llvm-project/llvm/lib/DebugInfo/DWARFContext.cpp

769 lines
27 KiB
C++
Raw Normal View History

//===-- DWARFContext.cpp --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DWARFContext.h"
#include "DWARFDebugArangeSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace dwarf;
using namespace object;
using std::error_code;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 06:55:11 +08:00
#define DEBUG_TYPE "dwarf"
typedef DWARFDebugLine::LineTable DWARFLineTable;
typedef DILineInfoSpecifier::FileLineInfoKind FileLineInfoKind;
typedef DILineInfoSpecifier::FunctionNameKind FunctionNameKind;
static void dumpPubSection(raw_ostream &OS, StringRef Name, StringRef Data,
bool LittleEndian, bool GnuStyle) {
OS << "\n." << Name << " contents:\n";
DataExtractor pubNames(Data, LittleEndian, 0);
uint32_t offset = 0;
while (pubNames.isValidOffset(offset)) {
OS << "length = " << format("0x%08x", pubNames.getU32(&offset));
OS << " version = " << format("0x%04x", pubNames.getU16(&offset));
OS << " unit_offset = " << format("0x%08x", pubNames.getU32(&offset));
OS << " unit_size = " << format("0x%08x", pubNames.getU32(&offset)) << '\n';
if (GnuStyle)
OS << "Offset Linkage Kind Name\n";
else
OS << "Offset Name\n";
while (offset < Data.size()) {
uint32_t dieRef = pubNames.getU32(&offset);
if (dieRef == 0)
break;
OS << format("0x%8.8x ", dieRef);
if (GnuStyle) {
PubIndexEntryDescriptor desc(pubNames.getU8(&offset));
OS << format("%-8s", dwarf::GDBIndexEntryLinkageString(desc.Linkage))
<< ' ' << format("%-8s", dwarf::GDBIndexEntryKindString(desc.Kind))
<< ' ';
}
OS << '\"' << pubNames.getCStr(&offset) << "\"\n";
}
}
}
void DWARFContext::dump(raw_ostream &OS, DIDumpType DumpType) {
if (DumpType == DIDT_All || DumpType == DIDT_Abbrev) {
OS << ".debug_abbrev contents:\n";
getDebugAbbrev()->dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_AbbrevDwo)
if (const DWARFDebugAbbrev *D = getDebugAbbrevDWO()) {
OS << "\n.debug_abbrev.dwo contents:\n";
D->dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_Info) {
OS << "\n.debug_info contents:\n";
for (const auto &CU : compile_units())
CU->dump(OS);
}
if ((DumpType == DIDT_All || DumpType == DIDT_InfoDwo) &&
getNumDWOCompileUnits()) {
OS << "\n.debug_info.dwo contents:\n";
for (const auto &DWOCU : dwo_compile_units())
DWOCU->dump(OS);
}
if ((DumpType == DIDT_All || DumpType == DIDT_Types) && getNumTypeUnits()) {
OS << "\n.debug_types contents:\n";
for (const auto &TU : type_units())
TU->dump(OS);
}
if ((DumpType == DIDT_All || DumpType == DIDT_TypesDwo) &&
getNumDWOTypeUnits()) {
OS << "\n.debug_types.dwo contents:\n";
for (const auto &DWOTU : dwo_type_units())
DWOTU->dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_Loc) {
OS << "\n.debug_loc contents:\n";
getDebugLoc()->dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_LocDwo) {
OS << "\n.debug_loc.dwo contents:\n";
getDebugLocDWO()->dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_Frames) {
OS << "\n.debug_frame contents:\n";
getDebugFrame()->dump(OS);
}
uint32_t offset = 0;
if (DumpType == DIDT_All || DumpType == DIDT_Aranges) {
OS << "\n.debug_aranges contents:\n";
DataExtractor arangesData(getARangeSection(), isLittleEndian(), 0);
DWARFDebugArangeSet set;
while (set.extract(arangesData, &offset))
set.dump(OS);
}
uint8_t savedAddressByteSize = 0;
if (DumpType == DIDT_All || DumpType == DIDT_Line) {
OS << "\n.debug_line contents:\n";
for (const auto &CU : compile_units()) {
savedAddressByteSize = CU->getAddressByteSize();
unsigned stmtOffset =
CU->getCompileUnitDIE()->getAttributeValueAsSectionOffset(
CU.get(), DW_AT_stmt_list, -1U);
if (stmtOffset != -1U) {
DataExtractor lineData(getLineSection().Data, isLittleEndian(),
savedAddressByteSize);
DWARFDebugLine::LineTable LineTable;
LineTable.parse(lineData, &getLineSection().Relocs, &stmtOffset);
LineTable.dump(OS);
}
}
}
if (DumpType == DIDT_All || DumpType == DIDT_LineDwo) {
OS << "\n.debug_line.dwo contents:\n";
unsigned stmtOffset = 0;
DataExtractor lineData(getLineDWOSection().Data, isLittleEndian(),
savedAddressByteSize);
DWARFDebugLine::LineTable LineTable;
while (LineTable.Prologue.parse(lineData, &stmtOffset)) {
LineTable.dump(OS);
LineTable.clear();
}
}
if (DumpType == DIDT_All || DumpType == DIDT_Str) {
OS << "\n.debug_str contents:\n";
DataExtractor strData(getStringSection(), isLittleEndian(), 0);
offset = 0;
uint32_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8x: \"%s\"\n", strOffset, s);
strOffset = offset;
}
}
if ((DumpType == DIDT_All || DumpType == DIDT_StrDwo) &&
!getStringDWOSection().empty()) {
OS << "\n.debug_str.dwo contents:\n";
DataExtractor strDWOData(getStringDWOSection(), isLittleEndian(), 0);
offset = 0;
uint32_t strDWOOffset = 0;
while (const char *s = strDWOData.getCStr(&offset)) {
OS << format("0x%8.8x: \"%s\"\n", strDWOOffset, s);
strDWOOffset = offset;
}
}
if (DumpType == DIDT_All || DumpType == DIDT_Ranges) {
OS << "\n.debug_ranges contents:\n";
// In fact, different compile units may have different address byte
// sizes, but for simplicity we just use the address byte size of the last
// compile unit (there is no easy and fast way to associate address range
// list and the compile unit it describes).
DataExtractor rangesData(getRangeSection(), isLittleEndian(),
savedAddressByteSize);
offset = 0;
DWARFDebugRangeList rangeList;
while (rangeList.extract(rangesData, &offset))
rangeList.dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_Pubnames)
dumpPubSection(OS, "debug_pubnames", getPubNamesSection(),
isLittleEndian(), false);
if (DumpType == DIDT_All || DumpType == DIDT_Pubtypes)
dumpPubSection(OS, "debug_pubtypes", getPubTypesSection(),
isLittleEndian(), false);
if (DumpType == DIDT_All || DumpType == DIDT_GnuPubnames)
dumpPubSection(OS, "debug_gnu_pubnames", getGnuPubNamesSection(),
isLittleEndian(), true /* GnuStyle */);
if (DumpType == DIDT_All || DumpType == DIDT_GnuPubtypes)
dumpPubSection(OS, "debug_gnu_pubtypes", getGnuPubTypesSection(),
isLittleEndian(), true /* GnuStyle */);
if ((DumpType == DIDT_All || DumpType == DIDT_StrOffsetsDwo) &&
!getStringOffsetDWOSection().empty()) {
OS << "\n.debug_str_offsets.dwo contents:\n";
DataExtractor strOffsetExt(getStringOffsetDWOSection(), isLittleEndian(),
0);
offset = 0;
uint64_t size = getStringOffsetDWOSection().size();
while (offset < size) {
OS << format("0x%8.8x: ", offset);
OS << format("%8.8x\n", strOffsetExt.getU32(&offset));
}
}
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
if (Abbrev)
return Abbrev.get();
DataExtractor abbrData(getAbbrevSection(), isLittleEndian(), 0);
Abbrev.reset(new DWARFDebugAbbrev());
Abbrev->extract(abbrData);
return Abbrev.get();
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() {
if (AbbrevDWO)
return AbbrevDWO.get();
DataExtractor abbrData(getAbbrevDWOSection(), isLittleEndian(), 0);
AbbrevDWO.reset(new DWARFDebugAbbrev());
AbbrevDWO->extract(abbrData);
return AbbrevDWO.get();
}
const DWARFDebugLoc *DWARFContext::getDebugLoc() {
if (Loc)
return Loc.get();
DataExtractor LocData(getLocSection().Data, isLittleEndian(), 0);
Loc.reset(new DWARFDebugLoc(getLocSection().Relocs));
// assume all compile units have the same address byte size
if (getNumCompileUnits())
Loc->parse(LocData, getCompileUnitAtIndex(0)->getAddressByteSize());
return Loc.get();
}
const DWARFDebugLocDWO *DWARFContext::getDebugLocDWO() {
if (LocDWO)
return LocDWO.get();
DataExtractor LocData(getLocDWOSection().Data, isLittleEndian(), 0);
LocDWO.reset(new DWARFDebugLocDWO());
LocDWO->parse(LocData);
return LocDWO.get();
}
const DWARFDebugAranges *DWARFContext::getDebugAranges() {
if (Aranges)
return Aranges.get();
Aranges.reset(new DWARFDebugAranges());
Aranges->generate(this);
return Aranges.get();
}
const DWARFDebugFrame *DWARFContext::getDebugFrame() {
if (DebugFrame)
return DebugFrame.get();
// There's a "bug" in the DWARFv3 standard with respect to the target address
// size within debug frame sections. While DWARF is supposed to be independent
// of its container, FDEs have fields with size being "target address size",
// which isn't specified in DWARF in general. It's only specified for CUs, but
// .eh_frame can appear without a .debug_info section. Follow the example of
// other tools (libdwarf) and extract this from the container (ObjectFile
// provides this information). This problem is fixed in DWARFv4
// See this dwarf-discuss discussion for more details:
// http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html
DataExtractor debugFrameData(getDebugFrameSection(), isLittleEndian(),
getAddressSize());
DebugFrame.reset(new DWARFDebugFrame());
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFLineTable *
DWARFContext::getLineTableForCompileUnit(DWARFCompileUnit *cu) {
if (!Line)
Line.reset(new DWARFDebugLine(&getLineSection().Relocs));
unsigned stmtOffset =
cu->getCompileUnitDIE()->getAttributeValueAsSectionOffset(
cu, DW_AT_stmt_list, -1U);
if (stmtOffset == -1U)
return nullptr; // No line table for this compile unit.
// See if the line table is cached.
if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset))
return lt;
// We have to parse it first.
DataExtractor lineData(getLineSection().Data, isLittleEndian(),
cu->getAddressByteSize());
return Line->getOrParseLineTable(lineData, stmtOffset);
}
void DWARFContext::parseCompileUnits() {
if (!CUs.empty())
return;
uint32_t offset = 0;
const DataExtractor &DIData = DataExtractor(getInfoSection().Data,
isLittleEndian(), 0);
while (DIData.isValidOffset(offset)) {
std::unique_ptr<DWARFCompileUnit> CU(new DWARFCompileUnit(
getDebugAbbrev(), getInfoSection().Data, getRangeSection(),
getStringSection(), StringRef(), getAddrSection(),
&getInfoSection().Relocs, isLittleEndian()));
if (!CU->extract(DIData, &offset)) {
break;
}
CUs.push_back(std::move(CU));
offset = CUs.back()->getNextUnitOffset();
}
}
void DWARFContext::parseTypeUnits() {
if (!TUs.empty())
return;
for (const auto &I : getTypesSections()) {
uint32_t offset = 0;
const DataExtractor &DIData =
DataExtractor(I.second.Data, isLittleEndian(), 0);
while (DIData.isValidOffset(offset)) {
std::unique_ptr<DWARFTypeUnit> TU(
new DWARFTypeUnit(getDebugAbbrev(), I.second.Data, getRangeSection(),
getStringSection(), StringRef(), getAddrSection(),
&I.second.Relocs, isLittleEndian()));
if (!TU->extract(DIData, &offset))
break;
TUs.push_back(std::move(TU));
offset = TUs.back()->getNextUnitOffset();
}
}
}
void DWARFContext::parseDWOCompileUnits() {
if (!DWOCUs.empty())
return;
uint32_t offset = 0;
const DataExtractor &DIData =
DataExtractor(getInfoDWOSection().Data, isLittleEndian(), 0);
while (DIData.isValidOffset(offset)) {
std::unique_ptr<DWARFCompileUnit> DWOCU(new DWARFCompileUnit(
getDebugAbbrevDWO(), getInfoDWOSection().Data, getRangeDWOSection(),
getStringDWOSection(), getStringOffsetDWOSection(), getAddrSection(),
&getInfoDWOSection().Relocs, isLittleEndian()));
if (!DWOCU->extract(DIData, &offset)) {
break;
}
DWOCUs.push_back(std::move(DWOCU));
offset = DWOCUs.back()->getNextUnitOffset();
}
}
void DWARFContext::parseDWOTypeUnits() {
if (!DWOTUs.empty())
return;
for (const auto &I : getTypesDWOSections()) {
uint32_t offset = 0;
const DataExtractor &DIData =
DataExtractor(I.second.Data, isLittleEndian(), 0);
while (DIData.isValidOffset(offset)) {
std::unique_ptr<DWARFTypeUnit> TU(new DWARFTypeUnit(
getDebugAbbrevDWO(), I.second.Data, getRangeDWOSection(),
getStringDWOSection(), getStringOffsetDWOSection(), getAddrSection(),
&I.second.Relocs, isLittleEndian()));
if (!TU->extract(DIData, &offset))
break;
DWOTUs.push_back(std::move(TU));
offset = DWOTUs.back()->getNextUnitOffset();
}
}
}
namespace {
struct OffsetComparator {
bool operator()(const std::unique_ptr<DWARFCompileUnit> &LHS,
const std::unique_ptr<DWARFCompileUnit> &RHS) const {
return LHS->getOffset() < RHS->getOffset();
}
bool operator()(const std::unique_ptr<DWARFCompileUnit> &LHS,
uint32_t RHS) const {
return LHS->getOffset() < RHS;
}
bool operator()(uint32_t LHS,
const std::unique_ptr<DWARFCompileUnit> &RHS) const {
return LHS < RHS->getOffset();
}
};
}
DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) {
parseCompileUnits();
std::unique_ptr<DWARFCompileUnit> *CU =
std::lower_bound(CUs.begin(), CUs.end(), Offset, OffsetComparator());
if (CU != CUs.end()) {
return CU->get();
}
return nullptr;
}
DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
// First, get the offset of the compile unit.
uint32_t CUOffset = getDebugAranges()->findAddress(Address);
// Retrieve the compile unit.
return getCompileUnitForOffset(CUOffset);
}
static bool getFileNameForCompileUnit(DWARFCompileUnit *CU,
const DWARFLineTable *LineTable,
uint64_t FileIndex, FileLineInfoKind Kind,
std::string &FileName) {
if (!CU || !LineTable || Kind == FileLineInfoKind::None ||
!LineTable->getFileNameByIndex(FileIndex, Kind, FileName))
return false;
if (Kind == FileLineInfoKind::AbsoluteFilePath &&
sys::path::is_relative(FileName)) {
// We may still need to append compilation directory of compile unit.
SmallString<16> AbsolutePath;
if (const char *CompilationDir = CU->getCompilationDir()) {
sys::path::append(AbsolutePath, CompilationDir);
}
sys::path::append(AbsolutePath, FileName);
FileName = AbsolutePath.str();
}
return true;
}
static bool getFileLineInfoForCompileUnit(DWARFCompileUnit *CU,
const DWARFLineTable *LineTable,
uint64_t Address,
FileLineInfoKind Kind,
DILineInfo &Result) {
if (!CU || !LineTable)
return false;
// Get the index of row we're looking for in the line table.
uint32_t RowIndex = LineTable->lookupAddress(Address);
if (RowIndex == -1U)
return false;
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
if (!getFileNameForCompileUnit(CU, LineTable, Row.File, Kind,
Result.FileName))
return false;
Result.Line = Row.Line;
Result.Column = Row.Column;
return true;
}
static bool getFunctionNameForAddress(DWARFCompileUnit *CU, uint64_t Address,
FunctionNameKind Kind,
std::string &FunctionName) {
if (Kind == FunctionNameKind::None)
return false;
// The address may correspond to instruction in some inlined function,
// so we have to build the chain of inlined functions and take the
// name of the topmost function in it.
const DWARFDebugInfoEntryInlinedChain &InlinedChain =
CU->getInlinedChainForAddress(Address);
if (InlinedChain.DIEs.size() == 0)
return false;
const DWARFDebugInfoEntryMinimal &TopFunctionDIE = InlinedChain.DIEs[0];
if (const char *Name =
TopFunctionDIE.getSubroutineName(InlinedChain.U, Kind)) {
FunctionName = Name;
return true;
}
return false;
}
DILineInfo DWARFContext::getLineInfoForAddress(uint64_t Address,
DILineInfoSpecifier Spec) {
DILineInfo Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Result;
getFunctionNameForAddress(CU, Address, Spec.FNKind, Result.FunctionName);
if (Spec.FLIKind != FileLineInfoKind::None) {
const DWARFLineTable *LineTable = getLineTableForCompileUnit(CU);
getFileLineInfoForCompileUnit(CU, LineTable, Address, Spec.FLIKind, Result);
}
return Result;
}
DILineInfoTable
DWARFContext::getLineInfoForAddressRange(uint64_t Address, uint64_t Size,
DILineInfoSpecifier Spec) {
DILineInfoTable Lines;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Lines;
std::string FunctionName = "<invalid>";
getFunctionNameForAddress(CU, Address, Spec.FNKind, FunctionName);
// If the Specifier says we don't need FileLineInfo, just
// return the top-most function at the starting address.
if (Spec.FLIKind == FileLineInfoKind::None) {
DILineInfo Result;
Result.FunctionName = FunctionName;
Lines.push_back(std::make_pair(Address, Result));
return Lines;
}
const DWARFLineTable *LineTable = getLineTableForCompileUnit(CU);
// Get the index of row we're looking for in the line table.
std::vector<uint32_t> RowVector;
if (!LineTable->lookupAddressRange(Address, Size, RowVector))
return Lines;
for (uint32_t RowIndex : RowVector) {
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
DILineInfo Result;
getFileNameForCompileUnit(CU, LineTable, Row.File, Spec.FLIKind,
Result.FileName);
Result.FunctionName = FunctionName;
Result.Line = Row.Line;
Result.Column = Row.Column;
Lines.push_back(std::make_pair(Row.Address, Result));
}
return Lines;
}
DIInliningInfo
DWARFContext::getInliningInfoForAddress(uint64_t Address,
DILineInfoSpecifier Spec) {
DIInliningInfo InliningInfo;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return InliningInfo;
const DWARFLineTable *LineTable = nullptr;
const DWARFDebugInfoEntryInlinedChain &InlinedChain =
CU->getInlinedChainForAddress(Address);
if (InlinedChain.DIEs.size() == 0) {
// If there is no DIE for address (e.g. it is in unavailable .dwo file),
// try to at least get file/line info from symbol table.
if (Spec.FLIKind != FileLineInfoKind::None) {
DILineInfo Frame;
LineTable = getLineTableForCompileUnit(CU);
if (getFileLineInfoForCompileUnit(CU, LineTable, Address, Spec.FLIKind,
Frame)) {
InliningInfo.addFrame(Frame);
}
}
return InliningInfo;
}
uint32_t CallFile = 0, CallLine = 0, CallColumn = 0;
for (uint32_t i = 0, n = InlinedChain.DIEs.size(); i != n; i++) {
const DWARFDebugInfoEntryMinimal &FunctionDIE = InlinedChain.DIEs[i];
DILineInfo Frame;
// Get function name if necessary.
if (const char *Name =
FunctionDIE.getSubroutineName(InlinedChain.U, Spec.FNKind))
Frame.FunctionName = Name;
if (Spec.FLIKind != FileLineInfoKind::None) {
if (i == 0) {
// For the topmost frame, initialize the line table of this
// compile unit and fetch file/line info from it.
LineTable = getLineTableForCompileUnit(CU);
// For the topmost routine, get file/line info from line table.
getFileLineInfoForCompileUnit(CU, LineTable, Address, Spec.FLIKind,
Frame);
} else {
// Otherwise, use call file, call line and call column from
// previous DIE in inlined chain.
getFileNameForCompileUnit(CU, LineTable, CallFile, Spec.FLIKind,
Frame.FileName);
Frame.Line = CallLine;
Frame.Column = CallColumn;
}
// Get call file/line/column of a current DIE.
if (i + 1 < n) {
FunctionDIE.getCallerFrame(InlinedChain.U, CallFile, CallLine,
CallColumn);
}
}
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
static bool consumeCompressedDebugSectionHeader(StringRef &data,
uint64_t &OriginalSize) {
// Consume "ZLIB" prefix.
if (!data.startswith("ZLIB"))
return false;
data = data.substr(4);
// Consume uncompressed section size (big-endian 8 bytes).
DataExtractor extractor(data, false, 8);
uint32_t Offset = 0;
OriginalSize = extractor.getU64(&Offset);
if (Offset == 0)
return false;
data = data.substr(Offset);
return true;
}
DWARFContextInMemory::DWARFContextInMemory(object::ObjectFile *Obj)
: IsLittleEndian(Obj->isLittleEndian()),
AddressSize(Obj->getBytesInAddress()) {
for (const SectionRef &Section : Obj->sections()) {
StringRef name;
Section.getName(name);
StringRef data;
Section.getContents(data);
name = name.substr(name.find_first_not_of("._")); // Skip . and _ prefixes.
// Check if debug info section is compressed with zlib.
if (name.startswith("zdebug_")) {
uint64_t OriginalSize;
if (!zlib::isAvailable() ||
!consumeCompressedDebugSectionHeader(data, OriginalSize))
continue;
UncompressedSections.resize(UncompressedSections.size() + 1);
if (zlib::uncompress(data, UncompressedSections.back(), OriginalSize) !=
zlib::StatusOK) {
UncompressedSections.pop_back();
continue;
}
// Make data point to uncompressed section contents and save its contents.
name = name.substr(1);
data = UncompressedSections.back();
}
StringRef *SectionData =
StringSwitch<StringRef *>(name)
.Case("debug_info", &InfoSection.Data)
.Case("debug_abbrev", &AbbrevSection)
.Case("debug_loc", &LocSection.Data)
.Case("debug_line", &LineSection.Data)
.Case("debug_aranges", &ARangeSection)
.Case("debug_frame", &DebugFrameSection)
.Case("debug_str", &StringSection)
.Case("debug_ranges", &RangeSection)
.Case("debug_pubnames", &PubNamesSection)
.Case("debug_pubtypes", &PubTypesSection)
.Case("debug_gnu_pubnames", &GnuPubNamesSection)
.Case("debug_gnu_pubtypes", &GnuPubTypesSection)
.Case("debug_info.dwo", &InfoDWOSection.Data)
.Case("debug_abbrev.dwo", &AbbrevDWOSection)
.Case("debug_loc.dwo", &LocDWOSection.Data)
.Case("debug_line.dwo", &LineDWOSection.Data)
.Case("debug_str.dwo", &StringDWOSection)
.Case("debug_str_offsets.dwo", &StringOffsetDWOSection)
.Case("debug_addr", &AddrSection)
// Any more debug info sections go here.
.Default(nullptr);
if (SectionData) {
*SectionData = data;
if (name == "debug_ranges") {
// FIXME: Use the other dwo range section when we emit it.
RangeDWOSection = data;
}
} else if (name == "debug_types") {
// Find debug_types data by section rather than name as there are
// multiple, comdat grouped, debug_types sections.
TypesSections[Section].Data = data;
} else if (name == "debug_types.dwo") {
TypesDWOSections[Section].Data = data;
}
section_iterator RelocatedSection = Section.getRelocatedSection();
if (RelocatedSection == Obj->section_end())
continue;
StringRef RelSecName;
RelocatedSection->getName(RelSecName);
RelSecName = RelSecName.substr(
RelSecName.find_first_not_of("._")); // Skip . and _ prefixes.
// TODO: Add support for relocations in other sections as needed.
// Record relocations for the debug_info and debug_line sections.
RelocAddrMap *Map = StringSwitch<RelocAddrMap*>(RelSecName)
.Case("debug_info", &InfoSection.Relocs)
.Case("debug_loc", &LocSection.Relocs)
.Case("debug_info.dwo", &InfoDWOSection.Relocs)
.Case("debug_line", &LineSection.Relocs)
.Default(nullptr);
if (!Map) {
// Find debug_types relocs by section rather than name as there are
// multiple, comdat grouped, debug_types sections.
if (RelSecName == "debug_types")
Map = &TypesSections[*RelocatedSection].Relocs;
else if (RelSecName == "debug_types.dwo")
Map = &TypesDWOSections[*RelocatedSection].Relocs;
else
continue;
}
if (Section.relocation_begin() != Section.relocation_end()) {
uint64_t SectionSize;
RelocatedSection->getSize(SectionSize);
for (const RelocationRef &Reloc : Section.relocations()) {
uint64_t Address;
Reloc.getOffset(Address);
uint64_t Type;
Reloc.getType(Type);
uint64_t SymAddr = 0;
// ELF relocations may need the symbol address
if (Obj->isELF()) {
object::symbol_iterator Sym = Reloc.getSymbol();
Sym->getAddress(SymAddr);
}
object::RelocVisitor V(Obj->getFileFormatName());
// The section address is always 0 for debug sections.
object::RelocToApply R(V.visit(Type, Reloc, 0, SymAddr));
if (V.error()) {
SmallString<32> Name;
error_code ec(Reloc.getTypeName(Name));
if (ec) {
errs() << "Aaaaaa! Nameless relocation! Aaaaaa!\n";
}
errs() << "error: failed to compute relocation: "
<< Name << "\n";
continue;
}
if (Address + R.Width > SectionSize) {
errs() << "error: " << R.Width << "-byte relocation starting "
<< Address << " bytes into section " << name << " which is "
<< SectionSize << " bytes long.\n";
continue;
}
if (R.Width > 8) {
errs() << "error: can't handle a relocation of more than 8 bytes at "
"a time.\n";
continue;
}
DEBUG(dbgs() << "Writing " << format("%p", R.Value)
<< " at " << format("%p", Address)
<< " with width " << format("%d", R.Width)
<< "\n");
Map->insert(std::make_pair(Address, std::make_pair(R.Width, R.Value)));
}
}
}
}
void DWARFContextInMemory::anchor() { }