llvm-project/llvm/lib/Target/Sparc/LeonPasses.cpp

934 lines
34 KiB
C++
Raw Normal View History

//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "LeonPasses.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
LEONMachineFunctionPass::LEONMachineFunctionPass(TargetMachine &tm, char &ID)
: MachineFunctionPass(ID) {}
LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID)
: MachineFunctionPass(ID) {}
int LEONMachineFunctionPass::GetRegIndexForOperand(MachineInstr &MI,
int OperandIndex) {
if (MI.getNumOperands() > 0) {
if (OperandIndex == LAST_OPERAND) {
OperandIndex = MI.getNumOperands() - 1;
}
if (MI.getNumOperands() > (unsigned)OperandIndex &&
MI.getOperand(OperandIndex).isReg()) {
return (int)MI.getOperand(OperandIndex).getReg();
}
}
static int NotFoundIndex = -10;
// Return a different number each time to avoid any comparisons between the
// values returned.
NotFoundIndex -= 10;
return NotFoundIndex;
}
// finds a new free FP register
// checks also the AllocatedRegisters vector
int LEONMachineFunctionPass::getUnusedFPRegister(MachineRegisterInfo &MRI) {
for (int RegisterIndex = SP::F0; RegisterIndex <= SP::F31; ++RegisterIndex) {
if (!MRI.isPhysRegUsed(RegisterIndex) &&
!(std::find(UsedRegisters.begin(), UsedRegisters.end(),
RegisterIndex) != UsedRegisters.end())) {
return RegisterIndex;
}
}
return -1;
}
//*****************************************************************************
//**** InsertNOPLoad pass
//*****************************************************************************
// This pass fixes the incorrectly working Load instructions that exists for
// some earlier versions of the LEON processor line. NOP instructions must
// be inserted after the load instruction to ensure that the Load instruction
// behaves as expected for these processors.
//
// This pass inserts a NOP after any LD or LDF instruction.
//
char InsertNOPLoad::ID = 0;
InsertNOPLoad::InsertNOPLoad(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
} else if (MI.isInlineAsm()) {
// Look for an inline ld or ldf instruction.
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("ld")) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixFSMULD pass
//*****************************************************************************
// This pass fixes the incorrectly working FSMULD instruction that exists for
// some earlier versions of the LEON processor line.
//
// The pass should convert the FSMULD operands to double precision in scratch
// registers, then calculate the result with the FMULD instruction. Therefore,
// the pass should replace operations of the form:
// fsmuld %f20,%f21,%f8
// with the sequence:
// fstod %f20,%f0
// fstod %f21,%f2
// fmuld %f0,%f2,%f8
//
char FixFSMULD::ID = 0;
FixFSMULD::FixFSMULD(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {}
bool FixFSMULD::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FSMULD && MI.getNumOperands() == 3) {
// take the registers from fsmuld %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("fsmuld")) {
// this is an inline FSMULD instruction
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
// extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (Reg1Index == UNASSIGNED_INDEX)
Reg1Index = MO.getReg();
else if (Reg2Index == UNASSIGNED_INDEX)
Reg2Index = MO.getReg();
else if (Reg3Index == UNASSIGNED_INDEX)
Reg3Index = MO.getReg();
}
if (Reg3Index != UNASSIGNED_INDEX)
break;
}
}
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX &&
Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX ||
ScratchReg2Index == UNASSIGNED_INDEX) {
errs() << "Cannot allocate free scratch registers for the FixFSMULD "
"pass."
<< "\n";
} else {
// create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
// create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
// create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** ReplaceFMULS pass
//*****************************************************************************
// This pass fixes the incorrectly working FMULS instruction that exists for
// some earlier versions of the LEON processor line.
//
// This pass converts the FMULS operands to double precision in scratch
// registers, then calculates the result with the FMULD instruction.
// The pass should replace operations of the form:
// fmuls %f20,%f21,%f8
// with the sequence:
// fstod %f20,%f0
// fstod %f21,%f2
// fmuld %f0,%f2,%f8
//
char ReplaceFMULS::ID = 0;
ReplaceFMULS::ReplaceFMULS(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool ReplaceFMULS::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FMULS && MI.getNumOperands() == 3) {
// take the registers from fmuls %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("fmuls")) {
// this is an inline FMULS instruction
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
// extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (Reg1Index == UNASSIGNED_INDEX)
Reg1Index = MO.getReg();
else if (Reg2Index == UNASSIGNED_INDEX)
Reg2Index = MO.getReg();
else if (Reg3Index == UNASSIGNED_INDEX)
Reg3Index = MO.getReg();
}
if (Reg3Index != UNASSIGNED_INDEX)
break;
}
}
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX &&
Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX ||
ScratchReg2Index == UNASSIGNED_INDEX) {
errs() << "Cannot allocate free scratch registers for the "
"ReplaceFMULS pass."
<< "\n";
} else {
// create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
// create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
// create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixAllFDIVSQRT pass
//*****************************************************************************
// This pass fixes the incorrectly working FDIVx and FSQRTx instructions that
// exist for some earlier versions of the LEON processor line. Five NOP
// instructions need to be inserted after these instructions to ensure the
// correct result is placed in the destination registers before they are used.
//
// This pass implements two fixes:
// 1) fixing the FSQRTS and FSQRTD instructions.
// 2) fixing the FDIVS and FDIVD instructions.
//
// FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in
// the pipeline when this option is enabled, so this pass needs only to deal
// with the changes that still need implementing for the "double" versions
// of these instructions.
//
char FixAllFDIVSQRT::ID = 0;
FixAllFDIVSQRT::FixAllFDIVSQRT(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("fsqrtd")) {
// this is an inline fsqrts instruction
Opcode = SP::FSQRTD;
} else if (AsmString.startswith_lower("fdivd")) {
// this is an inline fsqrts instruction
Opcode = SP::FDIVD;
}
}
// Note: FDIVS and FSQRTS cannot be generated when this erratum fix is
// switched on so we don't need to check for them here. They will
// already have been converted to FSQRTD or FDIVD earlier in the
// pipeline.
if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) {
// Insert 5 NOPs before FSQRTD,FDIVD.
for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++)
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// ... and inserting 28 NOPs after FSQRTD,FDIVD.
for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++)
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
//*****************************************************************************
//**** ReplaceSDIV pass
//*****************************************************************************
// This pass fixes the incorrectly working SDIV instruction that
// exist for some earlier versions of the LEON processor line. The instruction
// is replaced with an SDIVcc instruction instead, which is working.
//
char ReplaceSDIV::ID = 0;
ReplaceSDIV::ReplaceSDIV() : LEONMachineFunctionPass(ID) {}
ReplaceSDIV::ReplaceSDIV(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {}
bool ReplaceSDIV::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::SDIVrr) {
MI.setDesc(TII.get(SP::SDIVCCrr));
Modified = true;
} else if (Opcode == SP::SDIVri) {
MI.setDesc(TII.get(SP::SDIVCCri));
Modified = true;
}
}
}
return Modified;
}
static RegisterPass<ReplaceSDIV> X("replace-sdiv", "Replase SDIV Pass", false,
false);
//*****************************************************************************
//**** FixCALL pass
//*****************************************************************************
// This pass restricts the size of the immediate operand of the CALL
// instruction, which can cause problems on some earlier versions of the LEON
// processor, which can interpret some of the call address bits incorrectly.
//
char FixCALL::ID = 0;
FixCALL::FixCALL(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {}
bool FixCALL::runOnMachineFunction(MachineFunction &MF) {
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
MI.print(errs());
errs() << "\n";
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL || Opcode == SP::CALLrr) {
unsigned NumOperands = MI.getNumOperands();
for (unsigned OperandIndex = 0; OperandIndex < NumOperands;
OperandIndex++) {
MachineOperand &MO = MI.getOperand(OperandIndex);
if (MO.isImm()) {
int64_t Value = MO.getImm();
MO.setImm(Value & 0x000fffffL);
Modified = true;
break;
}
}
} else if (MI.isInlineAsm()) // inline assembly immediate call
{
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("call")) {
// this is an inline call instruction
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
// extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isImm()) {
int64_t Value = MO.getImm();
MO.setImm(Value & 0x000fffffL);
Modified = true;
}
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** IgnoreZeroFlag pass
//*****************************************************************************
// This erratum fix fixes the overflow behavior of SDIVCC and UDIVCC
// instructions that exists on some earlier LEON processors. Where these
// instructions are detected, they are replaced by a sequence that will
// explicitly write the overflow bit flag if this is required.
//
char IgnoreZeroFlag::ID = 0;
IgnoreZeroFlag::IgnoreZeroFlag(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool IgnoreZeroFlag::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::SDIVCCrr || Opcode == SP::SDIVCCri ||
Opcode == SP::UDIVCCrr || Opcode == SP::UDIVCCri) {
// split the current machine basic block - just after the sdivcc/udivcc
// instruction
// create a label that help us skip the zero flag update (of PSR -
// Processor Status Register)
// if conditions are not met
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
MachineFunction::iterator It =
std::next(MachineFunction::iterator(MBB));
MachineBasicBlock *dneBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, dneBB);
// Transfer the remainder of MBB and its successor edges to dneBB.
dneBB->splice(dneBB->begin(), &MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB.end());
dneBB->transferSuccessorsAndUpdatePHIs(&MBB);
MBB.addSuccessor(dneBB);
MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
// bvc - branch if overflow flag not set
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_VS);
// bnz - branch if not zero
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_NE);
// use the WRPSR (Write Processor State Register) instruction to set the
// zeo flag to 1
// create wr %g0, 1, %psr
BuildMI(MBB, NextMBBI, DL, TII.get(SP::WRPSRri))
.addReg(SP::G0)
.addImm(1);
BuildMI(MBB, NextMBBI, DL, TII.get(SP::NOP));
Modified = true;
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("sdivcc") ||
AsmString.startswith_lower("udivcc")) {
// this is an inline SDIVCC or UDIVCC instruction
// split the current machine basic block - just after the
// sdivcc/udivcc instruction
// create a label that help us skip the zero flag update (of PSR -
// Processor Status Register)
// if conditions are not met
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
MachineFunction::iterator It =
std::next(MachineFunction::iterator(MBB));
MachineBasicBlock *dneBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, dneBB);
// Transfer the remainder of MBB and its successor edges to dneBB.
dneBB->splice(dneBB->begin(), &MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB.end());
dneBB->transferSuccessorsAndUpdatePHIs(&MBB);
MBB.addSuccessor(dneBB);
MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
// bvc - branch if overflow flag not set
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_VS);
// bnz - branch if not zero
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_NE);
// use the WRPSR (Write Processor State Register) instruction to set
// the zeo flag to 1
// create wr %g0, 1, %psr
BuildMI(MBB, NextMBBI, DL, TII.get(SP::WRPSRri))
.addReg(SP::G0)
.addImm(1);
BuildMI(MBB, NextMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** InsertNOPDoublePrecision pass
//*****************************************************************************
// This erratum fix for some earlier LEON processors fixes a problem where a
// double precision load will not yield the correct result if used in FMUL,
// FDIV, FADD, FSUB or FSQRT instructions later. If this sequence is detected,
// inserting a NOP between the two instructions will fix the erratum.
// 1.scans the code after register allocation;
// 2.checks for the problem conditions as described in the AT697E erratum
// “Odd-Numbered FPU Register Dependency not Properly Checked in some
// Double-Precision FPU Operations”;
// 3.inserts NOPs if the problem exists.
//
char InsertNOPDoublePrecision::ID = 0;
InsertNOPDoublePrecision::InsertNOPDoublePrecision(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool InsertNOPDoublePrecision::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::LDDFri || Opcode == SP::LDDFrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
MachineInstr &NMI = *NMBBI;
unsigned NextOpcode = NMI.getOpcode();
// NMI.print(errs());
if (NextOpcode == SP::FADDD || NextOpcode == SP::FSUBD ||
NextOpcode == SP::FMULD || NextOpcode == SP::FDIVD) {
int RegAIndex = GetRegIndexForOperand(MI, 0);
int RegBIndex = GetRegIndexForOperand(NMI, 0);
int RegCIndex =
GetRegIndexForOperand(NMI, 2); // Second source operand is index 2
int RegDIndex =
GetRegIndexForOperand(NMI, 1); // Destination operand is index 1
if ((RegAIndex == RegBIndex + 1 && RegBIndex == RegDIndex) ||
(RegAIndex == RegCIndex + 1 && RegCIndex == RegDIndex) ||
(RegAIndex == RegBIndex + 1 && RegCIndex == RegDIndex) ||
(RegAIndex == RegCIndex + 1 && RegBIndex == RegDIndex)) {
// Insert NOP between the two instructions.
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
// Check the errata patterns that only happen for FADDD and FMULD
if (Modified == false &&
(NextOpcode == SP::FADDD || NextOpcode == SP::FMULD)) {
RegAIndex = GetRegIndexForOperand(MI, 1);
if (RegAIndex == RegBIndex + 1 && RegBIndex == RegCIndex &&
RegBIndex == RegDIndex) {
// Insert NOP between the two instructions.
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
} else if (NextOpcode == SP::FSQRTD) {
int RegAIndex = GetRegIndexForOperand(MI, 1);
int RegBIndex = GetRegIndexForOperand(NMI, 0);
int RegCIndex = GetRegIndexForOperand(NMI, 1);
if (RegAIndex == RegBIndex + 1 && RegBIndex == RegCIndex) {
// Insert NOP between the two instructions.
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** PreventRoundChange pass
//*****************************************************************************
// To prevent any explicit change of the default rounding mode, this pass
// detects any call of the fesetround function and removes this call from the
// list of generated operations.
//
char PreventRoundChange::ID = 0;
PreventRoundChange::PreventRoundChange(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool PreventRoundChange::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL && MI.getNumOperands() > 0) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isGlobal()) {
StringRef FuncName = MO.getGlobal()->getName();
if (FuncName.compare_lower("fesetround") == 0) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FlushCacheLineSWAP pass
//*****************************************************************************
// This pass inserts FLUSHW just before any SWAP atomic instruction.
//
char FlushCacheLineSWAP::ID = 0;
FlushCacheLineSWAP::FlushCacheLineSWAP(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool FlushCacheLineSWAP::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::SWAPrr || Opcode == SP::SWAPri ||
Opcode == SP::LDSTUBrr || Opcode == SP::LDSTUBri) {
// insert flush and 5 NOPs before the swap/ldstub instruction
BuildMI(MBB, MBBI, DL, TII.get(SP::FLUSH));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
Modified = true;
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("swap") ||
AsmString.startswith_lower("ldstub")) {
// this is an inline swap or ldstub instruction
// insert flush and 5 NOPs before the swap/ldstub instruction
BuildMI(MBB, MBBI, DL, TII.get(SP::FLUSH));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** InsertNOPsLoadStore pass
//*****************************************************************************
// This pass shall insert NOPs between floating point loads and stores when the
// following circumstances are present [5]:
// Pattern 1:
// 1. single-precision load or single-precision FPOP to register %fX, where X is
// the same register as the store being checked;
// 2. single-precision load or single-precision FPOP to register %fY , where Y
// is the opposite register in the same double-precision pair;
// 3. 0-3 instructions of any kind, except stores from %fX or %fY or operations
// with %fX as destination;
// 4. the store (from register %fX) being considered.
// Pattern 2:
// 1. double-precision FPOP;
// 2. any number of operations on any kind, except no double-precision FPOP and
// at most one (less than two) single-precision or single-to-double FPOPs;
// 3. the store (from register %fX) being considered.
//
char InsertNOPsLoadStore::ID = 0;
InsertNOPsLoadStore::InsertNOPsLoadStore(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool InsertNOPsLoadStore::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
MachineInstr *Pattern1FirstInstruction = NULL;
MachineInstr *Pattern2FirstInstruction = NULL;
unsigned int StoreInstructionsToCheck = 0;
int FxRegIndex, FyRegIndex;
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
if (StoreInstructionsToCheck > 0) {
if (((MI.getOpcode() == SP::STFrr || MI.getOpcode() == SP::STFri) &&
(GetRegIndexForOperand(MI, LAST_OPERAND) == FxRegIndex ||
GetRegIndexForOperand(MI, LAST_OPERAND) == FyRegIndex)) ||
GetRegIndexForOperand(MI, 0) == FxRegIndex) {
// Insert four NOPs
for (unsigned InsertedCount = 0; InsertedCount < 4; InsertedCount++) {
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
}
Modified = true;
}
StoreInstructionsToCheck--;
}
switch (MI.getOpcode()) {
// Watch for Pattern 1 FPop instructions
case SP::LDrr:
case SP::LDri:
case SP::LDFrr:
case SP::LDFri:
case SP::FADDS:
case SP::FSUBS:
case SP::FMULS:
case SP::FDIVS:
case SP::FSQRTS:
case SP::FCMPS:
case SP::FMOVS:
case SP::FNEGS:
case SP::FABSS:
case SP::FITOS:
case SP::FSTOI:
case SP::FITOD:
case SP::FDTOI:
case SP::FDTOS:
if (Pattern1FirstInstruction != NULL) {
FxRegIndex = GetRegIndexForOperand(*Pattern1FirstInstruction, 0);
FyRegIndex = GetRegIndexForOperand(MI, 0);
// Check to see if these registers are part of the same double
// precision
// register pair.
int DoublePrecRegIndexForX = (FxRegIndex - SP::F0) / 2;
int DoublePrecRegIndexForY = (FyRegIndex - SP::F0) / 2;
if (DoublePrecRegIndexForX == DoublePrecRegIndexForY)
StoreInstructionsToCheck = 4;
}
Pattern1FirstInstruction = &MI;
break;
// End of Pattern 1
// Search for Pattern 2
case SP::FADDD:
case SP::FSUBD:
case SP::FMULD:
case SP::FDIVD:
case SP::FSQRTD:
case SP::FCMPD:
Pattern2FirstInstruction = &MI;
Pattern1FirstInstruction = NULL;
break;
case SP::STFrr:
case SP::STFri:
case SP::STDFrr:
case SP::STDFri:
if (Pattern2FirstInstruction != NULL) {
if (GetRegIndexForOperand(MI, LAST_OPERAND) ==
GetRegIndexForOperand(*Pattern2FirstInstruction, 0)) {
// Insert four NOPs
for (unsigned InsertedCount = 0; InsertedCount < 4;
InsertedCount++) {
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
}
Pattern2FirstInstruction = NULL;
}
}
Pattern1FirstInstruction = NULL;
break;
// End of Pattern 2
default:
// Ensure we don't count debug-only values while we're testing for the
// patterns.
if (!MI.isDebugValue())
Pattern1FirstInstruction = NULL;
break;
}
}
}
return Modified;
}