llvm-project/llvm/test/CodeGen/X86/vector-compare-any_of.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1279 lines
49 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+sse4.2 | FileCheck %s --check-prefix=SSE
; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+avx | FileCheck %s --check-prefix=AVX --check-prefix=AVX1
; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+avx2 | FileCheck %s --check-prefix=AVX --check-prefix=AVX2
; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+avx512f,+avx512bw,+avx512vl | FileCheck %s --check-prefix=AVX512
define i64 @test_v2f64_sext(<2 x double> %a0, <2 x double> %a1) {
; SSE-LABEL: test_v2f64_sext:
; SSE: # %bb.0:
; SSE-NEXT: cmpltpd %xmm0, %xmm1
[x86] allow movmsk with 2-element reductions One motivation for making this change is that the lack of using movmsk is likely a main source of perf difference between clang and gcc on the C-Ray benchmark as shown here: https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5 ...but this change alone isn't enough to solve that problem. The 'all-of' examples show what is likely the worst case trade-off: we end up with an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of' examples look clearly better using movmsk because we've traded 2 vector instructions for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'. If we examine the llvm-mca output for these cases, it appears that even though the 'all-of' movmsk variant looks worse on paper, it would perform better on both Haswell and Jaguar. $ llvm-mca -mcpu=haswell no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 504 Total uOps: 400 Dispatch Width: 4 uOps Per Cycle: 0.79 IPC: 0.79 Block RThroughput: 1.0 $ llvm-mca -mcpu=haswell movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 358 Total uOps: 600 Dispatch Width: 4 uOps Per Cycle: 1.68 IPC: 1.68 Block RThroughput: 1.5 $ llvm-mca -mcpu=btver2 no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 407 Total uOps: 400 Dispatch Width: 2 uOps Per Cycle: 0.98 IPC: 0.98 Block RThroughput: 2.0 $ llvm-mca -mcpu=btver2 movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 311 Total uOps: 600 Dispatch Width: 2 uOps Per Cycle: 1.93 IPC: 1.93 Block RThroughput: 3.0 Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if that's true, then we're also almost certainly making the wrong transform already for reductions with >2 elements, so that should be fixed independently. Differential Revision: https://reviews.llvm.org/D59997 llvm-svn: 357367
2019-03-31 23:11:34 +08:00
; SSE-NEXT: movmskpd %xmm1, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbq %rax, %rax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v2f64_sext:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltpd %xmm0, %xmm1, %xmm0
[x86] allow movmsk with 2-element reductions One motivation for making this change is that the lack of using movmsk is likely a main source of perf difference between clang and gcc on the C-Ray benchmark as shown here: https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5 ...but this change alone isn't enough to solve that problem. The 'all-of' examples show what is likely the worst case trade-off: we end up with an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of' examples look clearly better using movmsk because we've traded 2 vector instructions for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'. If we examine the llvm-mca output for these cases, it appears that even though the 'all-of' movmsk variant looks worse on paper, it would perform better on both Haswell and Jaguar. $ llvm-mca -mcpu=haswell no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 504 Total uOps: 400 Dispatch Width: 4 uOps Per Cycle: 0.79 IPC: 0.79 Block RThroughput: 1.0 $ llvm-mca -mcpu=haswell movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 358 Total uOps: 600 Dispatch Width: 4 uOps Per Cycle: 1.68 IPC: 1.68 Block RThroughput: 1.5 $ llvm-mca -mcpu=btver2 no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 407 Total uOps: 400 Dispatch Width: 2 uOps Per Cycle: 0.98 IPC: 0.98 Block RThroughput: 2.0 $ llvm-mca -mcpu=btver2 movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 311 Total uOps: 600 Dispatch Width: 2 uOps Per Cycle: 1.93 IPC: 1.93 Block RThroughput: 3.0 Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if that's true, then we're also almost certainly making the wrong transform already for reductions with >2 elements, so that should be fixed independently. Differential Revision: https://reviews.llvm.org/D59997 llvm-svn: 357367
2019-03-31 23:11:34 +08:00
; AVX-NEXT: vmovmskpd %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbq %rax, %rax
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v2f64_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltpd %xmm0, %xmm1, %xmm0
; AVX512-NEXT: vmovmskpd %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbq %rax, %rax
; AVX512-NEXT: retq
%c = fcmp ogt <2 x double> %a0, %a1
%s = sext <2 x i1> %c to <2 x i64>
%1 = shufflevector <2 x i64> %s, <2 x i64> undef, <2 x i32> <i32 1, i32 undef>
%2 = or <2 x i64> %s, %1
%3 = extractelement <2 x i64> %2, i32 0
ret i64 %3
}
define i64 @test_v4f64_sext(<4 x double> %a0, <4 x double> %a1) {
; SSE-LABEL: test_v4f64_sext:
; SSE: # %bb.0:
; SSE-NEXT: cmpltpd %xmm1, %xmm3
; SSE-NEXT: cmpltpd %xmm0, %xmm2
; SSE-NEXT: orpd %xmm3, %xmm2
[x86] allow movmsk with 2-element reductions One motivation for making this change is that the lack of using movmsk is likely a main source of perf difference between clang and gcc on the C-Ray benchmark as shown here: https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5 ...but this change alone isn't enough to solve that problem. The 'all-of' examples show what is likely the worst case trade-off: we end up with an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of' examples look clearly better using movmsk because we've traded 2 vector instructions for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'. If we examine the llvm-mca output for these cases, it appears that even though the 'all-of' movmsk variant looks worse on paper, it would perform better on both Haswell and Jaguar. $ llvm-mca -mcpu=haswell no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 504 Total uOps: 400 Dispatch Width: 4 uOps Per Cycle: 0.79 IPC: 0.79 Block RThroughput: 1.0 $ llvm-mca -mcpu=haswell movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 358 Total uOps: 600 Dispatch Width: 4 uOps Per Cycle: 1.68 IPC: 1.68 Block RThroughput: 1.5 $ llvm-mca -mcpu=btver2 no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 407 Total uOps: 400 Dispatch Width: 2 uOps Per Cycle: 0.98 IPC: 0.98 Block RThroughput: 2.0 $ llvm-mca -mcpu=btver2 movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 311 Total uOps: 600 Dispatch Width: 2 uOps Per Cycle: 1.93 IPC: 1.93 Block RThroughput: 3.0 Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if that's true, then we're also almost certainly making the wrong transform already for reductions with >2 elements, so that should be fixed independently. Differential Revision: https://reviews.llvm.org/D59997 llvm-svn: 357367
2019-03-31 23:11:34 +08:00
; SSE-NEXT: movmskpd %xmm2, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbq %rax, %rax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v4f64_sext:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltpd %ymm0, %ymm1, %ymm0
; AVX-NEXT: vmovmskpd %ymm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbq %rax, %rax
; AVX-NEXT: vzeroupper
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v4f64_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltpd %ymm0, %ymm1, %ymm0
; AVX512-NEXT: vmovmskpd %ymm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbq %rax, %rax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = fcmp ogt <4 x double> %a0, %a1
%s = sext <4 x i1> %c to <4 x i64>
%1 = shufflevector <4 x i64> %s, <4 x i64> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%2 = or <4 x i64> %s, %1
%3 = shufflevector <4 x i64> %2, <4 x i64> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%4 = or <4 x i64> %2, %3
%5 = extractelement <4 x i64> %4, i64 0
ret i64 %5
}
define i64 @test_v4f64_legal_sext(<4 x double> %a0, <4 x double> %a1) {
; SSE-LABEL: test_v4f64_legal_sext:
; SSE: # %bb.0:
; SSE-NEXT: cmpltpd %xmm1, %xmm3
; SSE-NEXT: cmpltpd %xmm0, %xmm2
; SSE-NEXT: packssdw %xmm3, %xmm2
; SSE-NEXT: movmskps %xmm2, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbq %rax, %rax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v4f64_legal_sext:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltpd %ymm0, %ymm1, %ymm0
; AVX-NEXT: vextractf128 $1, %ymm0, %xmm1
; AVX-NEXT: vpackssdw %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmovmskps %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbq %rax, %rax
; AVX-NEXT: vzeroupper
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v4f64_legal_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltpd %ymm0, %ymm1, %k1
; AVX512-NEXT: vpcmpeqd %xmm0, %xmm0, %xmm0
; AVX512-NEXT: vmovdqa32 %xmm0, %xmm0 {%k1} {z}
; AVX512-NEXT: vmovmskps %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbq %rax, %rax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = fcmp ogt <4 x double> %a0, %a1
%s = sext <4 x i1> %c to <4 x i32>
%1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%2 = or <4 x i32> %s, %1
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%4 = or <4 x i32> %2, %3
%5 = extractelement <4 x i32> %4, i64 0
%6 = sext i32 %5 to i64
ret i64 %6
}
define i32 @test_v4f32_sext(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_v4f32_sext:
; SSE: # %bb.0:
; SSE-NEXT: cmpltps %xmm0, %xmm1
; SSE-NEXT: movmskps %xmm1, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v4f32_sext:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltps %xmm0, %xmm1, %xmm0
; AVX-NEXT: vmovmskps %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbl %eax, %eax
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v4f32_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltps %xmm0, %xmm1, %xmm0
; AVX512-NEXT: vmovmskps %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: retq
%c = fcmp ogt <4 x float> %a0, %a1
%s = sext <4 x i1> %c to <4 x i32>
%1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%2 = or <4 x i32> %s, %1
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%4 = or <4 x i32> %2, %3
%5 = extractelement <4 x i32> %4, i32 0
ret i32 %5
}
define i32 @test_v8f32_sext(<8 x float> %a0, <8 x float> %a1) {
; SSE-LABEL: test_v8f32_sext:
; SSE: # %bb.0:
; SSE-NEXT: cmpltps %xmm1, %xmm3
; SSE-NEXT: cmpltps %xmm0, %xmm2
; SSE-NEXT: orps %xmm3, %xmm2
; SSE-NEXT: movmskps %xmm2, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v8f32_sext:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltps %ymm0, %ymm1, %ymm0
; AVX-NEXT: vmovmskps %ymm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbl %eax, %eax
; AVX-NEXT: vzeroupper
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v8f32_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltps %ymm0, %ymm1, %ymm0
; AVX512-NEXT: vmovmskps %ymm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = fcmp ogt <8 x float> %a0, %a1
%s = sext <8 x i1> %c to <8 x i32>
%1 = shufflevector <8 x i32> %s, <8 x i32> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <8 x i32> %s, %1
%3 = shufflevector <8 x i32> %2, <8 x i32> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <8 x i32> %2, %3
%5 = shufflevector <8 x i32> %4, <8 x i32> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <8 x i32> %4, %5
%7 = extractelement <8 x i32> %6, i32 0
ret i32 %7
}
define i32 @test_v8f32_legal_sext(<8 x float> %a0, <8 x float> %a1) {
; SSE-LABEL: test_v8f32_legal_sext:
; SSE: # %bb.0:
; SSE-NEXT: cmpltps %xmm1, %xmm3
; SSE-NEXT: cmpltps %xmm0, %xmm2
; SSE-NEXT: packssdw %xmm3, %xmm2
; SSE-NEXT: pmovmskb %xmm2, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v8f32_legal_sext:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltps %ymm0, %ymm1, %ymm0
; AVX-NEXT: vextractf128 $1, %ymm0, %xmm1
; AVX-NEXT: vpackssdw %xmm1, %xmm0, %xmm0
; AVX-NEXT: vpmovmskb %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbl %eax, %eax
; AVX-NEXT: vzeroupper
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v8f32_legal_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltps %ymm0, %ymm1, %k0
; AVX512-NEXT: vpmovm2w %k0, %xmm0
; AVX512-NEXT: vpmovmskb %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = fcmp ogt <8 x float> %a0, %a1
%s = sext <8 x i1> %c to <8 x i16>
%1 = shufflevector <8 x i16> %s, <8 x i16> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <8 x i16> %s, %1
%3 = shufflevector <8 x i16> %2, <8 x i16> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <8 x i16> %2, %3
%5 = shufflevector <8 x i16> %4, <8 x i16> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <8 x i16> %4, %5
%7 = extractelement <8 x i16> %6, i32 0
%8 = sext i16 %7 to i32
ret i32 %8
}
define i64 @test_v2i64_sext(<2 x i64> %a0, <2 x i64> %a1) {
; SSE-LABEL: test_v2i64_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtq %xmm1, %xmm0
[x86] allow movmsk with 2-element reductions One motivation for making this change is that the lack of using movmsk is likely a main source of perf difference between clang and gcc on the C-Ray benchmark as shown here: https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5 ...but this change alone isn't enough to solve that problem. The 'all-of' examples show what is likely the worst case trade-off: we end up with an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of' examples look clearly better using movmsk because we've traded 2 vector instructions for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'. If we examine the llvm-mca output for these cases, it appears that even though the 'all-of' movmsk variant looks worse on paper, it would perform better on both Haswell and Jaguar. $ llvm-mca -mcpu=haswell no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 504 Total uOps: 400 Dispatch Width: 4 uOps Per Cycle: 0.79 IPC: 0.79 Block RThroughput: 1.0 $ llvm-mca -mcpu=haswell movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 358 Total uOps: 600 Dispatch Width: 4 uOps Per Cycle: 1.68 IPC: 1.68 Block RThroughput: 1.5 $ llvm-mca -mcpu=btver2 no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 407 Total uOps: 400 Dispatch Width: 2 uOps Per Cycle: 0.98 IPC: 0.98 Block RThroughput: 2.0 $ llvm-mca -mcpu=btver2 movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 311 Total uOps: 600 Dispatch Width: 2 uOps Per Cycle: 1.93 IPC: 1.93 Block RThroughput: 3.0 Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if that's true, then we're also almost certainly making the wrong transform already for reductions with >2 elements, so that should be fixed independently. Differential Revision: https://reviews.llvm.org/D59997 llvm-svn: 357367
2019-03-31 23:11:34 +08:00
; SSE-NEXT: movmskpd %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbq %rax, %rax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v2i64_sext:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpgtq %xmm1, %xmm0, %xmm0
[x86] allow movmsk with 2-element reductions One motivation for making this change is that the lack of using movmsk is likely a main source of perf difference between clang and gcc on the C-Ray benchmark as shown here: https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5 ...but this change alone isn't enough to solve that problem. The 'all-of' examples show what is likely the worst case trade-off: we end up with an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of' examples look clearly better using movmsk because we've traded 2 vector instructions for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'. If we examine the llvm-mca output for these cases, it appears that even though the 'all-of' movmsk variant looks worse on paper, it would perform better on both Haswell and Jaguar. $ llvm-mca -mcpu=haswell no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 504 Total uOps: 400 Dispatch Width: 4 uOps Per Cycle: 0.79 IPC: 0.79 Block RThroughput: 1.0 $ llvm-mca -mcpu=haswell movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 358 Total uOps: 600 Dispatch Width: 4 uOps Per Cycle: 1.68 IPC: 1.68 Block RThroughput: 1.5 $ llvm-mca -mcpu=btver2 no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 407 Total uOps: 400 Dispatch Width: 2 uOps Per Cycle: 0.98 IPC: 0.98 Block RThroughput: 2.0 $ llvm-mca -mcpu=btver2 movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 311 Total uOps: 600 Dispatch Width: 2 uOps Per Cycle: 1.93 IPC: 1.93 Block RThroughput: 3.0 Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if that's true, then we're also almost certainly making the wrong transform already for reductions with >2 elements, so that should be fixed independently. Differential Revision: https://reviews.llvm.org/D59997 llvm-svn: 357367
2019-03-31 23:11:34 +08:00
; AVX-NEXT: vmovmskpd %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbq %rax, %rax
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v2i64_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtq %xmm1, %xmm0, %xmm0
; AVX512-NEXT: vmovmskpd %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbq %rax, %rax
; AVX512-NEXT: retq
%c = icmp sgt <2 x i64> %a0, %a1
%s = sext <2 x i1> %c to <2 x i64>
%1 = shufflevector <2 x i64> %s, <2 x i64> undef, <2 x i32> <i32 1, i32 undef>
%2 = or <2 x i64> %s, %1
%3 = extractelement <2 x i64> %2, i32 0
ret i64 %3
}
define i64 @test_v4i64_sext(<4 x i64> %a0, <4 x i64> %a1) {
; SSE-LABEL: test_v4i64_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtq %xmm3, %xmm1
; SSE-NEXT: pcmpgtq %xmm2, %xmm0
; SSE-NEXT: por %xmm1, %xmm0
[x86] allow movmsk with 2-element reductions One motivation for making this change is that the lack of using movmsk is likely a main source of perf difference between clang and gcc on the C-Ray benchmark as shown here: https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5 ...but this change alone isn't enough to solve that problem. The 'all-of' examples show what is likely the worst case trade-off: we end up with an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of' examples look clearly better using movmsk because we've traded 2 vector instructions for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'. If we examine the llvm-mca output for these cases, it appears that even though the 'all-of' movmsk variant looks worse on paper, it would perform better on both Haswell and Jaguar. $ llvm-mca -mcpu=haswell no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 504 Total uOps: 400 Dispatch Width: 4 uOps Per Cycle: 0.79 IPC: 0.79 Block RThroughput: 1.0 $ llvm-mca -mcpu=haswell movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 358 Total uOps: 600 Dispatch Width: 4 uOps Per Cycle: 1.68 IPC: 1.68 Block RThroughput: 1.5 $ llvm-mca -mcpu=btver2 no_movmsk.s -timeline Iterations: 100 Instructions: 400 Total Cycles: 407 Total uOps: 400 Dispatch Width: 2 uOps Per Cycle: 0.98 IPC: 0.98 Block RThroughput: 2.0 $ llvm-mca -mcpu=btver2 movmsk.s -timeline Iterations: 100 Instructions: 600 Total Cycles: 311 Total uOps: 600 Dispatch Width: 2 uOps Per Cycle: 1.93 IPC: 1.93 Block RThroughput: 3.0 Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if that's true, then we're also almost certainly making the wrong transform already for reductions with >2 elements, so that should be fixed independently. Differential Revision: https://reviews.llvm.org/D59997 llvm-svn: 357367
2019-03-31 23:11:34 +08:00
; SSE-NEXT: movmskpd %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbq %rax, %rax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v4i64_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtq %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtq %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm2, %ymm0, %ymm0
; AVX1-NEXT: vmovmskpd %ymm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbq %rax, %rax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v4i64_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtq %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vmovmskpd %ymm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbq %rax, %rax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v4i64_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtq %ymm1, %ymm0, %ymm0
; AVX512-NEXT: vmovmskpd %ymm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbq %rax, %rax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <4 x i64> %a0, %a1
%s = sext <4 x i1> %c to <4 x i64>
%1 = shufflevector <4 x i64> %s, <4 x i64> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%2 = or <4 x i64> %s, %1
%3 = shufflevector <4 x i64> %2, <4 x i64> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%4 = or <4 x i64> %2, %3
%5 = extractelement <4 x i64> %4, i64 0
ret i64 %5
}
define i64 @test_v4i64_legal_sext(<4 x i64> %a0, <4 x i64> %a1) {
; SSE-LABEL: test_v4i64_legal_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtq %xmm3, %xmm1
; SSE-NEXT: pcmpgtq %xmm2, %xmm0
; SSE-NEXT: packssdw %xmm1, %xmm0
; SSE-NEXT: movmskps %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbq %rax, %rax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v4i64_legal_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtq %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtq %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpackssdw %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vmovmskps %xmm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbq %rax, %rax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v4i64_legal_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtq %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vextracti128 $1, %ymm0, %xmm1
; AVX2-NEXT: vpackssdw %xmm1, %xmm0, %xmm0
; AVX2-NEXT: vmovmskps %xmm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbq %rax, %rax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v4i64_legal_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtq %ymm1, %ymm0, %k1
; AVX512-NEXT: vpcmpeqd %xmm0, %xmm0, %xmm0
; AVX512-NEXT: vmovdqa32 %xmm0, %xmm0 {%k1} {z}
; AVX512-NEXT: vmovmskps %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbq %rax, %rax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <4 x i64> %a0, %a1
%s = sext <4 x i1> %c to <4 x i32>
%1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%2 = or <4 x i32> %s, %1
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%4 = or <4 x i32> %2, %3
%5 = extractelement <4 x i32> %4, i64 0
%6 = sext i32 %5 to i64
ret i64 %6
}
define i32 @test_v4i32_sext(<4 x i32> %a0, <4 x i32> %a1) {
; SSE-LABEL: test_v4i32_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtd %xmm1, %xmm0
; SSE-NEXT: movmskps %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v4i32_sext:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpgtd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmovmskps %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbl %eax, %eax
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v4i32_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtd %xmm1, %xmm0, %xmm0
; AVX512-NEXT: vmovmskps %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: retq
%c = icmp sgt <4 x i32> %a0, %a1
%s = sext <4 x i1> %c to <4 x i32>
%1 = shufflevector <4 x i32> %s, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%2 = or <4 x i32> %s, %1
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%4 = or <4 x i32> %2, %3
%5 = extractelement <4 x i32> %4, i32 0
ret i32 %5
}
define i32 @test_v8i32_sext(<8 x i32> %a0, <8 x i32> %a1) {
; SSE-LABEL: test_v8i32_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtd %xmm3, %xmm1
; SSE-NEXT: pcmpgtd %xmm2, %xmm0
; SSE-NEXT: por %xmm1, %xmm0
; SSE-NEXT: movmskps %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v8i32_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtd %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtd %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm2, %ymm0, %ymm0
; AVX1-NEXT: vmovmskps %ymm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbl %eax, %eax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v8i32_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtd %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vmovmskps %ymm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbl %eax, %eax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v8i32_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtd %ymm1, %ymm0, %ymm0
; AVX512-NEXT: vmovmskps %ymm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <8 x i32> %a0, %a1
%s = sext <8 x i1> %c to <8 x i32>
%1 = shufflevector <8 x i32> %s, <8 x i32> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <8 x i32> %s, %1
%3 = shufflevector <8 x i32> %2, <8 x i32> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <8 x i32> %2, %3
%5 = shufflevector <8 x i32> %4, <8 x i32> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <8 x i32> %4, %5
%7 = extractelement <8 x i32> %6, i32 0
ret i32 %7
}
define i32 @test_v8i32_legal_sext(<8 x i32> %a0, <8 x i32> %a1) {
; SSE-LABEL: test_v8i32_legal_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtd %xmm3, %xmm1
; SSE-NEXT: pcmpgtd %xmm2, %xmm0
; SSE-NEXT: packssdw %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v8i32_legal_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtd %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtd %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpackssdw %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vpmovmskb %xmm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbl %eax, %eax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v8i32_legal_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtd %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vextracti128 $1, %ymm0, %xmm1
; AVX2-NEXT: vpackssdw %xmm1, %xmm0, %xmm0
; AVX2-NEXT: vpmovmskb %xmm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbl %eax, %eax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v8i32_legal_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtd %ymm1, %ymm0, %k0
; AVX512-NEXT: vpmovm2w %k0, %xmm0
; AVX512-NEXT: vpmovmskb %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <8 x i32> %a0, %a1
%s = sext <8 x i1> %c to <8 x i16>
%1 = shufflevector <8 x i16> %s, <8 x i16> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <8 x i16> %s, %1
%3 = shufflevector <8 x i16> %2, <8 x i16> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <8 x i16> %2, %3
%5 = shufflevector <8 x i16> %4, <8 x i16> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <8 x i16> %4, %5
%7 = extractelement <8 x i16> %6, i32 0
%8 = sext i16 %7 to i32
ret i32 %8
}
define i16 @test_v8i16_sext(<8 x i16> %a0, <8 x i16> %a1) {
; SSE-LABEL: test_v8i16_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtw %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: # kill: def $ax killed $ax killed $eax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v8i16_sext:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpgtw %xmm1, %xmm0, %xmm0
; AVX-NEXT: vpmovmskb %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbl %eax, %eax
; AVX-NEXT: # kill: def $ax killed $ax killed $eax
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v8i16_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtw %xmm1, %xmm0, %xmm0
; AVX512-NEXT: vpmovmskb %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: # kill: def $ax killed $ax killed $eax
; AVX512-NEXT: retq
%c = icmp sgt <8 x i16> %a0, %a1
%s = sext <8 x i1> %c to <8 x i16>
%1 = shufflevector <8 x i16> %s, <8 x i16> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <8 x i16> %s, %1
%3 = shufflevector <8 x i16> %2, <8 x i16> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <8 x i16> %2, %3
%5 = shufflevector <8 x i16> %4, <8 x i16> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <8 x i16> %4, %5
%7 = extractelement <8 x i16> %6, i32 0
ret i16 %7
}
define i16 @test_v16i16_sext(<16 x i16> %a0, <16 x i16> %a1) {
; SSE-LABEL: test_v16i16_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtw %xmm3, %xmm1
; SSE-NEXT: pcmpgtw %xmm2, %xmm0
; SSE-NEXT: por %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: # kill: def $ax killed $ax killed $eax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v16i16_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtw %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtw %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpor %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vpmovmskb %xmm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbl %eax, %eax
; AVX1-NEXT: # kill: def $ax killed $ax killed $eax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v16i16_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtw %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vpmovmskb %ymm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbl %eax, %eax
; AVX2-NEXT: # kill: def $ax killed $ax killed $eax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v16i16_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtw %ymm1, %ymm0, %ymm0
; AVX512-NEXT: vpmovmskb %ymm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: # kill: def $ax killed $ax killed $eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <16 x i16> %a0, %a1
%s = sext <16 x i1> %c to <16 x i16>
%1 = shufflevector <16 x i16> %s, <16 x i16> undef, <16 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <16 x i16> %s, %1
%3 = shufflevector <16 x i16> %2, <16 x i16> undef, <16 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <16 x i16> %2, %3
%5 = shufflevector <16 x i16> %4, <16 x i16> undef, <16 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <16 x i16> %4, %5
%7 = shufflevector <16 x i16> %6, <16 x i16> undef, <16 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%8 = or <16 x i16> %6, %7
%9 = extractelement <16 x i16> %8, i32 0
ret i16 %9
}
define i16 @test_v16i16_legal_sext(<16 x i16> %a0, <16 x i16> %a1) {
; SSE-LABEL: test_v16i16_legal_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtw %xmm3, %xmm1
; SSE-NEXT: pcmpgtw %xmm2, %xmm0
; SSE-NEXT: packsswb %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: # kill: def $ax killed $ax killed $eax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v16i16_legal_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtw %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtw %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpacksswb %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vpmovmskb %xmm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbl %eax, %eax
; AVX1-NEXT: # kill: def $ax killed $ax killed $eax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v16i16_legal_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtw %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vextracti128 $1, %ymm0, %xmm1
; AVX2-NEXT: vpacksswb %xmm1, %xmm0, %xmm0
; AVX2-NEXT: vpmovmskb %xmm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbl %eax, %eax
; AVX2-NEXT: # kill: def $ax killed $ax killed $eax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v16i16_legal_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtw %ymm1, %ymm0, %k0
; AVX512-NEXT: vpmovm2b %k0, %xmm0
; AVX512-NEXT: vpmovmskb %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: # kill: def $ax killed $ax killed $eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <16 x i16> %a0, %a1
%s = sext <16 x i1> %c to <16 x i8>
%1 = shufflevector <16 x i8> %s, <16 x i8> undef, <16 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <16 x i8> %s, %1
%3 = shufflevector <16 x i8> %2, <16 x i8> undef, <16 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <16 x i8> %2, %3
%5 = shufflevector <16 x i8> %4, <16 x i8> undef, <16 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <16 x i8> %4, %5
%7 = shufflevector <16 x i8> %6, <16 x i8> undef, <16 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%8 = or <16 x i8> %6, %7
%9 = extractelement <16 x i8> %8, i32 0
%10 = sext i8 %9 to i16
ret i16 %10
}
define i8 @test_v16i8_sext(<16 x i8> %a0, <16 x i8> %a1) {
; SSE-LABEL: test_v16i8_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtb %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: # kill: def $al killed $al killed $eax
; SSE-NEXT: retq
;
; AVX-LABEL: test_v16i8_sext:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpgtb %xmm1, %xmm0, %xmm0
; AVX-NEXT: vpmovmskb %xmm0, %eax
; AVX-NEXT: negl %eax
; AVX-NEXT: sbbl %eax, %eax
; AVX-NEXT: # kill: def $al killed $al killed $eax
; AVX-NEXT: retq
;
; AVX512-LABEL: test_v16i8_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtb %xmm1, %xmm0, %xmm0
; AVX512-NEXT: vpmovmskb %xmm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: # kill: def $al killed $al killed $eax
; AVX512-NEXT: retq
%c = icmp sgt <16 x i8> %a0, %a1
%s = sext <16 x i1> %c to <16 x i8>
%1 = shufflevector <16 x i8> %s, <16 x i8> undef, <16 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <16 x i8> %s, %1
%3 = shufflevector <16 x i8> %2, <16 x i8> undef, <16 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <16 x i8> %2, %3
%5 = shufflevector <16 x i8> %4, <16 x i8> undef, <16 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <16 x i8> %4, %5
%7 = shufflevector <16 x i8> %6, <16 x i8> undef, <16 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%8 = or <16 x i8> %6, %7
%9 = extractelement <16 x i8> %8, i32 0
ret i8 %9
}
define i8 @test_v32i8_sext(<32 x i8> %a0, <32 x i8> %a1) {
; SSE-LABEL: test_v32i8_sext:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtb %xmm3, %xmm1
; SSE-NEXT: pcmpgtb %xmm2, %xmm0
; SSE-NEXT: por %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: negl %eax
; SSE-NEXT: sbbl %eax, %eax
; SSE-NEXT: # kill: def $al killed $al killed $eax
; SSE-NEXT: retq
;
; AVX1-LABEL: test_v32i8_sext:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpgtb %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtb %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpor %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vpmovmskb %xmm0, %eax
; AVX1-NEXT: negl %eax
; AVX1-NEXT: sbbl %eax, %eax
; AVX1-NEXT: # kill: def $al killed $al killed $eax
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: test_v32i8_sext:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtb %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vpmovmskb %ymm0, %eax
; AVX2-NEXT: negl %eax
; AVX2-NEXT: sbbl %eax, %eax
; AVX2-NEXT: # kill: def $al killed $al killed $eax
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: test_v32i8_sext:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtb %ymm1, %ymm0, %ymm0
; AVX512-NEXT: vpmovmskb %ymm0, %eax
; AVX512-NEXT: negl %eax
; AVX512-NEXT: sbbl %eax, %eax
; AVX512-NEXT: # kill: def $al killed $al killed $eax
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%c = icmp sgt <32 x i8> %a0, %a1
%s = sext <32 x i1> %c to <32 x i8>
%1 = shufflevector <32 x i8> %s, <32 x i8> undef, <32 x i32> <i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 24, i32 25, i32 26, i32 27, i32 28, i32 29, i32 30, i32 31, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%2 = or <32 x i8> %s, %1
%3 = shufflevector <32 x i8> %2, <32 x i8> undef, <32 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%4 = or <32 x i8> %2, %3
%5 = shufflevector <32 x i8> %4, <32 x i8> undef, <32 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%6 = or <32 x i8> %4, %5
%7 = shufflevector <32 x i8> %6, <32 x i8> undef, <32 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%8 = or <32 x i8> %6, %7
%9 = shufflevector <32 x i8> %8, <32 x i8> undef, <32 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%10 = or <32 x i8> %8, %9
%11 = extractelement <32 x i8> %10, i32 0
ret i8 %11
}
define i1 @bool_reduction_v2f64(<2 x double> %x, <2 x double> %y) {
; SSE-LABEL: bool_reduction_v2f64:
; SSE: # %bb.0:
; SSE-NEXT: cmpltpd %xmm0, %xmm1
; SSE-NEXT: movmskpd %xmm1, %eax
; SSE-NEXT: testb %al, %al
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vcmpltpd %xmm0, %xmm1, %xmm0
; AVX-NEXT: vmovmskpd %xmm0, %eax
; AVX-NEXT: testb %al, %al
; AVX-NEXT: setne %al
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v2f64:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpltpd %xmm0, %xmm1, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: retq
%a = fcmp ogt <2 x double> %x, %y
%b = shufflevector <2 x i1> %a, <2 x i1> undef, <2 x i32> <i32 1, i32 undef>
%c = or <2 x i1> %a, %b
%d = extractelement <2 x i1> %c, i32 0
ret i1 %d
}
define i1 @bool_reduction_v4f32(<4 x float> %x, <4 x float> %y) {
; SSE-LABEL: bool_reduction_v4f32:
; SSE: # %bb.0:
; SSE-NEXT: cmpeqps %xmm1, %xmm0
; SSE-NEXT: movmskps %xmm0, %eax
; SSE-NEXT: testb %al, %al
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vcmpeqps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmovmskps %xmm0, %eax
; AVX-NEXT: testb %al, %al
; AVX-NEXT: setne %al
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v4f32:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpeqps %xmm1, %xmm0, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: retq
%a = fcmp oeq <4 x float> %x, %y
%s1 = shufflevector <4 x i1> %a, <4 x i1> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%b = or <4 x i1> %s1, %a
%s2 = shufflevector <4 x i1> %b, <4 x i1> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%c = or <4 x i1> %s2, %b
%d = extractelement <4 x i1> %c, i32 0
ret i1 %d
}
define i1 @bool_reduction_v4f64(<4 x double> %x, <4 x double> %y) {
; SSE-LABEL: bool_reduction_v4f64:
; SSE: # %bb.0:
; SSE-NEXT: cmplepd %xmm1, %xmm3
; SSE-NEXT: cmplepd %xmm0, %xmm2
; SSE-NEXT: packssdw %xmm3, %xmm2
; SSE-NEXT: movmskps %xmm2, %eax
; SSE-NEXT: testb %al, %al
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v4f64:
; AVX: # %bb.0:
; AVX-NEXT: vcmplepd %ymm0, %ymm1, %ymm0
; AVX-NEXT: vmovmskpd %ymm0, %eax
; AVX-NEXT: testb %al, %al
; AVX-NEXT: setne %al
; AVX-NEXT: vzeroupper
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v4f64:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmplepd %ymm0, %ymm1, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%a = fcmp oge <4 x double> %x, %y
%s1 = shufflevector <4 x i1> %a, <4 x i1> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%b = or <4 x i1> %s1, %a
%s2 = shufflevector <4 x i1> %b, <4 x i1> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%c = or <4 x i1> %s2, %b
%d = extractelement <4 x i1> %c, i32 0
ret i1 %d
}
define i1 @bool_reduction_v8f32(<8 x float> %x, <8 x float> %y) {
; SSE-LABEL: bool_reduction_v8f32:
; SSE: # %bb.0:
; SSE-NEXT: cmpneqps %xmm3, %xmm1
; SSE-NEXT: cmpneqps %xmm2, %xmm0
; SSE-NEXT: packssdw %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: testw %ax, %ax
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v8f32:
; AVX: # %bb.0:
; AVX-NEXT: vcmpneqps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmovmskps %ymm0, %eax
; AVX-NEXT: testb %al, %al
; AVX-NEXT: setne %al
; AVX-NEXT: vzeroupper
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v8f32:
; AVX512: # %bb.0:
; AVX512-NEXT: vcmpneqps %ymm1, %ymm0, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%a = fcmp une <8 x float> %x, %y
%s1 = shufflevector <8 x i1> %a, <8 x i1> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%b = or <8 x i1> %s1, %a
%s2 = shufflevector <8 x i1> %b, <8 x i1> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%c = or <8 x i1> %s2, %b
%s3 = shufflevector <8 x i1> %c, <8 x i1> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%d = or <8 x i1> %s3, %c
%e = extractelement <8 x i1> %d, i32 0
ret i1 %e
}
define i1 @bool_reduction_v2i64(<2 x i64> %x, <2 x i64> %y) {
; SSE-LABEL: bool_reduction_v2i64:
; SSE: # %bb.0:
; SSE-NEXT: movdqa {{.*#+}} xmm2 = [9223372036854775808,9223372036854775808]
; SSE-NEXT: pxor %xmm2, %xmm1
; SSE-NEXT: pxor %xmm2, %xmm0
; SSE-NEXT: pcmpgtq %xmm1, %xmm0
; SSE-NEXT: movmskpd %xmm0, %eax
; SSE-NEXT: testb %al, %al
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v2i64:
; AVX: # %bb.0:
; AVX-NEXT: vmovdqa {{.*#+}} xmm2 = [9223372036854775808,9223372036854775808]
; AVX-NEXT: vpxor %xmm2, %xmm1, %xmm1
; AVX-NEXT: vpxor %xmm2, %xmm0, %xmm0
; AVX-NEXT: vpcmpgtq %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmovmskpd %xmm0, %eax
; AVX-NEXT: testb %al, %al
; AVX-NEXT: setne %al
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v2i64:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpnleuq %xmm1, %xmm0, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: retq
%a = icmp ugt <2 x i64> %x, %y
%b = shufflevector <2 x i1> %a, <2 x i1> undef, <2 x i32> <i32 1, i32 undef>
%c = or <2 x i1> %a, %b
%d = extractelement <2 x i1> %c, i32 0
ret i1 %d
}
define i1 @bool_reduction_v4i32(<4 x i32> %x, <4 x i32> %y) {
; SSE-LABEL: bool_reduction_v4i32:
; SSE: # %bb.0:
; SSE-NEXT: pcmpeqd %xmm1, %xmm0
; SSE-NEXT: movmskps %xmm0, %eax
; SSE-NEXT: xorb $15, %al
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v4i32:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpeqd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmovmskps %xmm0, %eax
; AVX-NEXT: xorb $15, %al
; AVX-NEXT: setne %al
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v4i32:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpneqd %xmm1, %xmm0, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: retq
%a = icmp ne <4 x i32> %x, %y
%s1 = shufflevector <4 x i1> %a, <4 x i1> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%b = or <4 x i1> %s1, %a
%s2 = shufflevector <4 x i1> %b, <4 x i1> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%c = or <4 x i1> %s2, %b
%d = extractelement <4 x i1> %c, i32 0
ret i1 %d
}
define i1 @bool_reduction_v8i16(<8 x i16> %x, <8 x i16> %y) {
; SSE-LABEL: bool_reduction_v8i16:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtw %xmm0, %xmm1
; SSE-NEXT: pmovmskb %xmm1, %eax
; SSE-NEXT: testw %ax, %ax
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v8i16:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpgtw %xmm0, %xmm1, %xmm0
; AVX-NEXT: vpmovmskb %xmm0, %eax
; AVX-NEXT: testw %ax, %ax
; AVX-NEXT: setne %al
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v8i16:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtw %xmm0, %xmm1, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: retq
%a = icmp slt <8 x i16> %x, %y
%s1 = shufflevector <8 x i1> %a, <8 x i1> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%b = or <8 x i1> %s1, %a
%s2 = shufflevector <8 x i1> %b, <8 x i1> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%c = or <8 x i1> %s2, %b
%s3 = shufflevector <8 x i1> %c, <8 x i1> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%d = or <8 x i1> %s3, %c
%e = extractelement <8 x i1> %d, i32 0
ret i1 %e
}
define i1 @bool_reduction_v16i8(<16 x i8> %x, <16 x i8> %y) {
; SSE-LABEL: bool_reduction_v16i8:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtb %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: testw %ax, %ax
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX-LABEL: bool_reduction_v16i8:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpgtb %xmm1, %xmm0, %xmm0
; AVX-NEXT: vpmovmskb %xmm0, %eax
; AVX-NEXT: testw %ax, %ax
; AVX-NEXT: setne %al
; AVX-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v16i8:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtb %xmm1, %xmm0, %k0
; AVX512-NEXT: kortestw %k0, %k0
; AVX512-NEXT: setne %al
; AVX512-NEXT: retq
%a = icmp sgt <16 x i8> %x, %y
%s1 = shufflevector <16 x i1> %a, <16 x i1> undef, <16 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%b = or <16 x i1> %s1, %a
%s2 = shufflevector <16 x i1> %b, <16 x i1> undef, <16 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%c = or <16 x i1> %s2, %b
%s3 = shufflevector <16 x i1> %c, <16 x i1> undef, <16 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%d = or <16 x i1> %s3, %c
%s4 = shufflevector <16 x i1> %d, <16 x i1> undef, <16 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%e = or <16 x i1> %s4, %d
%f = extractelement <16 x i1> %e, i32 0
ret i1 %f
}
define i1 @bool_reduction_v4i64(<4 x i64> %x, <4 x i64> %y) {
; SSE-LABEL: bool_reduction_v4i64:
; SSE: # %bb.0:
; SSE-NEXT: pcmpgtq %xmm1, %xmm3
; SSE-NEXT: pcmpgtq %xmm0, %xmm2
; SSE-NEXT: packssdw %xmm3, %xmm2
; SSE-NEXT: movmskps %xmm2, %eax
; SSE-NEXT: testb %al, %al
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX1-LABEL: bool_reduction_v4i64:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm3
; AVX1-NEXT: vpcmpgtq %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpgtq %xmm0, %xmm1, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm2, %ymm0, %ymm0
; AVX1-NEXT: vmovmskpd %ymm0, %eax
; AVX1-NEXT: testb %al, %al
; AVX1-NEXT: setne %al
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: bool_reduction_v4i64:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpgtq %ymm0, %ymm1, %ymm0
; AVX2-NEXT: vmovmskpd %ymm0, %eax
; AVX2-NEXT: testb %al, %al
; AVX2-NEXT: setne %al
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v4i64:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpgtq %ymm0, %ymm1, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%a = icmp slt <4 x i64> %x, %y
%s1 = shufflevector <4 x i1> %a, <4 x i1> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%b = or <4 x i1> %s1, %a
%s2 = shufflevector <4 x i1> %b, <4 x i1> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%c = or <4 x i1> %s2, %b
%d = extractelement <4 x i1> %c, i32 0
ret i1 %d
}
define i1 @bool_reduction_v8i32(<8 x i32> %x, <8 x i32> %y) {
; SSE-LABEL: bool_reduction_v8i32:
; SSE: # %bb.0:
; SSE-NEXT: pminud %xmm1, %xmm3
; SSE-NEXT: pcmpeqd %xmm1, %xmm3
; SSE-NEXT: pminud %xmm0, %xmm2
; SSE-NEXT: pcmpeqd %xmm0, %xmm2
; SSE-NEXT: packssdw %xmm3, %xmm2
; SSE-NEXT: pmovmskb %xmm2, %eax
; SSE-NEXT: testw %ax, %ax
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX1-LABEL: bool_reduction_v8i32:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpminud %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpeqd %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpminud %xmm1, %xmm0, %xmm1
; AVX1-NEXT: vpcmpeqd %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm2, %ymm0, %ymm0
; AVX1-NEXT: vmovmskps %ymm0, %eax
; AVX1-NEXT: testb %al, %al
; AVX1-NEXT: setne %al
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: bool_reduction_v8i32:
; AVX2: # %bb.0:
; AVX2-NEXT: vpminud %ymm1, %ymm0, %ymm1
; AVX2-NEXT: vpcmpeqd %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vmovmskps %ymm0, %eax
; AVX2-NEXT: testb %al, %al
; AVX2-NEXT: setne %al
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v8i32:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpleud %ymm1, %ymm0, %k0
; AVX512-NEXT: kmovd %k0, %eax
; AVX512-NEXT: testb %al, %al
; AVX512-NEXT: setne %al
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%a = icmp ule <8 x i32> %x, %y
%s1 = shufflevector <8 x i1> %a, <8 x i1> undef, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
%b = or <8 x i1> %s1, %a
%s2 = shufflevector <8 x i1> %b, <8 x i1> undef, <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%c = or <8 x i1> %s2, %b
%s3 = shufflevector <8 x i1> %c, <8 x i1> undef, <8 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%d = or <8 x i1> %s3, %c
%e = extractelement <8 x i1> %d, i32 0
ret i1 %e
}
define i1 @bool_reduction_v16i16(<16 x i16> %x, <16 x i16> %y) {
; SSE-LABEL: bool_reduction_v16i16:
; SSE: # %bb.0:
; SSE-NEXT: pcmpeqw %xmm3, %xmm1
; SSE-NEXT: pcmpeqw %xmm2, %xmm0
; SSE-NEXT: packsswb %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: testw %ax, %ax
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX1-LABEL: bool_reduction_v16i16:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpeqw %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpeqw %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpacksswb %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vpmovmskb %xmm0, %eax
; AVX1-NEXT: testw %ax, %ax
; AVX1-NEXT: setne %al
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: bool_reduction_v16i16:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpeqw %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vpmovmskb %ymm0, %eax
; AVX2-NEXT: testl %eax, %eax
; AVX2-NEXT: setne %al
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v16i16:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpeqw %ymm1, %ymm0, %k0
; AVX512-NEXT: kortestw %k0, %k0
; AVX512-NEXT: setne %al
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%a = icmp eq <16 x i16> %x, %y
%s1 = shufflevector <16 x i1> %a, <16 x i1> undef, <16 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%b = or <16 x i1> %s1, %a
%s2 = shufflevector <16 x i1> %b, <16 x i1> undef, <16 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%c = or <16 x i1> %s2, %b
%s3 = shufflevector <16 x i1> %c, <16 x i1> undef, <16 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%d = or <16 x i1> %s3, %c
%s4 = shufflevector <16 x i1> %d, <16 x i1> undef, <16 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%e = or <16 x i1> %s4, %d
%f = extractelement <16 x i1> %e, i32 0
ret i1 %f
}
define i1 @bool_reduction_v32i8(<32 x i8> %x, <32 x i8> %y) {
; SSE-LABEL: bool_reduction_v32i8:
; SSE: # %bb.0:
; SSE-NEXT: pcmpeqb %xmm3, %xmm1
; SSE-NEXT: pcmpeqb %xmm2, %xmm0
; SSE-NEXT: por %xmm1, %xmm0
; SSE-NEXT: pmovmskb %xmm0, %eax
; SSE-NEXT: testw %ax, %ax
; SSE-NEXT: setne %al
; SSE-NEXT: retq
;
; AVX1-LABEL: bool_reduction_v32i8:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
; AVX1-NEXT: vpcmpeqb %xmm2, %xmm3, %xmm2
; AVX1-NEXT: vpcmpeqb %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vpor %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vpmovmskb %xmm0, %eax
; AVX1-NEXT: testw %ax, %ax
; AVX1-NEXT: setne %al
; AVX1-NEXT: vzeroupper
; AVX1-NEXT: retq
;
; AVX2-LABEL: bool_reduction_v32i8:
; AVX2: # %bb.0:
; AVX2-NEXT: vpcmpeqb %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vpmovmskb %ymm0, %eax
; AVX2-NEXT: testl %eax, %eax
; AVX2-NEXT: setne %al
; AVX2-NEXT: vzeroupper
; AVX2-NEXT: retq
;
; AVX512-LABEL: bool_reduction_v32i8:
; AVX512: # %bb.0:
; AVX512-NEXT: vpcmpeqb %ymm1, %ymm0, %k0
; AVX512-NEXT: kortestd %k0, %k0
; AVX512-NEXT: setne %al
; AVX512-NEXT: vzeroupper
; AVX512-NEXT: retq
%a = icmp eq <32 x i8> %x, %y
%s1 = shufflevector <32 x i1> %a, <32 x i1> undef, <32 x i32> <i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 24, i32 25, i32 26, i32 27, i32 28, i32 29, i32 30, i32 31, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%b = or <32 x i1> %s1, %a
%s2 = shufflevector <32 x i1> %b, <32 x i1> undef, <32 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%c = or <32 x i1> %s2, %b
%s3 = shufflevector <32 x i1> %c, <32 x i1> undef, <32 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%d = or <32 x i1> %s3, %c
%s4 = shufflevector <32 x i1> %d, <32 x i1> undef, <32 x i32> <i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%e = or <32 x i1> %s4, %d
%s5 = shufflevector <32 x i1> %e, <32 x i1> undef, <32 x i32> <i32 1, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef, i32 undef>
%f = or <32 x i1> %s5, %e
%g = extractelement <32 x i1> %f, i32 0
ret i1 %g
}