llvm-project/llvm/lib/Target/X86/X86AsmPrinter.cpp

444 lines
15 KiB
C++
Raw Normal View History

//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to Intel assembly -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to Intel-format assembly language. This
// printer is the output mechanism used by `llc' and `lli -print-machineinstrs'
// on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "Support/Statistic.h"
#include "Support/StringExtras.h"
#include "Support/CommandLine.h"
using namespace llvm;
namespace {
Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
struct GasBugWorkaroundEmitter : public MachineCodeEmitter {
GasBugWorkaroundEmitter(std::ostream& o)
: O(o), OldFlags(O.flags()), firstByte(true) {
O << std::hex;
}
~GasBugWorkaroundEmitter() {
O.flags(OldFlags);
}
virtual void emitByte(unsigned char B) {
if (!firstByte) O << "\n\t";
firstByte = false;
O << ".byte 0x" << (unsigned) B;
}
// These should never be called
virtual void emitWord(unsigned W) { assert(0); }
virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); }
virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); }
virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); }
virtual uint64_t getCurrentPCValue() { abort(); }
virtual uint64_t forceCompilationOf(Function *F) { abort(); }
private:
std::ostream& O;
std::ios::fmtflags OldFlags;
bool firstByte;
};
struct X86AsmPrinter : public AsmPrinter {
X86AsmPrinter(std::ostream &O, TargetMachine &TM) : AsmPrinter(O, TM) { }
2002-12-16 05:13:40 +08:00
virtual const char *getPassName() const {
return "X86 Assembly Printer";
}
/// printInstruction - This method is automatically generated by tablegen
/// from the instruction set description. This method returns true if the
/// machine instruction was sufficiently described to print it, otherwise it
/// returns false.
bool printInstruction(const MachineInstr *MI);
// This method is used by the tablegen'erated instruction printer.
void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.getType() == MachineOperand::MO_MachineRegister) {
assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??");
// Bug Workaround: See note in Printer::doInitialization about %.
O << "%" << TM.getRegisterInfo()->get(MO.getReg()).Name;
} else {
printOp(MO);
}
}
void printCallOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
printOp(MI->getOperand(OpNo), true); // Don't print "OFFSET".
}
void printMemoryOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
switch (VT) {
default: assert(0 && "Unknown arg size!");
case MVT::i8: O << "BYTE PTR "; break;
case MVT::i16: O << "WORD PTR "; break;
case MVT::i32:
case MVT::f32: O << "DWORD PTR "; break;
case MVT::i64:
case MVT::f64: O << "QWORD PTR "; break;
case MVT::f80: O << "XWORD PTR "; break;
}
printMemReference(MI, OpNo);
}
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
void printMemReference(const MachineInstr *MI, unsigned Op);
void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
2003-06-27 08:00:48 +08:00
} // end of anonymous namespace
/// createX86CodePrinterPass - Returns a pass that prints the X86
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form.
///
FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
return new X86AsmPrinter(o, tm);
}
// Include the auto-generated portion of the assembly writer.
#include "X86GenAsmWriter.inc"
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void X86AsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.section .rodata\n";
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
<< "\n";
2003-06-27 08:00:48 +08:00
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
setupMachineFunction(MF);
O << "\n\n";
2003-06-27 08:00:48 +08:00
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out labels for the function.
O << "\t.text\n";
O << "\t.align 16\n";
2003-06-27 08:00:48 +08:00
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.type\t" << CurrentFnName << ", @function\n";
2003-06-27 08:00:48 +08:00
O << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
<< I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
// We didn't modify anything.
return false;
}
static bool isScale(const MachineOperand &MO) {
return MO.isImmediate() &&
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}
static bool isMem(const MachineInstr *MI, unsigned Op) {
if (MI->getOperand(Op).isFrameIndex()) return true;
if (MI->getOperand(Op).isConstantPoolIndex()) return true;
return Op+4 <= MI->getNumOperands() &&
MI->getOperand(Op ).isRegister() && isScale(MI->getOperand(Op+1)) &&
MI->getOperand(Op+2).isRegister() && MI->getOperand(Op+3).isImmediate();
}
void X86AsmPrinter::printOp(const MachineOperand &MO,
bool elideOffsetKeyword /* = false */) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) {
O << "<" << V->getName() << ">";
return;
}
// FALLTHROUGH
case MachineOperand::MO_MachineRegister:
if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
// Bug Workaround: See note in Printer::doInitialization about %.
O << "%" << RI.get(MO.getReg()).Name;
else
O << "%reg" << MO.getReg();
return;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
O << (int)MO.getImmedValue();
return;
case MachineOperand::MO_MachineBasicBlock: {
MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
<< "_" << MBBOp->getNumber () << "\t# "
<< MBBOp->getBasicBlock ()->getName ();
2002-12-02 07:25:59 +08:00
return;
}
case MachineOperand::MO_PCRelativeDisp:
std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs";
abort ();
return;
case MachineOperand::MO_GlobalAddress:
if (!elideOffsetKeyword)
O << "OFFSET ";
O << Mang->getValueName(MO.getGlobal());
return;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
return;
default:
O << "<unknown operand type>"; return;
}
}
void X86AsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op) {
assert(isMem(MI, Op) && "Invalid memory reference!");
if (MI->getOperand(Op).isFrameIndex()) {
O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
if (MI->getOperand(Op+3).getImmedValue())
O << " + " << MI->getOperand(Op+3).getImmedValue();
O << "]";
return;
} else if (MI->getOperand(Op).isConstantPoolIndex()) {
2003-06-27 08:00:48 +08:00
O << "[.CPI" << CurrentFnName << "_"
<< MI->getOperand(Op).getConstantPoolIndex();
if (MI->getOperand(Op+3).getImmedValue())
O << " + " << MI->getOperand(Op+3).getImmedValue();
O << "]";
return;
}
const MachineOperand &BaseReg = MI->getOperand(Op);
int ScaleVal = MI->getOperand(Op+1).getImmedValue();
const MachineOperand &IndexReg = MI->getOperand(Op+2);
int DispVal = MI->getOperand(Op+3).getImmedValue();
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(BaseReg);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << "*";
printOp(IndexReg);
NeedPlus = true;
}
if (DispVal) {
if (NeedPlus)
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
O << DispVal;
}
O << "]";
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in Intel syntax to the current output stream.
2003-06-27 08:00:48 +08:00
///
void X86AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
2004-08-11 14:09:55 +08:00
// gas bugs:
//
// The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" is misassembled
// by gas in intel_syntax mode as its 32-bit equivalent "fstp DWORD PTR
// [...]". Workaround: Output the raw opcode bytes instead of the instruction.
//
// The 80-bit FP load instruction "fld XWORD PTR [...]" is misassembled by gas
// in intel_syntax mode as its 32-bit equivalent "fld DWORD PTR
// [...]". Workaround: Output the raw opcode bytes instead of the instruction.
//
// gas intel_syntax mode treats "fild QWORD PTR [...]" as an invalid opcode,
// saying "64 bit operations are only supported in 64 bit modes." libopcodes
// disassembles it as "fild DWORD PTR [...]", which is wrong. Workaround:
// Output the raw opcode bytes instead of the instruction.
//
// gas intel_syntax mode treats "fistp QWORD PTR [...]" as an invalid opcode,
// saying "64 bit operations are only supported in 64 bit modes." libopcodes
// disassembles it as "fistpll DWORD PTR [...]", which is wrong. Workaround:
// Output the raw opcode bytes instead of the instruction.
switch (MI->getOpcode()) {
case X86::FSTP80m:
case X86::FLD80m:
case X86::FILD64m:
case X86::FISTP64m:
GasBugWorkaroundEmitter gwe(O);
X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI);
O << "\t# ";
}
// Call the autogenerated instruction printer routines.
bool Handled = printInstruction(MI);
if (!Handled) {
MI->dump();
assert(0 && "Do not know how to print this instruction!");
abort();
}
}
bool X86AsmPrinter::doInitialization(Module &M) {
AsmPrinter::doInitialization(M);
// Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
//
// Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
// instruction as a reference to the register named sp, and if you try to
// reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
// before being looked up in the symbol table. This creates spurious
// `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
// mode, and decorate all register names with percent signs.
O << "\t.intel_syntax\n";
return false;
}
// SwitchSection - Switch to the specified section of the executable if we are
// not already in it!
//
static void SwitchSection(std::ostream &OS, std::string &CurSection,
const char *NewSection) {
if (CurSection != NewSection) {
CurSection = NewSection;
if (!CurSection.empty())
OS << "\t" << NewSection << "\n";
}
}
bool X86AsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData();
std::string CurSection;
// Print out module-level global variables here.
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
if (I->hasInitializer()) { // External global require no code
O << "\n\n";
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Size = TD.getTypeSize(C->getType());
unsigned Align = TD.getTypeAlignment(C->getType());
if (C->isNullValue() &&
(I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
I->hasWeakLinkage() /* FIXME: Verify correct */)) {
SwitchSection(O, CurSection, ".data");
if (I->hasInternalLinkage())
O << "\t.local " << name << "\n";
O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
<< "," << (unsigned)TD.getTypeAlignment(C->getType());
O << "\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
} else {
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
// Nonnull linkonce -> weak
O << "\t.weak " << name << "\n";
SwitchSection(O, CurSection, "");
O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
if (C->isNullValue())
SwitchSection(O, CurSection, ".bss");
else
SwitchSection(O, CurSection, ".data");
break;
}
O << "\t.align " << Align << "\n";
O << "\t.type " << name << ",@object\n";
O << "\t.size " << name << "," << Size << "\n";
O << name << ":\t\t\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << " = ";
WriteAsOperand(O, C, false, false, &M);
O << "\n";
emitGlobalConstant(C);
}
}
AsmPrinter::doFinalization(M);
return false; // success
}