llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp

779 lines
24 KiB
C++
Raw Normal View History

//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetAsmParser.h"
#include "X86.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
using namespace llvm;
namespace {
struct X86Operand;
class X86ATTAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
protected:
unsigned Is64Bit : 1;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
X86Operand *ParseOperand();
X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
void InstructionCleanup(MCInst &Inst);
/// @name Auto-generated Match Functions
/// {
bool MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCInst &Inst);
bool MatchInstructionImpl(
const SmallVectorImpl<MCParsedAsmOperand*> &Operands, MCInst &Inst);
/// }
public:
X86ATTAsmParser(const Target &T, MCAsmParser &_Parser)
: TargetAsmParser(T), Parser(_Parser) {}
virtual bool ParseInstruction(const StringRef &Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
class X86_32ATTAsmParser : public X86ATTAsmParser {
public:
X86_32ATTAsmParser(const Target &T, MCAsmParser &_Parser)
: X86ATTAsmParser(T, _Parser) {
Is64Bit = false;
}
};
class X86_64ATTAsmParser : public X86ATTAsmParser {
public:
X86_64ATTAsmParser(const Target &T, MCAsmParser &_Parser)
: X86ATTAsmParser(T, _Parser) {
Is64Bit = true;
}
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
namespace {
/// X86Operand - Instances of this class represent a parsed X86 machine
/// instruction.
struct X86Operand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
Memory
} Kind;
SMLoc StartLoc, EndLoc;
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNo;
} Reg;
struct {
const MCExpr *Val;
} Imm;
struct {
unsigned SegReg;
const MCExpr *Disp;
unsigned BaseReg;
unsigned IndexReg;
unsigned Scale;
} Mem;
};
X86Operand(KindTy K, SMLoc Start, SMLoc End)
: Kind(K), StartLoc(Start), EndLoc(End) {}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
void setTokenValue(StringRef Value) {
assert(Kind == Token && "Invalid access!");
Tok.Data = Value.data();
Tok.Length = Value.size();
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNo;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getMemDisp() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Disp;
}
unsigned getMemSegReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.SegReg;
}
unsigned getMemBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.BaseReg;
}
unsigned getMemIndexReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg;
}
unsigned getMemScale() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Scale;
}
bool isToken() const {return Kind == Token; }
bool isImm() const { return Kind == Immediate; }
bool isImmSExt8() const {
// Accept immediates which fit in 8 bits when sign extended, and
// non-absolute immediates.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
int64_t Value = CE->getValue();
return Value == (int64_t) (int8_t) Value;
}
return true;
}
bool isImmSExt32() const {
// Accept immediates which fit in 32 bits when sign extended, and
// non-absolute immediates.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
int64_t Value = CE->getValue();
return Value == (int64_t) (int32_t) Value;
}
return true;
}
bool isMem() const { return Kind == Memory; }
bool isAbsMem() const {
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
!getMemIndexReg() && getMemScale() == 1;
}
bool isNoSegMem() const {
return Kind == Memory && !getMemSegReg();
}
bool isReg() const { return Kind == Register; }
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImmSExt8Operands(MCInst &Inst, unsigned N) const {
// FIXME: Support user customization of the render method.
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImmSExt32Operands(MCInst &Inst, unsigned N) const {
// FIXME: Support user customization of the render method.
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 5) && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
Inst.addOperand(MCOperand::CreateImm(getMemScale()));
Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
addExpr(Inst, getMemDisp());
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
}
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
}
void addNoSegMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 4) && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
Inst.addOperand(MCOperand::CreateImm(getMemScale()));
Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
addExpr(Inst, getMemDisp());
}
static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
X86Operand *Res = new X86Operand(Token, Loc, Loc);
Res->Tok.Data = Str.data();
Res->Tok.Length = Str.size();
return Res;
}
static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
Res->Reg.RegNo = RegNo;
return Res;
}
static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
Res->Imm.Val = Val;
return Res;
}
/// Create an absolute memory operand.
static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
SMLoc EndLoc) {
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = 0;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = 0;
Res->Mem.IndexReg = 0;
Res->Mem.Scale = 1;
return Res;
}
/// Create a generalized memory operand.
static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
// We should never just have a displacement, that should be parsed as an
// absolute memory operand.
assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
// The scale should always be one of {1,2,4,8}.
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
"Invalid scale!");
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = SegReg;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = BaseReg;
Res->Mem.IndexReg = IndexReg;
Res->Mem.Scale = Scale;
return Res;
}
};
} // end anonymous namespace.
bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
RegNo = 0;
const AsmToken &TokPercent = Parser.getTok();
assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
StartLoc = TokPercent.getLoc();
Parser.Lex(); // Eat percent token.
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(Tok.getLoc(), "invalid register name");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
RegNo = MatchRegisterName(Tok.getString());
// Parse %st(1) and "%st" as "%st(0)"
if (RegNo == 0 && Tok.getString() == "st") {
RegNo = X86::ST0;
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (getLexer().isNot(AsmToken::LParen))
return false;
// Lex the paren.
getParser().Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer))
return Error(IntTok.getLoc(), "expected stack index");
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default: return Error(IntTok.getLoc(), "invalid stack index");
}
if (getParser().Lex().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "expected ')'");
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat ')'
return false;
}
if (RegNo == 0)
return Error(Tok.getLoc(), "invalid register name");
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat identifier token.
return false;
}
X86Operand *X86ATTAsmParser::ParseOperand() {
switch (getLexer().getKind()) {
default:
// Parse a memory operand with no segment register.
return ParseMemOperand(0, Parser.getTok().getLoc());
case AsmToken::Percent: {
// Read the register.
unsigned RegNo;
SMLoc Start, End;
if (ParseRegister(RegNo, Start, End)) return 0;
// If this is a segment register followed by a ':', then this is the start
// of a memory reference, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
getParser().Lex(); // Eat the colon.
return ParseMemOperand(RegNo, Start);
}
case AsmToken::Dollar: {
// $42 -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
if (getParser().ParseExpression(Val, End))
return 0;
return X86Operand::CreateImm(Val, Start, End);
}
}
}
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
/// has already been parsed if present.
X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the '(' and see what is
// after it.
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
if (getLexer().isNot(AsmToken::LParen)) {
SMLoc ExprEnd;
if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
} else {
// Okay, we have a '('. We don't know if this is an expression or not, but
// so we have to eat the ( to see beyond it.
SMLoc LParenLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '('.
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
// Nothing to do here, fall into the code below with the '(' part of the
// memory operand consumed.
} else {
SMLoc ExprEnd;
// It must be an parenthesized expression, parse it now.
if (getParser().ParseParenExpression(Disp, ExprEnd))
return 0;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
}
}
// If we reached here, then we just ate the ( of the memory operand. Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(BaseReg, L, L)) return 0;
}
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Not that even though it would be completely consistent to support syntax
// like "1(%eax,,1)", the assembler doesn't.
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(IndexReg, L, L)) return 0;
if (getLexer().isNot(AsmToken::RParen)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
if (getLexer().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(),
"expected comma in scale expression");
return 0;
}
Parser.Lex(); // Eat the comma.
if (getLexer().isNot(AsmToken::RParen)) {
SMLoc Loc = Parser.getTok().getLoc();
int64_t ScaleVal;
if (getParser().ParseAbsoluteExpression(ScaleVal))
return 0;
// Validate the scale amount.
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
return 0;
}
Scale = (unsigned)ScaleVal;
}
}
} else if (getLexer().isNot(AsmToken::RParen)) {
// Otherwise we have the unsupported form of a scale amount without an
// index.
SMLoc Loc = Parser.getTok().getLoc();
int64_t Value;
if (getParser().ParseAbsoluteExpression(Value))
return 0;
Error(Loc, "cannot have scale factor without index register");
return 0;
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
return 0;
}
SMLoc MemEnd = Parser.getTok().getLoc();
Parser.Lex(); // Eat the ')'.
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
MemStart, MemEnd);
}
bool X86ATTAsmParser::
ParseInstruction(const StringRef &Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// The various flavors of pushf and popf use Requires<In32BitMode> and
// Requires<In64BitMode>, but the assembler doesn't yet implement that.
// For now, just do a manual check to prevent silent misencoding.
if (Is64Bit) {
if (Name == "popfl")
return Error(NameLoc, "popfl cannot be encoded in 64-bit mode");
else if (Name == "pushfl")
return Error(NameLoc, "pushfl cannot be encoded in 64-bit mode");
} else {
if (Name == "popfq")
return Error(NameLoc, "popfq cannot be encoded in 32-bit mode");
else if (Name == "pushfq")
return Error(NameLoc, "pushfq cannot be encoded in 32-bit mode");
}
// FIXME: Hack to recognize "sal..." and "rep..." for now. We need a way to
// represent alternative syntaxes in the .td file, without requiring
// instruction duplication.
StringRef PatchedName = StringSwitch<StringRef>(Name)
.Case("sal", "shl")
.Case("salb", "shlb")
.Case("sall", "shll")
.Case("salq", "shlq")
.Case("salw", "shlw")
.Case("repe", "rep")
.Case("repz", "rep")
.Case("repnz", "repne")
.Case("pushf", Is64Bit ? "pushfq" : "pushfl")
.Case("popf", Is64Bit ? "popfq" : "popfl")
.Case("retl", Is64Bit ? "retl" : "ret")
.Case("retq", Is64Bit ? "ret" : "retq")
.Case("setz", "sete")
.Case("setnz", "setne")
.Case("jz", "je")
.Case("jnz", "jne")
.Default(Name);
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(X86Operand::CreateToken("*", Loc));
Parser.Lex(); // Eat the star.
}
// Read the first operand.
if (X86Operand *Op = ParseOperand())
Operands.push_back(Op);
else
return true;
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (X86Operand *Op = ParseOperand())
Operands.push_back(Op);
else
return true;
}
}
// FIXME: Hack to handle recognizing s{hr,ar,hl}? $1.
if ((Name.startswith("shr") || Name.startswith("sar") ||
Name.startswith("shl")) &&
Operands.size() == 3 &&
static_cast<X86Operand*>(Operands[1])->isImm() &&
isa<MCConstantExpr>(static_cast<X86Operand*>(Operands[1])->getImm()) &&
cast<MCConstantExpr>(static_cast<X86Operand*>(Operands[1])->getImm())->getValue() == 1) {
delete Operands[1];
Operands.erase(Operands.begin() + 1);
}
return false;
}
bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// LowerMOffset - Lower an 'moffset' form of an instruction, which just has a
/// imm operand, to having "rm" or "mr" operands with the offset in the disp
/// field.
static void LowerMOffset(MCInst &Inst, unsigned Opc, unsigned RegNo,
bool isMR) {
MCOperand Disp = Inst.getOperand(0);
// Start over with an empty instruction.
Inst = MCInst();
Inst.setOpcode(Opc);
if (!isMR)
Inst.addOperand(MCOperand::CreateReg(RegNo));
// Add the mem operand.
Inst.addOperand(MCOperand::CreateReg(0)); // Segment
Inst.addOperand(MCOperand::CreateImm(1)); // Scale
Inst.addOperand(MCOperand::CreateReg(0)); // IndexReg
Inst.addOperand(Disp); // Displacement
Inst.addOperand(MCOperand::CreateReg(0)); // BaseReg
if (isMR)
Inst.addOperand(MCOperand::CreateReg(RegNo));
}
// FIXME: Custom X86 cleanup function to implement a temporary hack to handle
// matching INCL/DECL correctly for x86_64. This needs to be replaced by a
// proper mechanism for supporting (ambiguous) feature dependent instructions.
void X86ATTAsmParser::InstructionCleanup(MCInst &Inst) {
if (!Is64Bit) return;
switch (Inst.getOpcode()) {
case X86::DEC16r: Inst.setOpcode(X86::DEC64_16r); break;
case X86::DEC16m: Inst.setOpcode(X86::DEC64_16m); break;
case X86::DEC32r: Inst.setOpcode(X86::DEC64_32r); break;
case X86::DEC32m: Inst.setOpcode(X86::DEC64_32m); break;
case X86::INC16r: Inst.setOpcode(X86::INC64_16r); break;
case X86::INC16m: Inst.setOpcode(X86::INC64_16m); break;
case X86::INC32r: Inst.setOpcode(X86::INC64_32r); break;
case X86::INC32m: Inst.setOpcode(X86::INC64_32m); break;
// moffset instructions are x86-32 only.
case X86::MOV8o8a: LowerMOffset(Inst, X86::MOV8rm , X86::AL , false); break;
case X86::MOV16o16a: LowerMOffset(Inst, X86::MOV16rm, X86::AX , false); break;
case X86::MOV32o32a: LowerMOffset(Inst, X86::MOV32rm, X86::EAX, false); break;
case X86::MOV8ao8: LowerMOffset(Inst, X86::MOV8mr , X86::AL , true); break;
case X86::MOV16ao16: LowerMOffset(Inst, X86::MOV16mr, X86::AX , true); break;
case X86::MOV32ao32: LowerMOffset(Inst, X86::MOV32mr, X86::EAX, true); break;
}
}
bool
X86ATTAsmParser::MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*>
&Operands,
MCInst &Inst) {
// First, try a direct match.
if (!MatchInstructionImpl(Operands, Inst))
return false;
// Ignore anything which is obviously not a suffix match.
if (Operands.size() == 0)
return true;
X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
if (!Op->isToken() || Op->getToken().size() > 15)
return true;
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
char Tmp[16];
StringRef Base = Op->getToken();
memcpy(Tmp, Base.data(), Base.size());
Op->setTokenValue(StringRef(Tmp, Base.size() + 1));
// Check for the various suffix matches.
Tmp[Base.size()] = 'b';
bool MatchB = MatchInstructionImpl(Operands, Inst);
Tmp[Base.size()] = 'w';
bool MatchW = MatchInstructionImpl(Operands, Inst);
Tmp[Base.size()] = 'l';
bool MatchL = MatchInstructionImpl(Operands, Inst);
Tmp[Base.size()] = 'q';
bool MatchQ = MatchInstructionImpl(Operands, Inst);
// Restore the old token.
Op->setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
if (MatchB + MatchW + MatchL + MatchQ == 3)
return false;
// Otherwise, the match failed.
return true;
}
extern "C" void LLVMInitializeX86AsmLexer();
// Force static initialization.
extern "C" void LLVMInitializeX86AsmParser() {
RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target);
RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target);
LLVMInitializeX86AsmLexer();
}
#include "X86GenAsmMatcher.inc"