llvm-project/llvm/lib/Linker/IRMover.cpp

1460 lines
53 KiB
C++
Raw Normal View History

//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Linker/IRMover.h"
#include "LinkDiagnosticInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//
namespace {
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type *, Type *> MappedTypes;
/// When checking to see if two subgraphs are isomorphic, we speculatively
/// add types to MappedTypes, but keep track of them here in case we need to
/// roll back.
SmallVector<Type *, 16> SpeculativeTypes;
SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
/// This is a list of non-opaque structs in the source module that are mapped
/// to an opaque struct in the destination module.
SmallVector<StructType *, 16> SrcDefinitionsToResolve;
/// This is the set of opaque types in the destination modules who are
/// getting a body from the source module.
SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
public:
TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
: DstStructTypesSet(DstStructTypesSet) {}
IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Produce a body for an opaque type in the dest module from a type
/// definition in the source module.
void linkDefinedTypeBodies();
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
}
private:
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
assert(SpeculativeTypes.empty());
assert(SpeculativeDstOpaqueTypes.empty());
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
for (Type *Ty : SpeculativeTypes)
MappedTypes.erase(Ty);
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
SpeculativeDstOpaqueTypes.size());
for (StructType *Ty : SpeculativeDstOpaqueTypes)
DstResolvedOpaqueTypes.erase(Ty);
} else {
for (Type *Ty : SpeculativeTypes)
if (auto *STy = dyn_cast<StructType>(Ty))
if (STy->hasName())
STy->setName("");
}
SpeculativeTypes.clear();
SpeculativeDstOpaqueTypes.clear();
}
/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
if (DstTy->getTypeID() != SrcTy->getTypeID())
return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
if (Entry)
return Entry == DstTy;
// Two identical types are clearly isomorphic. Remember this
// non-speculatively.
if (DstTy == SrcTy) {
Entry = DstTy;
return true;
}
// Okay, we have two types with identical kinds that we haven't seen before.
// If this is an opaque struct type, special case it.
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
// Mapping an opaque type to any struct, just keep the dest struct.
if (SSTy->isOpaque()) {
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
return true;
}
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
// the dest, but fill it in later. If this is the second (different) type
// that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
SrcDefinitionsToResolve.push_back(SSTy);
SpeculativeTypes.push_back(SrcTy);
SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
Entry = DstTy;
return true;
}
}
// If the number of subtypes disagree between the two types, then we fail.
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
return false;
// Fail if any of the extra properties (e.g. array size) of the type disagree.
if (isa<IntegerType>(DstTy))
return false; // bitwidth disagrees.
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
return false;
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
return false;
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
StructType *SSTy = cast<StructType>(SrcTy);
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
} else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
if (DSeqTy->getNumElements() !=
cast<SequentialType>(SrcTy)->getNumElements())
return false;
}
// Otherwise, we speculate that these two types will line up and recursively
// check the subelements.
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
if (!areTypesIsomorphic(DstTy->getContainedType(I),
SrcTy->getContainedType(I)))
return false;
// If everything seems to have lined up, then everything is great.
return true;
}
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type *, 16> Elements;
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
assert(DstSTy->isOpaque());
// Map the body of the source type over to a new body for the dest type.
Elements.resize(SrcSTy->getNumElements());
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
DstStructTypesSet.switchToNonOpaque(DstSTy);
}
SrcDefinitionsToResolve.clear();
DstResolvedOpaqueTypes.clear();
}
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
ArrayRef<Type *> ETypes) {
DTy->setBody(ETypes, STy->isPacked());
// Steal STy's name.
if (STy->hasName()) {
SmallString<16> TmpName = STy->getName();
STy->setName("");
DTy->setName(TmpName);
}
DstStructTypesSet.addNonOpaque(DTy);
}
Type *TypeMapTy::get(Type *Ty) {
SmallPtrSet<StructType *, 8> Visited;
return get(Ty, Visited);
}
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
// These are types that LLVM itself will unique.
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
#ifndef NDEBUG
if (!IsUniqued) {
for (auto &Pair : MappedTypes) {
assert(!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type");
}
}
#endif
if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
StructType *DTy = StructType::create(Ty->getContext());
return *Entry = DTy;
}
// If this is not a recursive type, then just map all of the elements and
// then rebuild the type from inside out.
SmallVector<Type *, 4> ElementTypes;
// If there are no element types to map, then the type is itself. This is
// true for the anonymous {} struct, things like 'float', integers, etc.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
// Remap all of the elements, keeping track of whether any of them change.
bool AnyChange = false;
ElementTypes.resize(Ty->getNumContainedTypes());
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
}
// If we found our type while recursively processing stuff, just use it.
Entry = &MappedTypes[Ty];
if (*Entry) {
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
if (DTy->isOpaque()) {
auto *STy = cast<StructType>(Ty);
finishType(DTy, STy, ElementTypes);
}
}
return *Entry;
}
// If all of the element types mapped directly over and the type is not
// a named struct, then the type is usable as-is.
if (!AnyChange && IsUniqued)
return *Entry = Ty;
// Otherwise, rebuild a modified type.
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unknown derived type to remap");
case Type::ArrayTyID:
return *Entry = ArrayType::get(ElementTypes[0],
cast<ArrayType>(Ty)->getNumElements());
case Type::VectorTyID:
return *Entry = VectorType::get(ElementTypes[0],
cast<VectorType>(Ty)->getNumElements());
case Type::PointerTyID:
return *Entry = PointerType::get(ElementTypes[0],
cast<PointerType>(Ty)->getAddressSpace());
case Type::FunctionTyID:
return *Entry = FunctionType::get(ElementTypes[0],
makeArrayRef(ElementTypes).slice(1),
cast<FunctionType>(Ty)->isVarArg());
case Type::StructTyID: {
auto *STy = cast<StructType>(Ty);
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
// If the type is opaque, we can just use it directly.
if (STy->isOpaque()) {
DstStructTypesSet.addOpaque(STy);
return *Entry = Ty;
}
if (StructType *OldT =
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
STy->setName("");
return *Entry = OldT;
}
if (!AnyChange) {
DstStructTypesSet.addNonOpaque(STy);
return *Entry = Ty;
}
StructType *DTy = StructType::create(Ty->getContext());
finishType(DTy, STy, ElementTypes);
return *Entry = DTy;
}
}
}
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
//===----------------------------------------------------------------------===//
// IRLinker implementation.
//===----------------------------------------------------------------------===//
namespace {
class IRLinker;
/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class GlobalValueMaterializer final : public ValueMaterializer {
IRLinker &TheIRLinker;
public:
GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
Value *materialize(Value *V) override;
};
class LocalValueMaterializer final : public ValueMaterializer {
IRLinker &TheIRLinker;
public:
LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
Value *materialize(Value *V) override;
};
/// Type of the Metadata map in \a ValueToValueMapTy.
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
/// This is responsible for keeping track of the state used for moving data
/// from SrcM to DstM.
class IRLinker {
Module &DstM;
std::unique_ptr<Module> SrcM;
/// See IRMover::move().
std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
TypeMapTy TypeMap;
GlobalValueMaterializer GValMaterializer;
LocalValueMaterializer LValMaterializer;
/// A metadata map that's shared between IRLinker instances.
MDMapT &SharedMDs;
/// Mapping of values from what they used to be in Src, to what they are now
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
/// due to the use of Value handles which the Linker doesn't actually need,
/// but this allows us to reuse the ValueMapper code.
ValueToValueMapTy ValueMap;
ValueToValueMapTy AliasValueMap;
DenseSet<GlobalValue *> ValuesToLink;
std::vector<GlobalValue *> Worklist;
void maybeAdd(GlobalValue *GV) {
if (ValuesToLink.insert(GV).second)
Worklist.push_back(GV);
}
/// Whether we are importing globals for ThinLTO, as opposed to linking the
/// source module. If this flag is set, it means that we can rely on some
/// other object file to define any non-GlobalValue entities defined by the
/// source module. This currently causes us to not link retained types in
/// debug info metadata and module inline asm.
bool IsPerformingImport;
/// Set to true when all global value body linking is complete (including
/// lazy linking). Used to prevent metadata linking from creating new
/// references.
bool DoneLinkingBodies = false;
/// The Error encountered during materialization. We use an Optional here to
/// avoid needing to manage an unconsumed success value.
Optional<Error> FoundError;
void setError(Error E) {
if (E)
FoundError = std::move(E);
}
/// Most of the errors produced by this module are inconvertible StringErrors.
/// This convenience function lets us return one of those more easily.
Error stringErr(const Twine &T) {
return make_error<StringError>(T, inconvertibleErrorCode());
}
/// Entry point for mapping values and alternate context for mapping aliases.
ValueMapper Mapper;
unsigned AliasMCID;
/// Handles cloning of a global values from the source module into
/// the destination module, including setting the attributes and visibility.
GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
void emitWarning(const Twine &Message) {
SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
}
/// Given a global in the source module, return the global in the
/// destination module that is being linked to, if any.
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
// If the source has no name it can't link. If it has local linkage,
// there is no name match-up going on.
if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
return nullptr;
// Otherwise see if we have a match in the destination module's symtab.
GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
if (!DGV)
return nullptr;
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
if (DGV->hasLocalLinkage())
return nullptr;
// Otherwise, we do in fact link to the destination global.
return DGV;
}
void computeTypeMapping();
Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV);
/// Given the GlobaValue \p SGV in the source module, and the matching
/// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
/// into the destination module.
///
/// Note this code may call the client-provided \p AddLazyFor.
bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
Error linkModuleFlagsMetadata();
void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
Error linkFunctionBody(Function &Dst, Function &Src);
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
/// Functions that take care of cloning a specific global value type
/// into the destination module.
GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
Function *copyFunctionProto(const Function *SF);
GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
/// When importing for ThinLTO, prevent importing of types listed on
/// the DICompileUnit that we don't need a copy of in the importing
/// module.
void prepareCompileUnitsForImport();
void linkNamedMDNodes();
public:
IRLinker(Module &DstM, MDMapT &SharedMDs,
IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
ArrayRef<GlobalValue *> ValuesToLink,
std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
bool IsPerformingImport)
: DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
&GValMaterializer),
AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
&LValMaterializer)) {
ValueMap.getMDMap() = std::move(SharedMDs);
for (GlobalValue *GV : ValuesToLink)
maybeAdd(GV);
if (IsPerformingImport)
prepareCompileUnitsForImport();
}
~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
Error run();
Value *materialize(Value *V, bool ForAlias);
};
}
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
if (GV->hasLocalLinkage() || GV->getName() == Name)
return;
Module *M = GV->getParent();
// If there is a conflict, rename the conflict.
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
GV->takeName(ConflictGV);
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
} else {
GV->setName(Name); // Force the name back
}
}
Value *GlobalValueMaterializer::materialize(Value *SGV) {
return TheIRLinker.materialize(SGV, false);
}
Value *LocalValueMaterializer::materialize(Value *SGV) {
return TheIRLinker.materialize(SGV, true);
}
Value *IRLinker::materialize(Value *V, bool ForAlias) {
auto *SGV = dyn_cast<GlobalValue>(V);
if (!SGV)
return nullptr;
Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
if (!NewProto) {
setError(NewProto.takeError());
return nullptr;
}
if (!*NewProto)
return nullptr;
GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
if (!New)
return *NewProto;
// If we already created the body, just return.
if (auto *F = dyn_cast<Function>(New)) {
if (!F->isDeclaration())
return New;
} else if (auto *V = dyn_cast<GlobalVariable>(New)) {
if (V->hasInitializer() || V->hasAppendingLinkage())
return New;
} else {
auto *A = cast<GlobalAlias>(New);
if (A->getAliasee())
return New;
}
// When linking a global for an alias, it will always be linked. However we
2016-11-15 01:26:32 +08:00
// need to check if it was not already scheduled to satisfy a reference from a
// regular global value initializer. We know if it has been schedule if the
// "New" GlobalValue that is mapped here for the alias is the same as the one
// already mapped. If there is an entry in the ValueMap but the value is
// different, it means that the value already had a definition in the
// destination module (linkonce for instance), but we need a new definition
// for the alias ("New" will be different.
if (ForAlias && ValueMap.lookup(SGV) == New)
return New;
if (ForAlias || shouldLink(New, *SGV))
setError(linkGlobalValueBody(*New, *SGV));
return New;
}
/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV =
new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
SGVar->isConstant(), GlobalValue::ExternalLinkage,
/*init*/ nullptr, SGVar->getName(),
/*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
SGVar->getType()->getAddressSpace());
NewDGV->setAlignment(SGVar->getAlignment());
NewDGV->copyAttributesFrom(SGVar);
return NewDGV;
}
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *IRLinker::copyFunctionProto(const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
auto *F =
Function::Create(TypeMap.get(SF->getFunctionType()),
GlobalValue::ExternalLinkage, SF->getName(), &DstM);
F->copyAttributesFrom(SF);
return F;
}
/// Set up prototypes for any aliases that come over from the source module.
GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *Ty = TypeMap.get(SGA->getValueType());
auto *GA =
GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
GA->copyAttributesFrom(SGA);
return GA;
}
GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
bool ForDefinition) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
NewGV = copyGlobalVariableProto(SGVar);
} else if (auto *SF = dyn_cast<Function>(SGV)) {
NewGV = copyFunctionProto(SF);
} else {
if (ForDefinition)
NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
else if (SGV->getValueType()->isFunctionTy())
NewGV =
Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
else
NewGV = new GlobalVariable(
DstM, TypeMap.get(SGV->getValueType()),
/*isConstant*/ false, GlobalValue::ExternalLinkage,
/*init*/ nullptr, SGV->getName(),
/*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
SGV->getType()->getAddressSpace());
}
if (ForDefinition)
NewGV->setLinkage(SGV->getLinkage());
else if (SGV->hasExternalWeakLinkage())
NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
// Metadata for global variables and function declarations is copied eagerly.
if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
}
// Remove these copied constants in case this stays a declaration, since
// they point to the source module. If the def is linked the values will
// be mapped in during linkFunctionBody.
if (auto *NewF = dyn_cast<Function>(NewGV)) {
NewF->setPersonalityFn(nullptr);
NewF->setPrefixData(nullptr);
NewF->setPrologueData(nullptr);
}
return NewGV;
}
/// Loop over all of the linked values to compute type mappings. For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void IRLinker::computeTypeMapping() {
for (GlobalValue &SGV : SrcM->globals()) {
GlobalValue *DGV = getLinkedToGlobal(&SGV);
if (!DGV)
continue;
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
continue;
}
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
}
for (GlobalValue &SGV : *SrcM)
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
for (GlobalValue &SGV : SrcM->aliases())
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
for (StructType *ST : Types) {
if (!ST->hasName())
continue;
if (TypeMap.DstStructTypesSet.hasType(ST)) {
// This is actually a type from the destination module.
// getIdentifiedStructTypes() can have found it by walking debug info
// metadata nodes, some of which get linked by name when ODR Type Uniquing
// is enabled on the Context, from the source to the destination module.
continue;
}
// Check to see if there is a dot in the name followed by a digit.
size_t DotPos = ST->getName().rfind('.');
if (DotPos == 0 || DotPos == StringRef::npos ||
ST->getName().back() == '.' ||
!isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
continue;
// Check to see if the destination module has a struct with the prefix name.
StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
if (!DST)
continue;
// Don't use it if this actually came from the source module. They're in
// the same LLVMContext after all. Also don't use it unless the type is
// actually used in the destination module. This can happen in situations
// like this:
//
// Module A Module B
// -------- --------
// %Z = type { %A } %B = type { %C.1 }
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
// %C = type { i8* } %B.3 = type { %C.1 }
//
// When we link Module B with Module A, the '%B' in Module B is
// used. However, that would then use '%C.1'. But when we process '%C.1',
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
}
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
TypeMap.linkDefinedTypeBodies();
}
static void getArrayElements(const Constant *C,
SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
Dest.push_back(C->getAggregateElement(i));
}
/// If there were any appending global variables, link them together now.
Expected<Constant *>
IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV) {
Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
->getElementType();
// FIXME: This upgrade is done during linking to support the C API. Once the
// old form is deprecated, we should move this upgrade to
// llvm::UpgradeGlobalVariable() and simplify the logic here and in
// Mapper::mapAppendingVariable() in ValueMapper.cpp.
StringRef Name = SrcGV->getName();
bool IsNewStructor = false;
bool IsOldStructor = false;
if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
if (cast<StructType>(EltTy)->getNumElements() == 3)
IsNewStructor = true;
else
IsOldStructor = true;
}
PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
if (IsOldStructor) {
auto &ST = *cast<StructType>(EltTy);
Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
EltTy = StructType::get(SrcGV->getContext(), Tys, false);
}
uint64_t DstNumElements = 0;
if (DstGV) {
ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
DstNumElements = DstTy->getNumElements();
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
return stringErr(
"Linking globals named '" + SrcGV->getName() +
"': can only link appending global with another appending "
"global!");
// Check to see that they two arrays agree on type.
if (EltTy != DstTy->getElementType())
return stringErr("Appending variables with different element types!");
if (DstGV->isConstant() != SrcGV->isConstant())
return stringErr("Appending variables linked with different const'ness!");
if (DstGV->getAlignment() != SrcGV->getAlignment())
return stringErr(
"Appending variables with different alignment need to be linked!");
if (DstGV->getVisibility() != SrcGV->getVisibility())
return stringErr(
"Appending variables with different visibility need to be linked!");
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
return stringErr(
"Appending variables with different unnamed_addr need to be linked!");
if (DstGV->getSection() != SrcGV->getSection())
return stringErr(
"Appending variables with different section name need to be linked!");
}
SmallVector<Constant *, 16> SrcElements;
getArrayElements(SrcGV->getInitializer(), SrcElements);
if (IsNewStructor) {
auto It = remove_if(SrcElements, [this](Constant *E) {
auto *Key =
dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
if (!Key)
return false;
GlobalValue *DGV = getLinkedToGlobal(Key);
return !shouldLink(DGV, *Key);
});
SrcElements.erase(It, SrcElements.end());
}
uint64_t NewSize = DstNumElements + SrcElements.size();
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
// Create the new global variable.
GlobalVariable *NG = new GlobalVariable(
DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
/*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
SrcGV->getType()->getAddressSpace());
NG->copyAttributesFrom(SrcGV);
forceRenaming(NG, SrcGV->getName());
Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
Mapper.scheduleMapAppendingVariable(*NG,
DstGV ? DstGV->getInitializer() : nullptr,
IsOldStructor, SrcElements);
// Replace any uses of the two global variables with uses of the new
// global.
if (DstGV) {
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
DstGV->eraseFromParent();
}
return Ret;
}
bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
return true;
if (DGV && !DGV->isDeclarationForLinker())
return false;
if (SGV.isDeclaration() || DoneLinkingBodies)
return false;
// Callback to the client to give a chance to lazily add the Global to the
// list of value to link.
bool LazilyAdded = false;
AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
maybeAdd(&GV);
LazilyAdded = true;
});
return LazilyAdded;
}
Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
bool ForAlias) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
bool ShouldLink = shouldLink(DGV, *SGV);
// just missing from map
if (ShouldLink) {
auto I = ValueMap.find(SGV);
if (I != ValueMap.end())
return cast<Constant>(I->second);
I = AliasValueMap.find(SGV);
if (I != AliasValueMap.end())
return cast<Constant>(I->second);
}
if (!ShouldLink && ForAlias)
DGV = nullptr;
// Handle the ultra special appending linkage case first.
assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
if (SGV->hasAppendingLinkage())
return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
cast<GlobalVariable>(SGV));
GlobalValue *NewGV;
if (DGV && !ShouldLink) {
NewGV = DGV;
} else {
// If we are done linking global value bodies (i.e. we are performing
// metadata linking), don't link in the global value due to this
// reference, simply map it to null.
if (DoneLinkingBodies)
return nullptr;
NewGV = copyGlobalValueProto(SGV, ShouldLink);
if (ShouldLink || !ForAlias)
forceRenaming(NewGV, SGV->getName());
}
// Overloaded intrinsics have overloaded types names as part of their
// names. If we renamed overloaded types we should rename the intrinsic
// as well.
if (Function *F = dyn_cast<Function>(NewGV))
if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
NewGV = Remangled.getValue();
if (ShouldLink || ForAlias) {
if (const Comdat *SC = SGV->getComdat()) {
if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
Comdat *DC = DstM.getOrInsertComdat(SC->getName());
DC->setSelectionKind(SC->getSelectionKind());
GO->setComdat(DC);
}
}
}
if (!ShouldLink && ForAlias)
NewGV->setLinkage(GlobalValue::InternalLinkage);
Constant *C = NewGV;
if (DGV)
C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));
if (DGV && NewGV != DGV) {
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
DGV->eraseFromParent();
}
return C;
}
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
// Figure out what the initializer looks like in the dest module.
Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
}
/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
assert(Dst.isDeclaration() && !Src.isDeclaration());
// Materialize if needed.
if (Error Err = Src.materialize())
return Err;
// Link in the operands without remapping.
if (Src.hasPrefixData())
Dst.setPrefixData(Src.getPrefixData());
if (Src.hasPrologueData())
Dst.setPrologueData(Src.getPrologueData());
if (Src.hasPersonalityFn())
Dst.setPersonalityFn(Src.getPersonalityFn());
// Copy over the metadata attachments without remapping.
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
Dst.copyMetadata(&Src, 0);
// Steal arguments and splice the body of Src into Dst.
Dst.stealArgumentListFrom(Src);
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
// Everything has been moved over. Remap it.
Mapper.scheduleRemapFunction(Dst);
return Error::success();
}
void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
}
Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
if (auto *F = dyn_cast<Function>(&Src))
return linkFunctionBody(cast<Function>(Dst), *F);
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
return Error::success();
}
linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
return Error::success();
}
void IRLinker::prepareCompileUnitsForImport() {
NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
if (!SrcCompileUnits)
return;
// When importing for ThinLTO, prevent importing of types listed on
// the DICompileUnit that we don't need a copy of in the importing
// module. They will be emitted by the originating module.
for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
assert(CU && "Expected valid compile unit");
// Enums, macros, and retained types don't need to be listed on the
// imported DICompileUnit. This means they will only be imported
// if reached from the mapped IR. Do this by setting their value map
// entries to nullptr, which will automatically prevent their importing
// when reached from the DICompileUnit during metadata mapping.
ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
// If we ever start importing global variable defs, we'll need to
// add their DIGlobalVariable to the globals list on the imported
// DICompileUnit. Confirm none are imported, and then we can
// map the list of global variables to nullptr.
assert(none_of(
ValuesToLink,
[](const GlobalValue *GV) { return isa<GlobalVariable>(GV); }) &&
"Unexpected importing of a GlobalVariable definition");
ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
// Imported entities only need to be mapped in if they have local
// scope, as those might correspond to an imported entity inside a
// function being imported (any locally scoped imported entities that
// don't end up referenced by an imported function will not be emitted
// into the object). Imported entities not in a local scope
// (e.g. on the namespace) only need to be emitted by the originating
// module. Create a list of the locally scoped imported entities, and
// replace the source CUs imported entity list with the new list, so
// only those are mapped in.
// FIXME: Locally-scoped imported entities could be moved to the
// functions they are local to instead of listing them on the CU, and
// we would naturally only link in those needed by function importing.
SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
bool ReplaceImportedEntities = false;
for (auto *IE : CU->getImportedEntities()) {
DIScope *Scope = IE->getScope();
assert(Scope && "Invalid Scope encoding!");
if (isa<DILocalScope>(Scope))
AllImportedModules.emplace_back(IE);
else
ReplaceImportedEntities = true;
}
if (ReplaceImportedEntities) {
if (!AllImportedModules.empty())
CU->replaceImportedEntities(MDTuple::get(
CU->getContext(),
SmallVector<Metadata *, 16>(AllImportedModules.begin(),
AllImportedModules.end())));
else
// If there were no local scope imported entities, we can map
// the whole list to nullptr.
ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
}
}
}
/// Insert all of the named MDNodes in Src into the Dest module.
void IRLinker::linkNamedMDNodes() {
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
for (const NamedMDNode &NMD : SrcM->named_metadata()) {
// Don't link module flags here. Do them separately.
if (&NMD == SrcModFlags)
continue;
NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
// Add Src elements into Dest node.
for (const MDNode *Op : NMD.operands())
DestNMD->addOperand(Mapper.mapMDNode(*Op));
}
}
/// Merge the linker flags in Src into the Dest module.
Error IRLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
if (!SrcModFlags)
return Error::success();
// If the destination module doesn't have module flags yet, then just copy
// over the source module's flags.
NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
if (DstModFlags->getNumOperands() == 0) {
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
DstModFlags->addOperand(SrcModFlags->getOperand(I));
return Error::success();
}
// First build a map of the existing module flags and requirements.
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode *, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
} else {
Flags[ID] = std::make_pair(Op, I);
}
}
// Merge in the flags from the source module, and also collect its set of
// requirements.
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
ConstantInt *SrcBehavior =
mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
MDNode *DstOp;
unsigned DstIndex;
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
if (SrcBehaviorValue == Module::Require) {
// If the destination module does not already have this requirement, add
// it.
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
DstModFlags->addOperand(SrcOp);
}
continue;
}
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
DstModFlags->addOperand(SrcOp);
continue;
}
// Otherwise, perform a merge.
ConstantInt *DstBehavior =
mdconst::extract<ConstantInt>(DstOp->getOperand(0));
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
auto overrideDstValue = [&]() {
DstModFlags->setOperand(DstIndex, SrcOp);
Flags[ID].first = SrcOp;
};
// If either flag has override behavior, handle it first.
if (DstBehaviorValue == Module::Override) {
// Diagnose inconsistent flags which both have override behavior.
if (SrcBehaviorValue == Module::Override &&
SrcOp->getOperand(2) != DstOp->getOperand(2))
return stringErr("linking module flags '" + ID->getString() +
"': IDs have conflicting override values");
continue;
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
overrideDstValue();
continue;
}
// Diagnose inconsistent merge behavior types.
if (SrcBehaviorValue != DstBehaviorValue)
return stringErr("linking module flags '" + ID->getString() +
"': IDs have conflicting behaviors");
auto replaceDstValue = [&](MDNode *New) {
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
};
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
case Module::Override:
llvm_unreachable("not possible");
case Module::Error: {
// Emit an error if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2))
return stringErr("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
continue;
}
case Module::Warning: {
// Emit a warning if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitWarning("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Max: {
ConstantInt *DstValue =
mdconst::extract<ConstantInt>(DstOp->getOperand(2));
ConstantInt *SrcValue =
mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
if (SrcValue->getZExtValue() > DstValue->getZExtValue())
overrideDstValue();
break;
}
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
SmallVector<Metadata *, 8> MDs;
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
MDs.append(DstValue->op_begin(), DstValue->op_end());
MDs.append(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(), MDs));
break;
}
case Module::AppendUnique: {
SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
Elts.insert(DstValue->op_begin(), DstValue->op_end());
Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(),
makeArrayRef(Elts.begin(), Elts.end())));
break;
}
}
}
// Check all of the requirements.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
Metadata *ReqValue = Requirement->getOperand(1);
MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue)
return stringErr("linking module flags '" + Flag->getString() +
"': does not have the required value");
}
return Error::success();
}
/// Return InlineAsm adjusted with target-specific directives if required.
/// For ARM and Thumb, we have to add directives to select the appropriate ISA
/// to support mixing module-level inline assembly from ARM and Thumb modules.
static std::string adjustInlineAsm(const std::string &InlineAsm,
const Triple &Triple) {
if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
return ".text\n.balign 2\n.thumb\n" + InlineAsm;
if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
return ".text\n.balign 4\n.arm\n" + InlineAsm;
return InlineAsm;
}
Error IRLinker::run() {
// Ensure metadata materialized before value mapping.
if (SrcM->getMaterializer())
if (Error Err = SrcM->getMaterializer()->materializeMetadata())
return Err;
// Inherit the target data from the source module if the destination module
// doesn't have one already.
if (DstM.getDataLayout().isDefault())
DstM.setDataLayout(SrcM->getDataLayout());
if (SrcM->getDataLayout() != DstM.getDataLayout()) {
emitWarning("Linking two modules of different data layouts: '" +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getDataLayoutStr() + "' whereas '" +
DstM.getModuleIdentifier() + "' is '" +
DstM.getDataLayoutStr() + "'\n");
}
// Copy the target triple from the source to dest if the dest's is empty.
if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
DstM.setTargetTriple(SrcM->getTargetTriple());
Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
if (!SrcM->getTargetTriple().empty()&&
!SrcTriple.isCompatibleWith(DstTriple))
emitWarning("Linking two modules of different target triples: " +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getTargetTriple() + "' whereas '" +
DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
"'\n");
DstM.setTargetTriple(SrcTriple.merge(DstTriple));
// Append the module inline asm string.
if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
SrcTriple);
if (DstM.getModuleInlineAsm().empty())
DstM.setModuleInlineAsm(SrcModuleInlineAsm);
else
DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
SrcModuleInlineAsm);
}
// Loop over all of the linked values to compute type mappings.
computeTypeMapping();
std::reverse(Worklist.begin(), Worklist.end());
while (!Worklist.empty()) {
GlobalValue *GV = Worklist.back();
Worklist.pop_back();
// Already mapped.
if (ValueMap.find(GV) != ValueMap.end() ||
AliasValueMap.find(GV) != AliasValueMap.end())
continue;
assert(!GV->isDeclaration());
Mapper.mapValue(*GV);
if (FoundError)
return std::move(*FoundError);
}
// Note that we are done linking global value bodies. This prevents
// metadata linking from creating new references.
DoneLinkingBodies = true;
Mapper.addFlags(RF_NullMapMissingGlobalValues);
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
// are properly remapped.
linkNamedMDNodes();
// Merge the module flags into the DstM module.
return linkModuleFlagsMetadata();
}
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
: ETypes(E), IsPacked(P) {}
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
return IsPacked == That.IsPacked && ETypes == That.ETypes;
}
bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
return !this->operator==(That);
}
StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
}
StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
}
unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
Key.IsPacked);
}
unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return LHS == RHS;
return KeyTy(LHS) == KeyTy(RHS);
}
void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
}
void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
bool Removed = OpaqueStructTypes.erase(Ty);
(void)Removed;
assert(Removed);
}
void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
assert(Ty->isOpaque());
OpaqueStructTypes.insert(Ty);
}
StructType *
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
bool IsPacked) {
IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
auto I = NonOpaqueStructTypes.find_as(Key);
return I == NonOpaqueStructTypes.end() ? nullptr : *I;
}
bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
if (Ty->isOpaque())
return OpaqueStructTypes.count(Ty);
auto I = NonOpaqueStructTypes.find(Ty);
return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
}
IRMover::IRMover(Module &M) : Composite(M) {
TypeFinder StructTypes;
StructTypes.run(M, /* OnlyNamed */ false);
for (StructType *Ty : StructTypes) {
if (Ty->isOpaque())
IdentifiedStructTypes.addOpaque(Ty);
else
IdentifiedStructTypes.addNonOpaque(Ty);
}
// Self-map metadatas in the destination module. This is needed when
// DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
// destination module may be reached from the source module.
for (auto *MD : StructTypes.getVisitedMetadata()) {
SharedMDs[MD].reset(const_cast<MDNode *>(MD));
}
}
Error IRMover::move(
std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
bool IsPerformingImport) {
IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
std::move(Src), ValuesToLink, std::move(AddLazyFor),
IsPerformingImport);
Error E = TheIRLinker.run();
Composite.dropTriviallyDeadConstantArrays();
return E;
}