well handled - resulting in
incorrect expansions or even crashes.
- [confirmed][crashing] https://bugs.llvm.org/show_bug.cgi?id=48358
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93222
2021-02-22 18:11:57 +08:00
|
|
|
MacroExpansionContextTest.cpp
|
2016-07-08 18:50:51 +08:00
|
|
|
)
|
|
|
|
|
2019-07-04 06:45:55 +08:00
|
|
|
clang_target_link_libraries(ClangAnalysisTests
|
[CMake] Use PRIVATE in target_link_libraries for executables
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
2017-12-06 05:49:56 +08:00
|
|
|
PRIVATE
|
2016-07-08 18:50:51 +08:00
|
|
|
clangAnalysis
|
2016-07-09 01:06:27 +08:00
|
|
|
clangAST
|
2016-07-08 18:50:51 +08:00
|
|
|
clangASTMatchers
|
2016-07-09 01:06:27 +08:00
|
|
|
clangBasic
|
|
|
|
clangFrontend
|
[analyzer] Introduce MacroExpansionContext to libAnalysis
Introduce `MacroExpansionContext` to track what and how macros in a translation
unit expand. This is the first element of the patch-stack in this direction.
The main goal is to substitute the current macro expansion generator in the
`PlistsDiagnostics`, but all the other `DiagnosticsConsumer` could benefit from
this.
`getExpandedText` and `getOriginalText` are the primary functions of this class.
The former can provide you the text that was the result of the macro expansion
chain starting from a `SourceLocation`.
While the latter will tell you **what text** was in the original source code
replaced by the macro expansion chain from that location.
Here is an example:
void bar();
#define retArg(x) x
#define retArgUnclosed retArg(bar()
#define BB CC
#define applyInt BB(int)
#define CC(x) retArgUnclosed
void unbalancedMacros() {
applyInt );
//^~~~~~~~~~^ is the substituted range
// Original text is "applyInt )"
// Expanded text is "bar()"
}
#define expandArgUnclosedCommaExpr(x) (x, bar(), 1
#define f expandArgUnclosedCommaExpr
void unbalancedMacros2() {
int x = f(f(1)) )); // Look at the parenthesis!
// ^~~~~~^ is the substituted range
// Original text is "f(f(1))"
// Expanded text is "((1,bar(),1,bar(),1"
}
Might worth investigating how to provide a reusable component, which could be
used for example by a standalone tool eg. expanding all macros to their
definitions.
I borrowed the main idea from the `PrintPreprocessedOutput.cpp` Frontend
component, providing a `PPCallbacks` instance hooking the preprocessor events.
I'm using that for calculating the source range where tokens will be expanded
to. I'm also using the `Preprocessor`'s `OnToken` callback, via the
`Preprocessor::setTokenWatcher` to reconstruct the expanded text.
Unfortunately, I concatenate the token's string representation without any
whitespaces except if the token is an identifier when I emit an extra space
to produce valid code for `int var` token sequences.
This could be improved later if needed.
Patch-stack:
1) D93222 (this one) Introduces the MacroExpansionContext class and unittests
2) D93223 Create MacroExpansionContext member in AnalysisConsumer and pass
down to the diagnostics consumers
3) D93224 Use the MacroExpansionContext for macro expansions in plists
It replaces the 'old' macro expansion mechanism.
4) D94673 API for CTU macro expansions
You should be able to get a `MacroExpansionContext` for each imported TU.
Right now it will just return `llvm::None` as this is not implemented yet.
5) FIXME: Implement macro expansion tracking for imported TUs as well.
It would also relieve us from bugs like:
- [fixed] D86135
- [confirmed] The `__VA_ARGS__` and other macro nitty-gritty, such as how to
stringify macro parameters, where to put or swallow commas, etc. are not
handled correctly.
- [confirmed] Unbalanced parenthesis are not well handled - resulting in
incorrect expansions or even crashes.
- [confirmed][crashing] https://bugs.llvm.org/show_bug.cgi?id=48358
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93222
2021-02-22 18:11:57 +08:00
|
|
|
clangLex
|
2018-12-12 16:02:18 +08:00
|
|
|
clangSerialization
|
[analyzer] Introduce MacroExpansionContext to libAnalysis
Introduce `MacroExpansionContext` to track what and how macros in a translation
unit expand. This is the first element of the patch-stack in this direction.
The main goal is to substitute the current macro expansion generator in the
`PlistsDiagnostics`, but all the other `DiagnosticsConsumer` could benefit from
this.
`getExpandedText` and `getOriginalText` are the primary functions of this class.
The former can provide you the text that was the result of the macro expansion
chain starting from a `SourceLocation`.
While the latter will tell you **what text** was in the original source code
replaced by the macro expansion chain from that location.
Here is an example:
void bar();
#define retArg(x) x
#define retArgUnclosed retArg(bar()
#define BB CC
#define applyInt BB(int)
#define CC(x) retArgUnclosed
void unbalancedMacros() {
applyInt );
//^~~~~~~~~~^ is the substituted range
// Original text is "applyInt )"
// Expanded text is "bar()"
}
#define expandArgUnclosedCommaExpr(x) (x, bar(), 1
#define f expandArgUnclosedCommaExpr
void unbalancedMacros2() {
int x = f(f(1)) )); // Look at the parenthesis!
// ^~~~~~^ is the substituted range
// Original text is "f(f(1))"
// Expanded text is "((1,bar(),1,bar(),1"
}
Might worth investigating how to provide a reusable component, which could be
used for example by a standalone tool eg. expanding all macros to their
definitions.
I borrowed the main idea from the `PrintPreprocessedOutput.cpp` Frontend
component, providing a `PPCallbacks` instance hooking the preprocessor events.
I'm using that for calculating the source range where tokens will be expanded
to. I'm also using the `Preprocessor`'s `OnToken` callback, via the
`Preprocessor::setTokenWatcher` to reconstruct the expanded text.
Unfortunately, I concatenate the token's string representation without any
whitespaces except if the token is an identifier when I emit an extra space
to produce valid code for `int var` token sequences.
This could be improved later if needed.
Patch-stack:
1) D93222 (this one) Introduces the MacroExpansionContext class and unittests
2) D93223 Create MacroExpansionContext member in AnalysisConsumer and pass
down to the diagnostics consumers
3) D93224 Use the MacroExpansionContext for macro expansions in plists
It replaces the 'old' macro expansion mechanism.
4) D94673 API for CTU macro expansions
You should be able to get a `MacroExpansionContext` for each imported TU.
Right now it will just return `llvm::None` as this is not implemented yet.
5) FIXME: Implement macro expansion tracking for imported TUs as well.
It would also relieve us from bugs like:
- [fixed] D86135
- [confirmed] The `__VA_ARGS__` and other macro nitty-gritty, such as how to
stringify macro parameters, where to put or swallow commas, etc. are not
handled correctly.
- [confirmed] Unbalanced parenthesis are not well handled - resulting in
incorrect expansions or even crashes.
- [confirmed][crashing] https://bugs.llvm.org/show_bug.cgi?id=48358
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93222
2021-02-22 18:11:57 +08:00
|
|
|
clangTesting
|
2016-07-08 18:50:51 +08:00
|
|
|
clangTooling
|
|
|
|
)
|
[analyzer] Introduce MacroExpansionContext to libAnalysis
Introduce `MacroExpansionContext` to track what and how macros in a translation
unit expand. This is the first element of the patch-stack in this direction.
The main goal is to substitute the current macro expansion generator in the
`PlistsDiagnostics`, but all the other `DiagnosticsConsumer` could benefit from
this.
`getExpandedText` and `getOriginalText` are the primary functions of this class.
The former can provide you the text that was the result of the macro expansion
chain starting from a `SourceLocation`.
While the latter will tell you **what text** was in the original source code
replaced by the macro expansion chain from that location.
Here is an example:
void bar();
#define retArg(x) x
#define retArgUnclosed retArg(bar()
#define BB CC
#define applyInt BB(int)
#define CC(x) retArgUnclosed
void unbalancedMacros() {
applyInt );
//^~~~~~~~~~^ is the substituted range
// Original text is "applyInt )"
// Expanded text is "bar()"
}
#define expandArgUnclosedCommaExpr(x) (x, bar(), 1
#define f expandArgUnclosedCommaExpr
void unbalancedMacros2() {
int x = f(f(1)) )); // Look at the parenthesis!
// ^~~~~~^ is the substituted range
// Original text is "f(f(1))"
// Expanded text is "((1,bar(),1,bar(),1"
}
Might worth investigating how to provide a reusable component, which could be
used for example by a standalone tool eg. expanding all macros to their
definitions.
I borrowed the main idea from the `PrintPreprocessedOutput.cpp` Frontend
component, providing a `PPCallbacks` instance hooking the preprocessor events.
I'm using that for calculating the source range where tokens will be expanded
to. I'm also using the `Preprocessor`'s `OnToken` callback, via the
`Preprocessor::setTokenWatcher` to reconstruct the expanded text.
Unfortunately, I concatenate the token's string representation without any
whitespaces except if the token is an identifier when I emit an extra space
to produce valid code for `int var` token sequences.
This could be improved later if needed.
Patch-stack:
1) D93222 (this one) Introduces the MacroExpansionContext class and unittests
2) D93223 Create MacroExpansionContext member in AnalysisConsumer and pass
down to the diagnostics consumers
3) D93224 Use the MacroExpansionContext for macro expansions in plists
It replaces the 'old' macro expansion mechanism.
4) D94673 API for CTU macro expansions
You should be able to get a `MacroExpansionContext` for each imported TU.
Right now it will just return `llvm::None` as this is not implemented yet.
5) FIXME: Implement macro expansion tracking for imported TUs as well.
It would also relieve us from bugs like:
- [fixed] D86135
- [confirmed] The `__VA_ARGS__` and other macro nitty-gritty, such as how to
stringify macro parameters, where to put or swallow commas, etc. are not
handled correctly.
- [confirmed] Unbalanced parenthesis are not well handled - resulting in
incorrect expansions or even crashes.
- [confirmed][crashing] https://bugs.llvm.org/show_bug.cgi?id=48358
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93222
2021-02-22 18:11:57 +08:00
|
|
|
|
|
|
|
target_link_libraries(ClangAnalysisTests
|
|
|
|
PRIVATE
|
|
|
|
LLVMTestingSupport
|
|
|
|
)
|