llvm-project/llvm/lib/IR/Function.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1637 lines
56 KiB
C++
Raw Normal View History

//===- Function.cpp - Implement the Global object classes -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
2001-06-07 04:29:01 +08:00
//
// This file implements the Function class for the IR library.
2001-06-07 04:29:01 +08:00
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Function.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/IntrinsicsMips.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsS390.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/IntrinsicsXCore.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
using namespace llvm;
using ProfileCount = Function::ProfileCount;
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<BasicBlock>;
2001-06-07 04:29:01 +08:00
//===----------------------------------------------------------------------===//
// Argument Implementation
//===----------------------------------------------------------------------===//
Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
: Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
setName(Name);
}
void Argument::setParent(Function *parent) {
Parent = parent;
}
bool Argument::hasNonNullAttr() const {
if (!getType()->isPointerTy()) return false;
if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
return true;
else if (getDereferenceableBytes() > 0 &&
!NullPointerIsDefined(getParent(),
getType()->getPointerAddressSpace()))
return true;
return false;
}
bool Argument::hasByValAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::ByVal);
}
bool Argument::hasSwiftSelfAttr() const {
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
}
bool Argument::hasSwiftErrorAttr() const {
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
}
bool Argument::hasInAllocaAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::InAlloca);
}
bool Argument::hasByValOrInAllocaAttr() const {
if (!getType()->isPointerTy()) return false;
AttributeList Attrs = getParent()->getAttributes();
return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
}
unsigned Argument::getParamAlignment() const {
assert(getType()->isPointerTy() && "Only pointers have alignments");
return getParent()->getParamAlignment(getArgNo());
}
MaybeAlign Argument::getParamAlign() const {
assert(getType()->isPointerTy() && "Only pointers have alignments");
return getParent()->getParamAlign(getArgNo());
}
Type *Argument::getParamByValType() const {
assert(getType()->isPointerTy() && "Only pointers have byval types");
return getParent()->getParamByValType(getArgNo());
}
uint64_t Argument::getDereferenceableBytes() const {
assert(getType()->isPointerTy() &&
"Only pointers have dereferenceable bytes");
return getParent()->getParamDereferenceableBytes(getArgNo());
}
uint64_t Argument::getDereferenceableOrNullBytes() const {
assert(getType()->isPointerTy() &&
"Only pointers have dereferenceable bytes");
return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
}
bool Argument::hasNestAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::Nest);
}
bool Argument::hasNoAliasAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::NoAlias);
}
bool Argument::hasNoCaptureAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::NoCapture);
}
bool Argument::hasStructRetAttr() const {
if (!getType()->isPointerTy()) return false;
return hasAttribute(Attribute::StructRet);
}
bool Argument::hasInRegAttr() const {
return hasAttribute(Attribute::InReg);
}
bool Argument::hasReturnedAttr() const {
return hasAttribute(Attribute::Returned);
}
bool Argument::hasZExtAttr() const {
return hasAttribute(Attribute::ZExt);
}
bool Argument::hasSExtAttr() const {
return hasAttribute(Attribute::SExt);
}
bool Argument::onlyReadsMemory() const {
AttributeList Attrs = getParent()->getAttributes();
return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
}
void Argument::addAttrs(AttrBuilder &B) {
AttributeList AL = getParent()->getAttributes();
AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
getParent()->setAttributes(AL);
}
void Argument::addAttr(Attribute::AttrKind Kind) {
getParent()->addParamAttr(getArgNo(), Kind);
}
void Argument::addAttr(Attribute Attr) {
getParent()->addParamAttr(getArgNo(), Attr);
}
void Argument::removeAttr(Attribute::AttrKind Kind) {
getParent()->removeParamAttr(getArgNo(), Kind);
}
bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
return getParent()->hasParamAttribute(getArgNo(), Kind);
}
Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
return getParent()->getParamAttribute(getArgNo(), Kind);
}
//===----------------------------------------------------------------------===//
// Helper Methods in Function
//===----------------------------------------------------------------------===//
LLVMContext &Function::getContext() const {
return getType()->getContext();
}
unsigned Function::getInstructionCount() const {
unsigned NumInstrs = 0;
for (const BasicBlock &BB : BasicBlocks)
NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
BB.instructionsWithoutDebug().end());
return NumInstrs;
}
Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
const Twine &N, Module &M) {
return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
}
void Function::removeFromParent() {
getParent()->getFunctionList().remove(getIterator());
}
void Function::eraseFromParent() {
getParent()->getFunctionList().erase(getIterator());
}
//===----------------------------------------------------------------------===//
// Function Implementation
//===----------------------------------------------------------------------===//
static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
// If AS == -1 and we are passed a valid module pointer we place the function
// in the program address space. Otherwise we default to AS0.
if (AddrSpace == static_cast<unsigned>(-1))
return M ? M->getDataLayout().getProgramAddressSpace() : 0;
return AddrSpace;
}
Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
const Twine &name, Module *ParentModule)
: GlobalObject(Ty, Value::FunctionVal,
OperandTraits<Function>::op_begin(this), 0, Linkage, name,
computeAddrSpace(AddrSpace, ParentModule)),
NumArgs(Ty->getNumParams()) {
assert(FunctionType::isValidReturnType(getReturnType()) &&
"invalid return type");
setGlobalObjectSubClassData(0);
// We only need a symbol table for a function if the context keeps value names
if (!getContext().shouldDiscardValueNames())
SymTab = std::make_unique<ValueSymbolTable>();
// If the function has arguments, mark them as lazily built.
if (Ty->getNumParams())
setValueSubclassData(1); // Set the "has lazy arguments" bit.
if (ParentModule)
ParentModule->getFunctionList().push_back(this);
HasLLVMReservedName = getName().startswith("llvm.");
// Ensure intrinsics have the right parameter attributes.
// Note, the IntID field will have been set in Value::setName if this function
// name is a valid intrinsic ID.
if (IntID)
setAttributes(Intrinsic::getAttributes(getContext(), IntID));
2001-06-07 04:29:01 +08:00
}
Function::~Function() {
dropAllReferences(); // After this it is safe to delete instructions.
2001-06-07 04:29:01 +08:00
// Delete all of the method arguments and unlink from symbol table...
if (Arguments)
clearArguments();
// Remove the function from the on-the-side GC table.
clearGC();
2001-06-07 04:29:01 +08:00
}
void Function::BuildLazyArguments() const {
// Create the arguments vector, all arguments start out unnamed.
auto *FT = getFunctionType();
if (NumArgs > 0) {
Arguments = std::allocator<Argument>().allocate(NumArgs);
for (unsigned i = 0, e = NumArgs; i != e; ++i) {
Type *ArgTy = FT->getParamType(i);
assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
}
}
// Clear the lazy arguments bit.
unsigned SDC = getSubclassDataFromValue();
SDC &= ~(1 << 0);
const_cast<Function*>(this)->setValueSubclassData(SDC);
assert(!hasLazyArguments());
}
static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
return MutableArrayRef<Argument>(Args, Count);
}
void Function::clearArguments() {
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
A.setName("");
A.~Argument();
}
std::allocator<Argument>().deallocate(Arguments, NumArgs);
Arguments = nullptr;
}
void Function::stealArgumentListFrom(Function &Src) {
assert(isDeclaration() && "Expected no references to current arguments");
// Drop the current arguments, if any, and set the lazy argument bit.
if (!hasLazyArguments()) {
assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
[](const Argument &A) { return A.use_empty(); }) &&
"Expected arguments to be unused in declaration");
clearArguments();
setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
}
// Nothing to steal if Src has lazy arguments.
if (Src.hasLazyArguments())
return;
// Steal arguments from Src, and fix the lazy argument bits.
assert(arg_size() == Src.arg_size());
Arguments = Src.Arguments;
Src.Arguments = nullptr;
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
// FIXME: This does the work of transferNodesFromList inefficiently.
SmallString<128> Name;
if (A.hasName())
Name = A.getName();
if (!Name.empty())
A.setName("");
A.setParent(this);
if (!Name.empty())
A.setName(Name);
}
setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
assert(!hasLazyArguments());
Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
}
2001-06-07 04:29:01 +08:00
// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining. This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
2003-10-11 01:54:14 +08:00
// zero. Then everything is deleted for real. Note that no operations are
// valid on an object that has "dropped all references", except operator
2001-06-07 04:29:01 +08:00
// delete.
//
void Function::dropAllReferences() {
setIsMaterializable(false);
for (BasicBlock &BB : *this)
BB.dropAllReferences();
// Delete all basic blocks. They are now unused, except possibly by
// blockaddresses, but BasicBlock's destructor takes care of those.
while (!BasicBlocks.empty())
BasicBlocks.begin()->eraseFromParent();
// Drop uses of any optional data (real or placeholder).
if (getNumOperands()) {
User::dropAllReferences();
setNumHungOffUseOperands(0);
setValueSubclassData(getSubclassDataFromValue() & ~0xe);
}
// Metadata is stored in a side-table.
clearMetadata();
2001-06-07 04:29:01 +08:00
}
void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
AttributeList PAL = getAttributes();
PAL = PAL.addAttribute(getContext(), i, Kind);
setAttributes(PAL);
}
void Function::addAttribute(unsigned i, Attribute Attr) {
AttributeList PAL = getAttributes();
PAL = PAL.addAttribute(getContext(), i, Attr);
setAttributes(PAL);
}
void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
AttributeList PAL = getAttributes();
PAL = PAL.addAttributes(getContext(), i, Attrs);
setAttributes(PAL);
}
void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
AttributeList PAL = getAttributes();
PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
setAttributes(PAL);
}
void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
AttributeList PAL = getAttributes();
PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
setAttributes(PAL);
}
void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
AttributeList PAL = getAttributes();
PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
setAttributes(PAL);
}
void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
AttributeList PAL = getAttributes();
PAL = PAL.removeAttribute(getContext(), i, Kind);
setAttributes(PAL);
}
void Function::removeAttribute(unsigned i, StringRef Kind) {
AttributeList PAL = getAttributes();
PAL = PAL.removeAttribute(getContext(), i, Kind);
setAttributes(PAL);
}
void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
AttributeList PAL = getAttributes();
PAL = PAL.removeAttributes(getContext(), i, Attrs);
setAttributes(PAL);
}
void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
AttributeList PAL = getAttributes();
PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
setAttributes(PAL);
}
void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
AttributeList PAL = getAttributes();
PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
setAttributes(PAL);
}
void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
AttributeList PAL = getAttributes();
PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
setAttributes(PAL);
}
void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
AttributeList PAL = getAttributes();
PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
setAttributes(PAL);
}
void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
AttributeList PAL = getAttributes();
PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
setAttributes(PAL);
}
void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
AttributeList PAL = getAttributes();
PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
setAttributes(PAL);
}
void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
uint64_t Bytes) {
AttributeList PAL = getAttributes();
PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
setAttributes(PAL);
}
const std::string &Function::getGC() const {
assert(hasGC() && "Function has no collector");
return getContext().getGC(*this);
}
void Function::setGC(std::string Str) {
setValueSubclassDataBit(14, !Str.empty());
getContext().setGC(*this, std::move(Str));
}
void Function::clearGC() {
if (!hasGC())
return;
getContext().deleteGC(*this);
setValueSubclassDataBit(14, false);
}
/// Copy all additional attributes (those not needed to create a Function) from
/// the Function Src to this one.
void Function::copyAttributesFrom(const Function *Src) {
GlobalObject::copyAttributesFrom(Src);
setCallingConv(Src->getCallingConv());
setAttributes(Src->getAttributes());
if (Src->hasGC())
setGC(Src->getGC());
else
clearGC();
if (Src->hasPersonalityFn())
setPersonalityFn(Src->getPersonalityFn());
if (Src->hasPrefixData())
setPrefixData(Src->getPrefixData());
if (Src->hasPrologueData())
setPrologueData(Src->getPrologueData());
}
/// Table of string intrinsic names indexed by enum value.
static const char * const IntrinsicNameTable[] = {
"not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_NAME_TABLE
};
/// Table of per-target intrinsic name tables.
#define GET_INTRINSIC_TARGET_DATA
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_TARGET_DATA
/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
/// target as \c Name, or the generic table if \c Name is not target specific.
///
/// Returns the relevant slice of \c IntrinsicNameTable
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
assert(Name.startswith("llvm."));
ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
// Drop "llvm." and take the first dotted component. That will be the target
// if this is target specific.
StringRef Target = Name.drop_front(5).split('.').first;
auto It = partition_point(
Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
// We've either found the target or just fall back to the generic set, which
// is always first.
const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
}
/// This does the actual lookup of an intrinsic ID which
/// matches the given function name.
Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
ArrayRef<const char *> NameTable = findTargetSubtable(Name);
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
if (Idx == -1)
return Intrinsic::not_intrinsic;
// Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
// an index into a sub-table.
int Adjust = NameTable.data() - IntrinsicNameTable;
Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
// If the intrinsic is not overloaded, require an exact match. If it is
// overloaded, require either exact or prefix match.
const auto MatchSize = strlen(NameTable[Idx]);
assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
bool IsExactMatch = Name.size() == MatchSize;
return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
: Intrinsic::not_intrinsic;
}
void Function::recalculateIntrinsicID() {
StringRef Name = getName();
if (!Name.startswith("llvm.")) {
HasLLVMReservedName = false;
IntID = Intrinsic::not_intrinsic;
return;
}
HasLLVMReservedName = true;
IntID = lookupIntrinsicID(Name);
}
/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
/// of named types is simply their name. Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types. A vararg function
/// type will have a suffix of 'vararg'. Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix. This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
///
static std::string getMangledTypeStr(Type* Ty) {
std::string Result;
if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
Result += "p" + utostr(PTyp->getAddressSpace()) +
getMangledTypeStr(PTyp->getElementType());
} else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
Result += "a" + utostr(ATyp->getNumElements()) +
getMangledTypeStr(ATyp->getElementType());
} else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
if (!STyp->isLiteral()) {
Result += "s_";
Result += STyp->getName();
} else {
Result += "sl_";
for (auto Elem : STyp->elements())
Result += getMangledTypeStr(Elem);
}
// Ensure nested structs are distinguishable.
Result += "s";
} else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
Result += "f_" + getMangledTypeStr(FT->getReturnType());
for (size_t i = 0; i < FT->getNumParams(); i++)
Result += getMangledTypeStr(FT->getParamType(i));
if (FT->isVarArg())
Result += "vararg";
// Ensure nested function types are distinguishable.
Result += "f";
} else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
if (VTy->isScalable())
Result += "nx";
Result += "v" + utostr(VTy->getVectorNumElements()) +
getMangledTypeStr(VTy->getVectorElementType());
} else if (Ty) {
switch (Ty->getTypeID()) {
default: llvm_unreachable("Unhandled type");
case Type::VoidTyID: Result += "isVoid"; break;
case Type::MetadataTyID: Result += "Metadata"; break;
case Type::HalfTyID: Result += "f16"; break;
case Type::FloatTyID: Result += "f32"; break;
case Type::DoubleTyID: Result += "f64"; break;
case Type::X86_FP80TyID: Result += "f80"; break;
case Type::FP128TyID: Result += "f128"; break;
case Type::PPC_FP128TyID: Result += "ppcf128"; break;
case Type::X86_MMXTyID: Result += "x86mmx"; break;
case Type::IntegerTyID:
Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
break;
}
}
return Result;
}
StringRef Intrinsic::getName(ID id) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
assert(!Intrinsic::isOverloaded(id) &&
"This version of getName does not support overloading");
return IntrinsicNameTable[id];
}
std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
std::string Result(IntrinsicNameTable[id]);
for (Type *Ty : Tys) {
Result += "." + getMangledTypeStr(Ty);
}
return Result;
}
/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
enum IIT_Info {
// Common values should be encoded with 0-15.
IIT_Done = 0,
IIT_I1 = 1,
IIT_I8 = 2,
IIT_I16 = 3,
IIT_I32 = 4,
IIT_I64 = 5,
IIT_F16 = 6,
IIT_F32 = 7,
IIT_F64 = 8,
IIT_V2 = 9,
IIT_V4 = 10,
IIT_V8 = 11,
IIT_V16 = 12,
IIT_V32 = 13,
IIT_PTR = 14,
IIT_ARG = 15,
// Values from 16+ are only encodable with the inefficient encoding.
IIT_V64 = 16,
IIT_MMX = 17,
IIT_TOKEN = 18,
IIT_METADATA = 19,
IIT_EMPTYSTRUCT = 20,
IIT_STRUCT2 = 21,
IIT_STRUCT3 = 22,
IIT_STRUCT4 = 23,
IIT_STRUCT5 = 24,
IIT_EXTEND_ARG = 25,
IIT_TRUNC_ARG = 26,
IIT_ANYPTR = 27,
IIT_V1 = 28,
IIT_VARARG = 29,
IIT_HALF_VEC_ARG = 30,
IIT_SAME_VEC_WIDTH_ARG = 31,
IIT_PTR_TO_ARG = 32,
IIT_PTR_TO_ELT = 33,
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
IIT_I128 = 35,
IIT_V512 = 36,
IIT_V1024 = 37,
IIT_STRUCT6 = 38,
IIT_STRUCT7 = 39,
IIT_STRUCT8 = 40,
IIT_F128 = 41,
IIT_VEC_ELEMENT = 42,
IIT_SCALABLE_VEC = 43,
IIT_SUBDIVIDE2_ARG = 44,
IIT_SUBDIVIDE4_ARG = 45,
IIT_VEC_OF_BITCASTS_TO_INT = 46
};
static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
using namespace Intrinsic;
IIT_Info Info = IIT_Info(Infos[NextElt++]);
unsigned StructElts = 2;
switch (Info) {
case IIT_Done:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
return;
case IIT_VARARG:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
return;
case IIT_MMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
return;
case IIT_TOKEN:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
return;
case IIT_METADATA:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
return;
case IIT_F16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
return;
case IIT_F32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
return;
case IIT_F64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
return;
case IIT_F128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
return;
case IIT_I1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
return;
case IIT_I8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
return;
case IIT_I16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
return;
case IIT_I32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
return;
case IIT_I64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
return;
case IIT_I128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
return;
case IIT_V1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V2:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V4:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V512:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V1024:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_PTR:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
Infos[NextElt++]));
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
case IIT_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
return;
}
case IIT_EXTEND_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
ArgInfo));
return;
}
case IIT_TRUNC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
ArgInfo));
return;
}
case IIT_HALF_VEC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
ArgInfo));
return;
}
case IIT_SAME_VEC_WIDTH_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
ArgInfo));
return;
}
case IIT_PTR_TO_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
ArgInfo));
return;
}
case IIT_PTR_TO_ELT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
return;
}
case IIT_VEC_OF_ANYPTRS_TO_ELT: {
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
Masked Gather and Scatter Intrinsics. Gather and Scatter are new introduced intrinsics, comming after recently implemented masked load and store. This is the first patch for Gather and Scatter intrinsics. It includes only the syntax, parsing and verification. Gather and Scatter intrinsics allow to perform multiple memory accesses (read/write) in one vector instruction. The intrinsics are not target specific and will have the following syntax: Gather: declare <16 x i32> @llvm.masked.gather.v16i32(<16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x i32> <passthru>) declare <8 x float> @llvm.masked.gather.v8f32(<8 x float*><vector of ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float><passthru>) Scatter: declare void @llvm.masked.scatter.v8i32(<8 x i32><vector value to be stored> , <8 x i32*><vector of ptrs> , i32 <alignment>, <8 x i1> <mask>) declare void @llvm.masked.scatter.v16i32(<16 x i32> <vector value to be stored> , <16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1><mask> ) Vector of ptrs - a set of source/destination addresses, to load/store the value. Mask - switches on/off vector lanes to prevent memory access for switched-off lanes vector of ptrs, value and mask should have the same vector width. These are code examples where gather / scatter should be used and will allow function vectorization ;void foo1(int * restrict A, int * restrict B, int * restrict C) { ; for (int i=0; i<SIZE; i++) { ; A[i] = B[C[i]]; ; } ;} ;void foo3(int * restrict A, int * restrict B) { ; for (int i=0; i<SIZE; i++) { ; A[B[i]] = i+5; ; } ;} Tests will come in the following patches, with CodeGen and Vectorizer. http://reviews.llvm.org/D7433 llvm-svn: 228521
2015-02-08 16:27:19 +08:00
return;
}
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
case IIT_STRUCT2: {
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
for (unsigned i = 0; i != StructElts; ++i)
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
case IIT_SUBDIVIDE2_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
ArgInfo));
return;
}
case IIT_SUBDIVIDE4_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
ArgInfo));
return;
}
case IIT_VEC_ELEMENT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
ArgInfo));
return;
}
case IIT_SCALABLE_VEC: {
OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
0));
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
case IIT_VEC_OF_BITCASTS_TO_INT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
ArgInfo));
return;
}
}
llvm_unreachable("unhandled");
}
#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_GENERATOR_GLOBAL
void Intrinsic::getIntrinsicInfoTableEntries(ID id,
SmallVectorImpl<IITDescriptor> &T){
// Check to see if the intrinsic's type was expressible by the table.
unsigned TableVal = IIT_Table[id-1];
// Decode the TableVal into an array of IITValues.
SmallVector<unsigned char, 8> IITValues;
ArrayRef<unsigned char> IITEntries;
unsigned NextElt = 0;
if ((TableVal >> 31) != 0) {
// This is an offset into the IIT_LongEncodingTable.
IITEntries = IIT_LongEncodingTable;
// Strip sentinel bit.
NextElt = (TableVal << 1) >> 1;
} else {
// Decode the TableVal into an array of IITValues. If the entry was encoded
// into a single word in the table itself, decode it now.
do {
IITValues.push_back(TableVal & 0xF);
TableVal >>= 4;
} while (TableVal);
IITEntries = IITValues;
NextElt = 0;
}
// Okay, decode the table into the output vector of IITDescriptors.
DecodeIITType(NextElt, IITEntries, T);
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
DecodeIITType(NextElt, IITEntries, T);
}
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
ArrayRef<Type*> Tys, LLVMContext &Context) {
using namespace Intrinsic;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return Type::getVoidTy(Context);
case IITDescriptor::VarArg: return Type::getVoidTy(Context);
case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
case IITDescriptor::Token: return Type::getTokenTy(Context);
case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
case IITDescriptor::Half: return Type::getHalfTy(Context);
case IITDescriptor::Float: return Type::getFloatTy(Context);
case IITDescriptor::Double: return Type::getDoubleTy(Context);
case IITDescriptor::Quad: return Type::getFP128Ty(Context);
case IITDescriptor::Integer:
return IntegerType::get(Context, D.Integer_Width);
case IITDescriptor::Vector:
return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
case IITDescriptor::Pointer:
return PointerType::get(DecodeFixedType(Infos, Tys, Context),
D.Pointer_AddressSpace);
case IITDescriptor::Struct: {
SmallVector<Type *, 8> Elts;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
Elts.push_back(DecodeFixedType(Infos, Tys, Context));
return StructType::get(Context, Elts);
}
case IITDescriptor::Argument:
return Tys[D.getArgumentNumber()];
case IITDescriptor::ExtendArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getExtendedElementVectorType(VTy);
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
}
case IITDescriptor::TruncArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getTruncatedElementVectorType(VTy);
IntegerType *ITy = cast<IntegerType>(Ty);
assert(ITy->getBitWidth() % 2 == 0);
return IntegerType::get(Context, ITy->getBitWidth() / 2);
}
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
assert(VTy && "Expected an argument of Vector Type");
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
return VectorType::getSubdividedVectorType(VTy, SubDivs);
}
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(cast<VectorType>(
Tys[D.getArgumentNumber()]));
case IITDescriptor::SameVecWidthArgument: {
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
Type *Ty = Tys[D.getArgumentNumber()];
if (auto *VTy = dyn_cast<VectorType>(Ty))
return VectorType::get(EltTy, VTy->getElementCount());
return EltTy;
}
case IITDescriptor::PtrToArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
return PointerType::getUnqual(Ty);
}
case IITDescriptor::PtrToElt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy)
llvm_unreachable("Expected an argument of Vector Type");
Type *EltTy = VTy->getVectorElementType();
return PointerType::getUnqual(EltTy);
}
case IITDescriptor::VecElementArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VTy->getElementType();
llvm_unreachable("Expected an argument of Vector Type");
}
case IITDescriptor::VecOfBitcastsToInt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
assert(VTy && "Expected an argument of Vector Type");
return VectorType::getInteger(VTy);
}
case IITDescriptor::VecOfAnyPtrsToElt:
// Return the overloaded type (which determines the pointers address space)
return Tys[D.getOverloadArgNumber()];
case IITDescriptor::ScalableVecArgument: {
Type *Ty = DecodeFixedType(Infos, Tys, Context);
return VectorType::get(Ty->getVectorElementType(),
{ Ty->getVectorNumElements(), true });
}
}
llvm_unreachable("unhandled");
}
FunctionType *Intrinsic::getType(LLVMContext &Context,
ID id, ArrayRef<Type*> Tys) {
SmallVector<IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(id, Table);
ArrayRef<IITDescriptor> TableRef = Table;
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
SmallVector<Type*, 8> ArgTys;
while (!TableRef.empty())
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
// DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
// If we see void type as the type of the last argument, it is vararg intrinsic
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
ArgTys.pop_back();
return FunctionType::get(ResultTy, ArgTys, true);
}
return FunctionType::get(ResultTy, ArgTys, false);
}
bool Intrinsic::isOverloaded(ID id) {
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}
bool Intrinsic::isLeaf(ID id) {
switch (id) {
default:
return true;
case Intrinsic::experimental_gc_statepoint:
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
return false;
}
}
/// This defines the "Intrinsic::getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_ATTRIBUTES
Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
// There can never be multiple globals with the same name of different types,
// because intrinsics must be a specific type.
[opaque pointer types] Add a FunctionCallee wrapper type, and use it. Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc doesn't choke on it, hopefully. Original Message: The FunctionCallee type is effectively a {FunctionType*,Value*} pair, and is a useful convenience to enable code to continue passing the result of getOrInsertFunction() through to EmitCall, even once pointer types lose their pointee-type. Then: - update the CallInst/InvokeInst instruction creation functions to take a Callee, - modify getOrInsertFunction to return FunctionCallee, and - update all callers appropriately. One area of particular note is the change to the sanitizer code. Previously, they had been casting the result of `getOrInsertFunction` to a `Function*` via `checkSanitizerInterfaceFunction`, and storing that. That would report an error if someone had already inserted a function declaraction with a mismatching signature. However, in general, LLVM allows for such mismatches, as `getOrInsertFunction` will automatically insert a bitcast if needed. As part of this cleanup, cause the sanitizer code to do the same. (It will call its functions using the expected signature, however they may have been declared.) Finally, in a small number of locations, callers of `getOrInsertFunction` actually were expecting/requiring that a brand new function was being created. In such cases, I've switched them to Function::Create instead. Differential Revision: https://reviews.llvm.org/D57315 llvm-svn: 352827
2019-02-01 10:28:03 +08:00
return cast<Function>(
M->getOrInsertFunction(getName(id, Tys),
getType(M->getContext(), id, Tys))
.getCallee());
}
// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
using DeferredIntrinsicMatchPair =
std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
static bool matchIntrinsicType(
Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys,
SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
bool IsDeferredCheck) {
using namespace Intrinsic;
// If we ran out of descriptors, there are too many arguments.
if (Infos.empty()) return true;
// Do this before slicing off the 'front' part
auto InfosRef = Infos;
auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
DeferredChecks.emplace_back(T, InfosRef);
return false;
};
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return !Ty->isVoidTy();
case IITDescriptor::VarArg: return true;
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
case IITDescriptor::Token: return !Ty->isTokenTy();
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
case IITDescriptor::Half: return !Ty->isHalfTy();
case IITDescriptor::Float: return !Ty->isFloatTy();
case IITDescriptor::Double: return !Ty->isDoubleTy();
case IITDescriptor::Quad: return !Ty->isFP128Ty();
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
case IITDescriptor::Vector: {
VectorType *VT = dyn_cast<VectorType>(Ty);
return !VT || VT->getNumElements() != D.Vector_Width ||
matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
DeferredChecks, IsDeferredCheck);
}
case IITDescriptor::Pointer: {
PointerType *PT = dyn_cast<PointerType>(Ty);
return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
DeferredChecks, IsDeferredCheck);
}
case IITDescriptor::Struct: {
StructType *ST = dyn_cast<StructType>(Ty);
if (!ST || ST->getNumElements() != D.Struct_NumElements)
return true;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
DeferredChecks, IsDeferredCheck))
return true;
return false;
}
case IITDescriptor::Argument:
// If this is the second occurrence of an argument,
// verify that the later instance matches the previous instance.
if (D.getArgumentNumber() < ArgTys.size())
return Ty != ArgTys[D.getArgumentNumber()];
if (D.getArgumentNumber() > ArgTys.size() ||
D.getArgumentKind() == IITDescriptor::AK_MatchType)
return IsDeferredCheck || DeferCheck(Ty);
assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
"Table consistency error");
ArgTys.push_back(Ty);
switch (D.getArgumentKind()) {
case IITDescriptor::AK_Any: return false; // Success
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
default: break;
}
llvm_unreachable("all argument kinds not covered");
case IITDescriptor::ExtendArgument: {
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getExtendedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
else
return true;
return Ty != NewTy;
}
case IITDescriptor::TruncArgument: {
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getTruncatedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
else
return true;
return Ty != NewTy;
}
case IITDescriptor::HalfVecArgument:
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
case IITDescriptor::SameVecWidthArgument: {
if (D.getArgumentNumber() >= ArgTys.size()) {
// Defer check and subsequent check for the vector element type.
Infos = Infos.slice(1);
return IsDeferredCheck || DeferCheck(Ty);
}
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
auto *ThisArgType = dyn_cast<VectorType>(Ty);
// Both must be vectors of the same number of elements or neither.
if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
return true;
Type *EltTy = Ty;
if (ThisArgType) {
if (ReferenceType->getElementCount() !=
ThisArgType->getElementCount())
return true;
EltTy = ThisArgType->getVectorElementType();
}
return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
IsDeferredCheck);
}
case IITDescriptor::PtrToArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type * ReferenceType = ArgTys[D.getArgumentNumber()];
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
}
case IITDescriptor::PtrToElt: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
VectorType * ReferenceType =
dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
return (!ThisArgType || !ReferenceType ||
ThisArgType->getElementType() != ReferenceType->getElementType());
}
case IITDescriptor::VecOfAnyPtrsToElt: {
unsigned RefArgNumber = D.getRefArgNumber();
if (RefArgNumber >= ArgTys.size()) {
if (IsDeferredCheck)
return true;
// If forward referencing, already add the pointer-vector type and
// defer the checks for later.
ArgTys.push_back(Ty);
return DeferCheck(Ty);
}
if (!IsDeferredCheck){
assert(D.getOverloadArgNumber() == ArgTys.size() &&
"Table consistency error");
ArgTys.push_back(Ty);
}
// Verify the overloaded type "matches" the Ref type.
// i.e. Ty is a vector with the same width as Ref.
// Composed of pointers to the same element type as Ref.
VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType ||
(ReferenceType->getVectorNumElements() !=
ThisArgVecTy->getVectorNumElements()))
return true;
PointerType *ThisArgEltTy =
dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
if (!ThisArgEltTy)
return true;
return ThisArgEltTy->getElementType() !=
ReferenceType->getVectorElementType();
}
case IITDescriptor::VecElementArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck ? true : DeferCheck(Ty);
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
return !ReferenceType || Ty != ReferenceType->getElementType();
}
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument: {
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
return Ty != NewTy;
}
return true;
}
case IITDescriptor::ScalableVecArgument: {
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy || !VTy->isScalable())
return true;
return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
IsDeferredCheck);
}
case IITDescriptor::VecOfBitcastsToInt: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType)
return true;
return ThisArgVecTy != VectorType::getInteger(ReferenceType);
}
}
llvm_unreachable("unhandled");
}
Intrinsic::MatchIntrinsicTypesResult
Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys) {
SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
false))
return MatchIntrinsicTypes_NoMatchRet;
unsigned NumDeferredReturnChecks = DeferredChecks.size();
for (auto Ty : FTy->params())
if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
return MatchIntrinsicTypes_NoMatchArg;
for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
true))
return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
: MatchIntrinsicTypes_NoMatchArg;
}
return MatchIntrinsicTypes_Match;
}
bool
Intrinsic::matchIntrinsicVarArg(bool isVarArg,
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
// If there are no descriptors left, then it can't be a vararg.
if (Infos.empty())
return isVarArg;
// There should be only one descriptor remaining at this point.
if (Infos.size() != 1)
return true;
// Check and verify the descriptor.
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
if (D.Kind == IITDescriptor::VarArg)
return !isVarArg;
return true;
}
Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
Intrinsic::ID ID = F->getIntrinsicID();
if (!ID)
return None;
FunctionType *FTy = F->getFunctionType();
// Accumulate an array of overloaded types for the given intrinsic
SmallVector<Type *, 4> ArgTys;
{
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
return None;
if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
return None;
}
StringRef Name = F->getName();
if (Name == Intrinsic::getName(ID, ArgTys))
return None;
auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
NewDecl->setCallingConv(F->getCallingConv());
assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
return NewDecl;
}
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it.
bool Function::hasAddressTaken(const User* *PutOffender) const {
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
for (const Use &U : uses()) {
const User *FU = U.getUser();
if (isa<BlockAddress>(FU))
continue;
const auto *Call = dyn_cast<CallBase>(FU);
if (!Call) {
if (PutOffender)
*PutOffender = FU;
return true;
}
if (!Call->isCallee(&U)) {
if (PutOffender)
*PutOffender = FU;
return true;
}
}
return false;
}
bool Function::isDefTriviallyDead() const {
// Check the linkage
if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
!hasAvailableExternallyLinkage())
return false;
// Check if the function is used by anything other than a blockaddress.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
for (const User *U : users())
if (!isa<BlockAddress>(U))
return false;
return true;
}
/// callsFunctionThatReturnsTwice - Return true if the function has a call to
/// setjmp or other function that gcc recognizes as "returning twice".
bool Function::callsFunctionThatReturnsTwice() const {
for (const Instruction &I : instructions(this))
if (const auto *Call = dyn_cast<CallBase>(&I))
if (Call->hasFnAttr(Attribute::ReturnsTwice))
return true;
return false;
}
Constant *Function::getPersonalityFn() const {
assert(hasPersonalityFn() && getNumOperands());
return cast<Constant>(Op<0>());
}
void Function::setPersonalityFn(Constant *Fn) {
setHungoffOperand<0>(Fn);
setValueSubclassDataBit(3, Fn != nullptr);
}
Constant *Function::getPrefixData() const {
assert(hasPrefixData() && getNumOperands());
return cast<Constant>(Op<1>());
}
void Function::setPrefixData(Constant *PrefixData) {
setHungoffOperand<1>(PrefixData);
setValueSubclassDataBit(1, PrefixData != nullptr);
}
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
Constant *Function::getPrologueData() const {
assert(hasPrologueData() && getNumOperands());
return cast<Constant>(Op<2>());
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
}
void Function::setPrologueData(Constant *PrologueData) {
setHungoffOperand<2>(PrologueData);
setValueSubclassDataBit(2, PrologueData != nullptr);
}
void Function::allocHungoffUselist() {
// If we've already allocated a uselist, stop here.
if (getNumOperands())
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
return;
allocHungoffUses(3, /*IsPhi=*/ false);
setNumHungOffUseOperands(3);
// Initialize the uselist with placeholder operands to allow traversal.
auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
Op<0>().set(CPN);
Op<1>().set(CPN);
Op<2>().set(CPN);
}
template <int Idx>
void Function::setHungoffOperand(Constant *C) {
if (C) {
allocHungoffUselist();
Op<Idx>().set(C);
} else if (getNumOperands()) {
Op<Idx>().set(
ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
}
}
void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
assert(Bit < 16 && "SubclassData contains only 16 bits");
if (On)
setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
else
setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
}
void Function::setEntryCount(ProfileCount Count,
const DenseSet<GlobalValue::GUID> *S) {
assert(Count.hasValue());
#if !defined(NDEBUG)
auto PrevCount = getEntryCount();
assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
#endif
auto ImportGUIDs = getImportGUIDs();
if (S == nullptr && ImportGUIDs.size())
S = &ImportGUIDs;
MDBuilder MDB(getContext());
setMetadata(
LLVMContext::MD_prof,
MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
}
void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
const DenseSet<GlobalValue::GUID> *Imports) {
setEntryCount(ProfileCount(Count, Type), Imports);
}
ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
MDNode *MD = getMetadata(LLVMContext::MD_prof);
if (MD && MD->getOperand(0))
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
if (MDS->getString().equals("function_entry_count")) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
uint64_t Count = CI->getValue().getZExtValue();
// A value of -1 is used for SamplePGO when there were no samples.
// Treat this the same as unknown.
if (Count == (uint64_t)-1)
return ProfileCount::getInvalid();
return ProfileCount(Count, PCT_Real);
} else if (AllowSynthetic &&
MDS->getString().equals("synthetic_function_entry_count")) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
uint64_t Count = CI->getValue().getZExtValue();
return ProfileCount(Count, PCT_Synthetic);
}
}
return ProfileCount::getInvalid();
}
DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
DenseSet<GlobalValue::GUID> R;
if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
if (MDS->getString().equals("function_entry_count"))
for (unsigned i = 2; i < MD->getNumOperands(); i++)
R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
->getValue()
.getZExtValue());
return R;
}
void Function::setSectionPrefix(StringRef Prefix) {
MDBuilder MDB(getContext());
setMetadata(LLVMContext::MD_section_prefix,
MDB.createFunctionSectionPrefix(Prefix));
}
Optional<StringRef> Function::getSectionPrefix() const {
if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
assert(cast<MDString>(MD->getOperand(0))
->getString()
.equals("function_section_prefix") &&
"Metadata not match");
return cast<MDString>(MD->getOperand(1))->getString();
}
return None;
}
bool Function::nullPointerIsDefined() const {
return getFnAttribute("null-pointer-is-valid")
.getValueAsString()
.equals("true");
}
bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
if (F && F->nullPointerIsDefined())
return true;
if (AS != 0)
return true;
return false;
}