llvm-project/lldb/source/Target/Target.cpp

4137 lines
152 KiB
C++
Raw Normal View History

//===-- Target.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <mutex>
// Other libraries and framework includes
// Project includes
#include "Plugins/ExpressionParser/Clang/ClangASTSource.h"
#include "Plugins/ExpressionParser/Clang/ClangModulesDeclVendor.h"
#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
#include "lldb/Breakpoint/BreakpointIDList.h"
#include "lldb/Breakpoint/BreakpointResolver.h"
#include "lldb/Breakpoint/BreakpointResolverAddress.h"
#include "lldb/Breakpoint/BreakpointResolverFileLine.h"
#include "lldb/Breakpoint/BreakpointResolverFileRegex.h"
#include "lldb/Breakpoint/BreakpointResolverName.h"
#include "lldb/Breakpoint/Watchpoint.h"
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Event.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/SourceManager.h"
#include "lldb/Core/State.h"
#include "lldb/Core/StreamFile.h"
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
#include "lldb/Core/ValueObject.h"
#include "lldb/Expression/REPL.h"
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
#include "lldb/Expression/UserExpression.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/PosixApi.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/OptionGroupWatchpoint.h"
#include "lldb/Interpreter/OptionValues.h"
#include "lldb/Interpreter/Property.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
#include "lldb/Target/Language.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/SystemRuntime.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadSpec.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
using namespace lldb;
using namespace lldb_private;
constexpr std::chrono::milliseconds EvaluateExpressionOptions::default_timeout;
ConstString &Target::GetStaticBroadcasterClass() {
static ConstString class_name("lldb.target");
return class_name;
}
Target::Target(Debugger &debugger, const ArchSpec &target_arch,
const lldb::PlatformSP &platform_sp, bool is_dummy_target)
: TargetProperties(this),
Broadcaster(debugger.GetBroadcasterManager(),
Target::GetStaticBroadcasterClass().AsCString()),
ExecutionContextScope(), m_debugger(debugger), m_platform_sp(platform_sp),
m_mutex(), m_arch(target_arch), m_images(this), m_section_load_history(),
m_breakpoint_list(false), m_internal_breakpoint_list(true),
m_watchpoint_list(), m_process_sp(), m_search_filter_sp(),
m_image_search_paths(ImageSearchPathsChanged, this), m_ast_importer_sp(),
m_source_manager_ap(), m_stop_hooks(), m_stop_hook_next_id(0),
m_valid(true), m_suppress_stop_hooks(false),
m_is_dummy_target(is_dummy_target)
{
SetEventName(eBroadcastBitBreakpointChanged, "breakpoint-changed");
SetEventName(eBroadcastBitModulesLoaded, "modules-loaded");
SetEventName(eBroadcastBitModulesUnloaded, "modules-unloaded");
SetEventName(eBroadcastBitWatchpointChanged, "watchpoint-changed");
SetEventName(eBroadcastBitSymbolsLoaded, "symbols-loaded");
CheckInWithManager();
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
if (log)
log->Printf("%p Target::Target()", static_cast<void *>(this));
if (m_arch.IsValid()) {
LogIfAnyCategoriesSet(
LIBLLDB_LOG_TARGET, "Target::Target created with architecture %s (%s)",
m_arch.GetArchitectureName(), m_arch.GetTriple().getTriple().c_str());
}
}
Target::~Target() {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
if (log)
log->Printf("%p Target::~Target()", static_cast<void *>(this));
DeleteCurrentProcess();
}
void Target::PrimeFromDummyTarget(Target *target) {
if (!target)
return;
m_stop_hooks = target->m_stop_hooks;
for (BreakpointSP breakpoint_sp : target->m_breakpoint_list.Breakpoints()) {
if (breakpoint_sp->IsInternal())
continue;
BreakpointSP new_bp(new Breakpoint(*this, *breakpoint_sp.get()));
AddBreakpoint(new_bp, false);
}
}
void Target::Dump(Stream *s, lldb::DescriptionLevel description_level) {
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
if (description_level != lldb::eDescriptionLevelBrief) {
s->Indent();
s->PutCString("Target\n");
s->IndentMore();
m_images.Dump(s);
m_breakpoint_list.Dump(s);
m_internal_breakpoint_list.Dump(s);
s->IndentLess();
} else {
Module *exe_module = GetExecutableModulePointer();
if (exe_module)
s->PutCString(exe_module->GetFileSpec().GetFilename().GetCString());
else
s->PutCString("No executable module.");
}
}
void Target::CleanupProcess() {
// Do any cleanup of the target we need to do between process instances.
// NB It is better to do this before destroying the process in case the
// clean up needs some help from the process.
m_breakpoint_list.ClearAllBreakpointSites();
m_internal_breakpoint_list.ClearAllBreakpointSites();
// Disable watchpoints just on the debugger side.
std::unique_lock<std::recursive_mutex> lock;
this->GetWatchpointList().GetListMutex(lock);
DisableAllWatchpoints(false);
ClearAllWatchpointHitCounts();
ClearAllWatchpointHistoricValues();
}
void Target::DeleteCurrentProcess() {
if (m_process_sp) {
m_section_load_history.Clear();
if (m_process_sp->IsAlive())
m_process_sp->Destroy(false);
m_process_sp->Finalize();
CleanupProcess();
m_process_sp.reset();
}
}
const lldb::ProcessSP &Target::CreateProcess(ListenerSP listener_sp,
llvm::StringRef plugin_name,
const FileSpec *crash_file) {
DeleteCurrentProcess();
m_process_sp = Process::FindPlugin(shared_from_this(), plugin_name,
listener_sp, crash_file);
return m_process_sp;
}
const lldb::ProcessSP &Target::GetProcessSP() const { return m_process_sp; }
lldb::REPLSP Target::GetREPL(Status &err, lldb::LanguageType language,
const char *repl_options, bool can_create) {
if (language == eLanguageTypeUnknown) {
std::set<LanguageType> repl_languages;
Language::GetLanguagesSupportingREPLs(repl_languages);
if (repl_languages.size() == 1) {
language = *repl_languages.begin();
} else if (repl_languages.size() == 0) {
err.SetErrorStringWithFormat(
"LLDB isn't configured with REPL support for any languages.");
return REPLSP();
} else {
err.SetErrorStringWithFormat(
"Multiple possible REPL languages. Please specify a language.");
return REPLSP();
}
}
REPLMap::iterator pos = m_repl_map.find(language);
if (pos != m_repl_map.end()) {
return pos->second;
}
if (!can_create) {
err.SetErrorStringWithFormat(
"Couldn't find an existing REPL for %s, and can't create a new one",
Language::GetNameForLanguageType(language));
return lldb::REPLSP();
}
Debugger *const debugger = nullptr;
lldb::REPLSP ret = REPL::Create(err, language, debugger, this, repl_options);
if (ret) {
m_repl_map[language] = ret;
return m_repl_map[language];
}
if (err.Success()) {
err.SetErrorStringWithFormat("Couldn't create a REPL for %s",
Language::GetNameForLanguageType(language));
}
return lldb::REPLSP();
}
void Target::SetREPL(lldb::LanguageType language, lldb::REPLSP repl_sp) {
lldbassert(!m_repl_map.count(language));
m_repl_map[language] = repl_sp;
}
void Target::Destroy() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
m_valid = false;
DeleteCurrentProcess();
m_platform_sp.reset();
m_arch.Clear();
ClearModules(true);
m_section_load_history.Clear();
const bool notify = false;
m_breakpoint_list.RemoveAll(notify);
m_internal_breakpoint_list.RemoveAll(notify);
m_last_created_breakpoint.reset();
m_last_created_watchpoint.reset();
m_search_filter_sp.reset();
m_image_search_paths.Clear(notify);
m_stop_hooks.clear();
m_stop_hook_next_id = 0;
m_suppress_stop_hooks = false;
}
BreakpointList &Target::GetBreakpointList(bool internal) {
if (internal)
return m_internal_breakpoint_list;
else
return m_breakpoint_list;
}
const BreakpointList &Target::GetBreakpointList(bool internal) const {
if (internal)
return m_internal_breakpoint_list;
else
return m_breakpoint_list;
}
BreakpointSP Target::GetBreakpointByID(break_id_t break_id) {
BreakpointSP bp_sp;
if (LLDB_BREAK_ID_IS_INTERNAL(break_id))
bp_sp = m_internal_breakpoint_list.FindBreakpointByID(break_id);
else
bp_sp = m_breakpoint_list.FindBreakpointByID(break_id);
return bp_sp;
}
BreakpointSP Target::CreateSourceRegexBreakpoint(
const FileSpecList *containingModules,
const FileSpecList *source_file_spec_list,
const std::unordered_set<std::string> &function_names,
RegularExpression &source_regex, bool internal, bool hardware,
LazyBool move_to_nearest_code) {
SearchFilterSP filter_sp(GetSearchFilterForModuleAndCUList(
containingModules, source_file_spec_list));
if (move_to_nearest_code == eLazyBoolCalculate)
move_to_nearest_code = GetMoveToNearestCode() ? eLazyBoolYes : eLazyBoolNo;
BreakpointResolverSP resolver_sp(new BreakpointResolverFileRegex(
nullptr, source_regex, function_names,
!static_cast<bool>(move_to_nearest_code)));
return CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, true);
}
BreakpointSP Target::CreateBreakpoint(const FileSpecList *containingModules,
const FileSpec &file, uint32_t line_no,
lldb::addr_t offset,
LazyBool check_inlines,
LazyBool skip_prologue, bool internal,
bool hardware,
LazyBool move_to_nearest_code) {
FileSpec remapped_file;
ConstString remapped_path;
if (GetSourcePathMap().ReverseRemapPath(ConstString(file.GetPath().c_str()),
remapped_path))
remapped_file.SetFile(remapped_path.AsCString(), true);
else
remapped_file = file;
if (check_inlines == eLazyBoolCalculate) {
const InlineStrategy inline_strategy = GetInlineStrategy();
switch (inline_strategy) {
case eInlineBreakpointsNever:
check_inlines = eLazyBoolNo;
break;
case eInlineBreakpointsHeaders:
if (remapped_file.IsSourceImplementationFile())
check_inlines = eLazyBoolNo;
else
check_inlines = eLazyBoolYes;
break;
case eInlineBreakpointsAlways:
check_inlines = eLazyBoolYes;
break;
}
}
SearchFilterSP filter_sp;
if (check_inlines == eLazyBoolNo) {
// Not checking for inlines, we are looking only for matching compile units
FileSpecList compile_unit_list;
compile_unit_list.Append(remapped_file);
filter_sp = GetSearchFilterForModuleAndCUList(containingModules,
&compile_unit_list);
} else {
filter_sp = GetSearchFilterForModuleList(containingModules);
}
if (skip_prologue == eLazyBoolCalculate)
skip_prologue = GetSkipPrologue() ? eLazyBoolYes : eLazyBoolNo;
if (move_to_nearest_code == eLazyBoolCalculate)
move_to_nearest_code = GetMoveToNearestCode() ? eLazyBoolYes : eLazyBoolNo;
BreakpointResolverSP resolver_sp(new BreakpointResolverFileLine(
nullptr, remapped_file, line_no, offset, check_inlines, skip_prologue,
!static_cast<bool>(move_to_nearest_code)));
return CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, true);
}
BreakpointSP Target::CreateBreakpoint(lldb::addr_t addr, bool internal,
bool hardware) {
Address so_addr;
// Check for any reason we want to move this breakpoint to other address.
addr = GetBreakableLoadAddress(addr);
// Attempt to resolve our load address if possible, though it is ok if
// it doesn't resolve to section/offset.
// Try and resolve as a load address if possible
GetSectionLoadList().ResolveLoadAddress(addr, so_addr);
if (!so_addr.IsValid()) {
// The address didn't resolve, so just set this as an absolute address
so_addr.SetOffset(addr);
}
BreakpointSP bp_sp(CreateBreakpoint(so_addr, internal, hardware));
return bp_sp;
}
BreakpointSP Target::CreateBreakpoint(const Address &addr, bool internal,
bool hardware) {
SearchFilterSP filter_sp(
new SearchFilterForUnconstrainedSearches(shared_from_this()));
BreakpointResolverSP resolver_sp(
new BreakpointResolverAddress(nullptr, addr));
return CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, false);
}
lldb::BreakpointSP
Target::CreateAddressInModuleBreakpoint(lldb::addr_t file_addr, bool internal,
const FileSpec *file_spec,
bool request_hardware) {
SearchFilterSP filter_sp(
new SearchFilterForUnconstrainedSearches(shared_from_this()));
BreakpointResolverSP resolver_sp(
new BreakpointResolverAddress(nullptr, file_addr, file_spec));
return CreateBreakpoint(filter_sp, resolver_sp, internal, request_hardware,
false);
}
BreakpointSP
Target::CreateBreakpoint(const FileSpecList *containingModules,
const FileSpecList *containingSourceFiles,
const char *func_name, uint32_t func_name_type_mask,
LanguageType language, lldb::addr_t offset,
LazyBool skip_prologue, bool internal, bool hardware) {
BreakpointSP bp_sp;
if (func_name) {
SearchFilterSP filter_sp(GetSearchFilterForModuleAndCUList(
containingModules, containingSourceFiles));
if (skip_prologue == eLazyBoolCalculate)
skip_prologue = GetSkipPrologue() ? eLazyBoolYes : eLazyBoolNo;
if (language == lldb::eLanguageTypeUnknown)
language = GetLanguage();
BreakpointResolverSP resolver_sp(new BreakpointResolverName(
nullptr, func_name, func_name_type_mask, language, Breakpoint::Exact,
offset, skip_prologue));
bp_sp = CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, true);
}
return bp_sp;
}
lldb::BreakpointSP
Target::CreateBreakpoint(const FileSpecList *containingModules,
const FileSpecList *containingSourceFiles,
const std::vector<std::string> &func_names,
uint32_t func_name_type_mask, LanguageType language,
lldb::addr_t offset, LazyBool skip_prologue,
bool internal, bool hardware) {
BreakpointSP bp_sp;
size_t num_names = func_names.size();
if (num_names > 0) {
SearchFilterSP filter_sp(GetSearchFilterForModuleAndCUList(
containingModules, containingSourceFiles));
if (skip_prologue == eLazyBoolCalculate)
skip_prologue = GetSkipPrologue() ? eLazyBoolYes : eLazyBoolNo;
if (language == lldb::eLanguageTypeUnknown)
language = GetLanguage();
BreakpointResolverSP resolver_sp(
new BreakpointResolverName(nullptr, func_names, func_name_type_mask,
language, offset, skip_prologue));
bp_sp = CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, true);
}
return bp_sp;
}
BreakpointSP Target::CreateBreakpoint(
const FileSpecList *containingModules,
const FileSpecList *containingSourceFiles, const char *func_names[],
size_t num_names, uint32_t func_name_type_mask, LanguageType language,
lldb::addr_t offset, LazyBool skip_prologue, bool internal, bool hardware) {
BreakpointSP bp_sp;
if (num_names > 0) {
SearchFilterSP filter_sp(GetSearchFilterForModuleAndCUList(
containingModules, containingSourceFiles));
if (skip_prologue == eLazyBoolCalculate) {
if (offset == 0)
skip_prologue = GetSkipPrologue() ? eLazyBoolYes : eLazyBoolNo;
else
skip_prologue = eLazyBoolNo;
}
if (language == lldb::eLanguageTypeUnknown)
language = GetLanguage();
BreakpointResolverSP resolver_sp(new BreakpointResolverName(
nullptr, func_names, num_names, func_name_type_mask, language, offset,
skip_prologue));
resolver_sp->SetOffset(offset);
bp_sp = CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, true);
}
return bp_sp;
}
SearchFilterSP
Target::GetSearchFilterForModule(const FileSpec *containingModule) {
SearchFilterSP filter_sp;
if (containingModule != nullptr) {
// TODO: We should look into sharing module based search filters
// across many breakpoints like we do for the simple target based one
filter_sp.reset(
new SearchFilterByModule(shared_from_this(), *containingModule));
} else {
if (!m_search_filter_sp)
m_search_filter_sp.reset(
new SearchFilterForUnconstrainedSearches(shared_from_this()));
filter_sp = m_search_filter_sp;
}
return filter_sp;
}
SearchFilterSP
Target::GetSearchFilterForModuleList(const FileSpecList *containingModules) {
SearchFilterSP filter_sp;
if (containingModules && containingModules->GetSize() != 0) {
// TODO: We should look into sharing module based search filters
// across many breakpoints like we do for the simple target based one
filter_sp.reset(
new SearchFilterByModuleList(shared_from_this(), *containingModules));
} else {
if (!m_search_filter_sp)
m_search_filter_sp.reset(
new SearchFilterForUnconstrainedSearches(shared_from_this()));
filter_sp = m_search_filter_sp;
}
return filter_sp;
}
SearchFilterSP Target::GetSearchFilterForModuleAndCUList(
const FileSpecList *containingModules,
const FileSpecList *containingSourceFiles) {
if (containingSourceFiles == nullptr || containingSourceFiles->GetSize() == 0)
return GetSearchFilterForModuleList(containingModules);
SearchFilterSP filter_sp;
if (containingModules == nullptr) {
// We could make a special "CU List only SearchFilter". Better yet was if
// these could be composable,
// but that will take a little reworking.
filter_sp.reset(new SearchFilterByModuleListAndCU(
shared_from_this(), FileSpecList(), *containingSourceFiles));
} else {
filter_sp.reset(new SearchFilterByModuleListAndCU(
shared_from_this(), *containingModules, *containingSourceFiles));
}
return filter_sp;
}
BreakpointSP Target::CreateFuncRegexBreakpoint(
const FileSpecList *containingModules,
const FileSpecList *containingSourceFiles, RegularExpression &func_regex,
lldb::LanguageType requested_language, LazyBool skip_prologue,
bool internal, bool hardware) {
SearchFilterSP filter_sp(GetSearchFilterForModuleAndCUList(
containingModules, containingSourceFiles));
bool skip = (skip_prologue == eLazyBoolCalculate)
? GetSkipPrologue()
: static_cast<bool>(skip_prologue);
BreakpointResolverSP resolver_sp(new BreakpointResolverName(
nullptr, func_regex, requested_language, 0, skip));
return CreateBreakpoint(filter_sp, resolver_sp, internal, hardware, true);
}
lldb::BreakpointSP
Target::CreateExceptionBreakpoint(enum lldb::LanguageType language,
bool catch_bp, bool throw_bp, bool internal,
Args *additional_args, Status *error) {
BreakpointSP exc_bkpt_sp = LanguageRuntime::CreateExceptionBreakpoint(
*this, language, catch_bp, throw_bp, internal);
if (exc_bkpt_sp && additional_args) {
Breakpoint::BreakpointPreconditionSP precondition_sp =
exc_bkpt_sp->GetPrecondition();
if (precondition_sp && additional_args) {
if (error)
*error = precondition_sp->ConfigurePrecondition(*additional_args);
else
precondition_sp->ConfigurePrecondition(*additional_args);
}
}
return exc_bkpt_sp;
}
BreakpointSP Target::CreateBreakpoint(SearchFilterSP &filter_sp,
BreakpointResolverSP &resolver_sp,
bool internal, bool request_hardware,
bool resolve_indirect_symbols) {
BreakpointSP bp_sp;
if (filter_sp && resolver_sp) {
bp_sp.reset(new Breakpoint(*this, filter_sp, resolver_sp, request_hardware,
resolve_indirect_symbols));
resolver_sp->SetBreakpoint(bp_sp.get());
AddBreakpoint(bp_sp, internal);
}
return bp_sp;
}
void Target::AddBreakpoint(lldb::BreakpointSP bp_sp, bool internal) {
if (!bp_sp)
return;
if (internal)
m_internal_breakpoint_list.Add(bp_sp, false);
else
m_breakpoint_list.Add(bp_sp, true);
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log) {
StreamString s;
bp_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
log->Printf("Target::%s (internal = %s) => break_id = %s\n", __FUNCTION__,
bp_sp->IsInternal() ? "yes" : "no", s.GetData());
}
bp_sp->ResolveBreakpoint();
if (!internal) {
m_last_created_breakpoint = bp_sp;
}
}
bool Target::ProcessIsValid() {
return (m_process_sp && m_process_sp->IsAlive());
}
static bool CheckIfWatchpointsExhausted(Target *target, Status &error) {
uint32_t num_supported_hardware_watchpoints;
Status rc = target->GetProcessSP()->GetWatchpointSupportInfo(
num_supported_hardware_watchpoints);
if (num_supported_hardware_watchpoints == 0) {
error.SetErrorStringWithFormat(
"Target supports (%u) hardware watchpoint slots.\n",
num_supported_hardware_watchpoints);
return false;
}
return true;
}
// See also Watchpoint::SetWatchpointType(uint32_t type) and
2011-09-14 08:26:03 +08:00
// the OptionGroupWatchpoint::WatchType enum type.
WatchpointSP Target::CreateWatchpoint(lldb::addr_t addr, size_t size,
const CompilerType *type, uint32_t kind,
Status &error) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s (addr = 0x%8.8" PRIx64 " size = %" PRIu64
" type = %u)\n",
__FUNCTION__, addr, (uint64_t)size, kind);
WatchpointSP wp_sp;
if (!ProcessIsValid()) {
error.SetErrorString("process is not alive");
return wp_sp;
}
if (addr == LLDB_INVALID_ADDRESS || size == 0) {
if (size == 0)
error.SetErrorString("cannot set a watchpoint with watch_size of 0");
else
error.SetErrorStringWithFormat("invalid watch address: %" PRIu64, addr);
return wp_sp;
}
if (!LLDB_WATCH_TYPE_IS_VALID(kind)) {
error.SetErrorStringWithFormat("invalid watchpoint type: %d", kind);
}
if (!CheckIfWatchpointsExhausted(this, error))
return wp_sp;
// Currently we only support one watchpoint per address, with total number
// of watchpoints limited by the hardware which the inferior is running on.
// Grab the list mutex while doing operations.
const bool notify = false; // Don't notify about all the state changes we do
// on creating the watchpoint.
std::unique_lock<std::recursive_mutex> lock;
this->GetWatchpointList().GetListMutex(lock);
WatchpointSP matched_sp = m_watchpoint_list.FindByAddress(addr);
if (matched_sp) {
size_t old_size = matched_sp->GetByteSize();
uint32_t old_type =
(matched_sp->WatchpointRead() ? LLDB_WATCH_TYPE_READ : 0) |
(matched_sp->WatchpointWrite() ? LLDB_WATCH_TYPE_WRITE : 0);
// Return the existing watchpoint if both size and type match.
if (size == old_size && kind == old_type) {
wp_sp = matched_sp;
wp_sp->SetEnabled(false, notify);
} else {
// Nil the matched watchpoint; we will be creating a new one.
m_process_sp->DisableWatchpoint(matched_sp.get(), notify);
m_watchpoint_list.Remove(matched_sp->GetID(), true);
}
}
if (!wp_sp) {
wp_sp.reset(new Watchpoint(*this, addr, size, type));
wp_sp->SetWatchpointType(kind, notify);
m_watchpoint_list.Add(wp_sp, true);
}
error = m_process_sp->EnableWatchpoint(wp_sp.get(), notify);
if (log)
log->Printf("Target::%s (creation of watchpoint %s with id = %u)\n",
__FUNCTION__, error.Success() ? "succeeded" : "failed",
wp_sp->GetID());
if (error.Fail()) {
// Enabling the watchpoint on the device side failed.
// Remove the said watchpoint from the list maintained by the target
// instance.
m_watchpoint_list.Remove(wp_sp->GetID(), true);
// See if we could provide more helpful error message.
if (!OptionGroupWatchpoint::IsWatchSizeSupported(size))
error.SetErrorStringWithFormat(
"watch size of %" PRIu64 " is not supported", (uint64_t)size);
wp_sp.reset();
} else
m_last_created_watchpoint = wp_sp;
return wp_sp;
}
void Target::RemoveAllBreakpoints(bool internal_also) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("Target::%s (internal_also = %s)\n", __FUNCTION__,
internal_also ? "yes" : "no");
m_breakpoint_list.RemoveAll(true);
if (internal_also)
m_internal_breakpoint_list.RemoveAll(false);
m_last_created_breakpoint.reset();
}
void Target::DisableAllBreakpoints(bool internal_also) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("Target::%s (internal_also = %s)\n", __FUNCTION__,
internal_also ? "yes" : "no");
m_breakpoint_list.SetEnabledAll(false);
if (internal_also)
m_internal_breakpoint_list.SetEnabledAll(false);
}
void Target::EnableAllBreakpoints(bool internal_also) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("Target::%s (internal_also = %s)\n", __FUNCTION__,
internal_also ? "yes" : "no");
m_breakpoint_list.SetEnabledAll(true);
if (internal_also)
m_internal_breakpoint_list.SetEnabledAll(true);
}
bool Target::RemoveBreakpointByID(break_id_t break_id) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("Target::%s (break_id = %i, internal = %s)\n", __FUNCTION__,
break_id, LLDB_BREAK_ID_IS_INTERNAL(break_id) ? "yes" : "no");
if (DisableBreakpointByID(break_id)) {
if (LLDB_BREAK_ID_IS_INTERNAL(break_id))
m_internal_breakpoint_list.Remove(break_id, false);
else {
if (m_last_created_breakpoint) {
if (m_last_created_breakpoint->GetID() == break_id)
m_last_created_breakpoint.reset();
}
m_breakpoint_list.Remove(break_id, true);
}
return true;
}
return false;
}
bool Target::DisableBreakpointByID(break_id_t break_id) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("Target::%s (break_id = %i, internal = %s)\n", __FUNCTION__,
break_id, LLDB_BREAK_ID_IS_INTERNAL(break_id) ? "yes" : "no");
BreakpointSP bp_sp;
if (LLDB_BREAK_ID_IS_INTERNAL(break_id))
bp_sp = m_internal_breakpoint_list.FindBreakpointByID(break_id);
else
bp_sp = m_breakpoint_list.FindBreakpointByID(break_id);
if (bp_sp) {
bp_sp->SetEnabled(false);
return true;
}
return false;
}
bool Target::EnableBreakpointByID(break_id_t break_id) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
if (log)
log->Printf("Target::%s (break_id = %i, internal = %s)\n", __FUNCTION__,
break_id, LLDB_BREAK_ID_IS_INTERNAL(break_id) ? "yes" : "no");
BreakpointSP bp_sp;
if (LLDB_BREAK_ID_IS_INTERNAL(break_id))
bp_sp = m_internal_breakpoint_list.FindBreakpointByID(break_id);
else
bp_sp = m_breakpoint_list.FindBreakpointByID(break_id);
if (bp_sp) {
bp_sp->SetEnabled(true);
return true;
}
return false;
}
Status Target::SerializeBreakpointsToFile(const FileSpec &file,
const BreakpointIDList &bp_ids,
bool append) {
Status error;
if (!file) {
error.SetErrorString("Invalid FileSpec.");
return error;
}
std::string path(file.GetPath());
StructuredData::ObjectSP input_data_sp;
StructuredData::ArraySP break_store_sp;
StructuredData::Array *break_store_ptr = nullptr;
if (append) {
input_data_sp = StructuredData::ParseJSONFromFile(file, error);
if (error.Success()) {
break_store_ptr = input_data_sp->GetAsArray();
if (!break_store_ptr) {
error.SetErrorStringWithFormat(
"Tried to append to invalid input file %s", path.c_str());
return error;
}
}
}
if (!break_store_ptr) {
break_store_sp.reset(new StructuredData::Array());
break_store_ptr = break_store_sp.get();
}
StreamFile out_file(path.c_str(),
File::OpenOptions::eOpenOptionTruncate |
File::OpenOptions::eOpenOptionWrite |
File::OpenOptions::eOpenOptionCanCreate |
File::OpenOptions::eOpenOptionCloseOnExec,
lldb::eFilePermissionsFileDefault);
if (!out_file.GetFile().IsValid()) {
error.SetErrorStringWithFormat("Unable to open output file: %s.",
path.c_str());
return error;
}
std::unique_lock<std::recursive_mutex> lock;
GetBreakpointList().GetListMutex(lock);
if (bp_ids.GetSize() == 0) {
const BreakpointList &breakpoints = GetBreakpointList();
size_t num_breakpoints = breakpoints.GetSize();
for (size_t i = 0; i < num_breakpoints; i++) {
Breakpoint *bp = breakpoints.GetBreakpointAtIndex(i).get();
StructuredData::ObjectSP bkpt_save_sp = bp->SerializeToStructuredData();
// If a breakpoint can't serialize it, just ignore it for now:
if (bkpt_save_sp)
break_store_ptr->AddItem(bkpt_save_sp);
}
} else {
std::unordered_set<lldb::break_id_t> processed_bkpts;
const size_t count = bp_ids.GetSize();
for (size_t i = 0; i < count; ++i) {
BreakpointID cur_bp_id = bp_ids.GetBreakpointIDAtIndex(i);
lldb::break_id_t bp_id = cur_bp_id.GetBreakpointID();
if (bp_id != LLDB_INVALID_BREAK_ID) {
// Only do each breakpoint once:
std::pair<std::unordered_set<lldb::break_id_t>::iterator, bool>
insert_result = processed_bkpts.insert(bp_id);
if (!insert_result.second)
continue;
Breakpoint *bp = GetBreakpointByID(bp_id).get();
StructuredData::ObjectSP bkpt_save_sp = bp->SerializeToStructuredData();
// If the user explicitly asked to serialize a breakpoint, and we
// can't, then
// raise an error:
if (!bkpt_save_sp) {
error.SetErrorStringWithFormat("Unable to serialize breakpoint %d",
bp_id);
return error;
}
break_store_ptr->AddItem(bkpt_save_sp);
}
}
}
break_store_ptr->Dump(out_file, false);
out_file.PutChar('\n');
return error;
}
Status Target::CreateBreakpointsFromFile(const FileSpec &file,
BreakpointIDList &new_bps) {
std::vector<std::string> no_names;
return CreateBreakpointsFromFile(file, no_names, new_bps);
}
Status Target::CreateBreakpointsFromFile(const FileSpec &file,
std::vector<std::string> &names,
BreakpointIDList &new_bps) {
std::unique_lock<std::recursive_mutex> lock;
GetBreakpointList().GetListMutex(lock);
Status error;
StructuredData::ObjectSP input_data_sp =
StructuredData::ParseJSONFromFile(file, error);
if (!error.Success()) {
return error;
} else if (!input_data_sp || !input_data_sp->IsValid()) {
error.SetErrorStringWithFormat("Invalid JSON from input file: %s.",
file.GetPath().c_str());
return error;
}
StructuredData::Array *bkpt_array = input_data_sp->GetAsArray();
if (!bkpt_array) {
error.SetErrorStringWithFormat(
"Invalid breakpoint data from input file: %s.", file.GetPath().c_str());
return error;
}
size_t num_bkpts = bkpt_array->GetSize();
size_t num_names = names.size();
for (size_t i = 0; i < num_bkpts; i++) {
StructuredData::ObjectSP bkpt_object_sp = bkpt_array->GetItemAtIndex(i);
// Peel off the breakpoint key, and feed the rest to the Breakpoint:
StructuredData::Dictionary *bkpt_dict = bkpt_object_sp->GetAsDictionary();
if (!bkpt_dict) {
error.SetErrorStringWithFormat(
"Invalid breakpoint data for element %zu from input file: %s.", i,
file.GetPath().c_str());
return error;
}
StructuredData::ObjectSP bkpt_data_sp =
bkpt_dict->GetValueForKey(Breakpoint::GetSerializationKey());
if (num_names &&
!Breakpoint::SerializedBreakpointMatchesNames(bkpt_data_sp, names))
continue;
BreakpointSP bkpt_sp =
Breakpoint::CreateFromStructuredData(*this, bkpt_data_sp, error);
if (!error.Success()) {
error.SetErrorStringWithFormat(
"Error restoring breakpoint %zu from %s: %s.", i,
file.GetPath().c_str(), error.AsCString());
return error;
}
new_bps.AddBreakpointID(BreakpointID(bkpt_sp->GetID()));
}
return error;
}
// The flag 'end_to_end', default to true, signifies that the operation is
// performed end to end, for both the debugger and the debuggee.
// Assumption: Caller holds the list mutex lock for m_watchpoint_list for end
// to end operations.
bool Target::RemoveAllWatchpoints(bool end_to_end) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s\n", __FUNCTION__);
if (!end_to_end) {
m_watchpoint_list.RemoveAll(true);
return true;
}
// Otherwise, it's an end to end operation.
if (!ProcessIsValid())
return false;
size_t num_watchpoints = m_watchpoint_list.GetSize();
for (size_t i = 0; i < num_watchpoints; ++i) {
WatchpointSP wp_sp = m_watchpoint_list.GetByIndex(i);
if (!wp_sp)
return false;
Status rc = m_process_sp->DisableWatchpoint(wp_sp.get());
if (rc.Fail())
return false;
}
m_watchpoint_list.RemoveAll(true);
m_last_created_watchpoint.reset();
return true; // Success!
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list for end to
// end operations.
bool Target::DisableAllWatchpoints(bool end_to_end) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s\n", __FUNCTION__);
if (!end_to_end) {
m_watchpoint_list.SetEnabledAll(false);
return true;
}
// Otherwise, it's an end to end operation.
if (!ProcessIsValid())
return false;
size_t num_watchpoints = m_watchpoint_list.GetSize();
for (size_t i = 0; i < num_watchpoints; ++i) {
WatchpointSP wp_sp = m_watchpoint_list.GetByIndex(i);
if (!wp_sp)
return false;
Status rc = m_process_sp->DisableWatchpoint(wp_sp.get());
if (rc.Fail())
return false;
}
return true; // Success!
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list for end to
// end operations.
bool Target::EnableAllWatchpoints(bool end_to_end) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s\n", __FUNCTION__);
if (!end_to_end) {
m_watchpoint_list.SetEnabledAll(true);
return true;
}
// Otherwise, it's an end to end operation.
if (!ProcessIsValid())
return false;
size_t num_watchpoints = m_watchpoint_list.GetSize();
for (size_t i = 0; i < num_watchpoints; ++i) {
WatchpointSP wp_sp = m_watchpoint_list.GetByIndex(i);
if (!wp_sp)
return false;
Status rc = m_process_sp->EnableWatchpoint(wp_sp.get());
if (rc.Fail())
return false;
}
return true; // Success!
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list.
bool Target::ClearAllWatchpointHitCounts() {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s\n", __FUNCTION__);
size_t num_watchpoints = m_watchpoint_list.GetSize();
for (size_t i = 0; i < num_watchpoints; ++i) {
WatchpointSP wp_sp = m_watchpoint_list.GetByIndex(i);
if (!wp_sp)
return false;
wp_sp->ResetHitCount();
}
return true; // Success!
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list.
bool Target::ClearAllWatchpointHistoricValues() {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s\n", __FUNCTION__);
size_t num_watchpoints = m_watchpoint_list.GetSize();
for (size_t i = 0; i < num_watchpoints; ++i) {
WatchpointSP wp_sp = m_watchpoint_list.GetByIndex(i);
if (!wp_sp)
return false;
wp_sp->ResetHistoricValues();
}
return true; // Success!
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list
// during these operations.
bool Target::IgnoreAllWatchpoints(uint32_t ignore_count) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s\n", __FUNCTION__);
if (!ProcessIsValid())
return false;
size_t num_watchpoints = m_watchpoint_list.GetSize();
for (size_t i = 0; i < num_watchpoints; ++i) {
WatchpointSP wp_sp = m_watchpoint_list.GetByIndex(i);
if (!wp_sp)
return false;
wp_sp->SetIgnoreCount(ignore_count);
}
return true; // Success!
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list.
bool Target::DisableWatchpointByID(lldb::watch_id_t watch_id) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s (watch_id = %i)\n", __FUNCTION__, watch_id);
if (!ProcessIsValid())
return false;
WatchpointSP wp_sp = m_watchpoint_list.FindByID(watch_id);
if (wp_sp) {
Status rc = m_process_sp->DisableWatchpoint(wp_sp.get());
if (rc.Success())
return true;
// Else, fallthrough.
}
return false;
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list.
bool Target::EnableWatchpointByID(lldb::watch_id_t watch_id) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s (watch_id = %i)\n", __FUNCTION__, watch_id);
if (!ProcessIsValid())
return false;
WatchpointSP wp_sp = m_watchpoint_list.FindByID(watch_id);
if (wp_sp) {
Status rc = m_process_sp->EnableWatchpoint(wp_sp.get());
if (rc.Success())
return true;
// Else, fallthrough.
}
return false;
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list.
bool Target::RemoveWatchpointByID(lldb::watch_id_t watch_id) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s (watch_id = %i)\n", __FUNCTION__, watch_id);
WatchpointSP watch_to_remove_sp = m_watchpoint_list.FindByID(watch_id);
if (watch_to_remove_sp == m_last_created_watchpoint)
m_last_created_watchpoint.reset();
if (DisableWatchpointByID(watch_id)) {
m_watchpoint_list.Remove(watch_id, true);
return true;
}
return false;
}
// Assumption: Caller holds the list mutex lock for m_watchpoint_list.
bool Target::IgnoreWatchpointByID(lldb::watch_id_t watch_id,
uint32_t ignore_count) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
if (log)
log->Printf("Target::%s (watch_id = %i)\n", __FUNCTION__, watch_id);
if (!ProcessIsValid())
return false;
WatchpointSP wp_sp = m_watchpoint_list.FindByID(watch_id);
if (wp_sp) {
wp_sp->SetIgnoreCount(ignore_count);
return true;
}
return false;
}
ModuleSP Target::GetExecutableModule() {
// search for the first executable in the module list
for (size_t i = 0; i < m_images.GetSize(); ++i) {
ModuleSP module_sp = m_images.GetModuleAtIndex(i);
lldb_private::ObjectFile *obj = module_sp->GetObjectFile();
if (obj == nullptr)
continue;
if (obj->GetType() == ObjectFile::Type::eTypeExecutable)
return module_sp;
}
// as fall back return the first module loaded
return m_images.GetModuleAtIndex(0);
}
Module *Target::GetExecutableModulePointer() {
return GetExecutableModule().get();
}
static void LoadScriptingResourceForModule(const ModuleSP &module_sp,
Target *target) {
Status error;
StreamString feedback_stream;
if (module_sp &&
!module_sp->LoadScriptingResourceInTarget(target, error,
&feedback_stream)) {
if (error.AsCString())
target->GetDebugger().GetErrorFile()->Printf(
"unable to load scripting data for module %s - error reported was "
"%s\n",
module_sp->GetFileSpec().GetFileNameStrippingExtension().GetCString(),
error.AsCString());
}
if (feedback_stream.GetSize())
target->GetDebugger().GetErrorFile()->Printf("%s\n",
feedback_stream.GetData());
}
void Target::ClearModules(bool delete_locations) {
ModulesDidUnload(m_images, delete_locations);
m_section_load_history.Clear();
m_images.Clear();
m_scratch_type_system_map.Clear();
m_ast_importer_sp.reset();
}
void Target::DidExec() {
// When a process exec's we need to know about it so we can do some cleanup.
m_breakpoint_list.RemoveInvalidLocations(m_arch);
m_internal_breakpoint_list.RemoveInvalidLocations(m_arch);
}
void Target::SetExecutableModule(ModuleSP &executable_sp,
bool get_dependent_files) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_TARGET));
ClearModules(false);
if (executable_sp) {
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat,
"Target::SetExecutableModule (executable = '%s')",
executable_sp->GetFileSpec().GetPath().c_str());
m_images.Append(executable_sp); // The first image is our executable file
// If we haven't set an architecture yet, reset our architecture based on
// what we found in the executable module.
if (!m_arch.IsValid()) {
m_arch = executable_sp->GetArchitecture();
if (log)
log->Printf("Target::SetExecutableModule setting architecture to %s "
"(%s) based on executable file",
m_arch.GetArchitectureName(),
m_arch.GetTriple().getTriple().c_str());
}
FileSpecList dependent_files;
ObjectFile *executable_objfile = executable_sp->GetObjectFile();
if (executable_objfile && get_dependent_files) {
executable_objfile->GetDependentModules(dependent_files);
for (uint32_t i = 0; i < dependent_files.GetSize(); i++) {
FileSpec dependent_file_spec(
dependent_files.GetFileSpecPointerAtIndex(i));
FileSpec platform_dependent_file_spec;
if (m_platform_sp)
m_platform_sp->GetFileWithUUID(dependent_file_spec, nullptr,
platform_dependent_file_spec);
else
platform_dependent_file_spec = dependent_file_spec;
ModuleSpec module_spec(platform_dependent_file_spec, m_arch);
ModuleSP image_module_sp(GetSharedModule(module_spec));
if (image_module_sp) {
ObjectFile *objfile = image_module_sp->GetObjectFile();
if (objfile)
objfile->GetDependentModules(dependent_files);
}
}
}
}
}
bool Target::SetArchitecture(const ArchSpec &arch_spec) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_TARGET));
bool missing_local_arch = !m_arch.IsValid();
bool replace_local_arch = true;
bool compatible_local_arch = false;
ArchSpec other(arch_spec);
if (!missing_local_arch) {
if (m_arch.IsCompatibleMatch(arch_spec)) {
other.MergeFrom(m_arch);
if (m_arch.IsCompatibleMatch(other)) {
compatible_local_arch = true;
bool arch_changed, vendor_changed, os_changed, os_ver_changed,
env_changed;
m_arch.PiecewiseTripleCompare(other, arch_changed, vendor_changed,
os_changed, os_ver_changed, env_changed);
if (!arch_changed && !vendor_changed && !os_changed && !env_changed)
replace_local_arch = false;
}
}
}
if (compatible_local_arch || missing_local_arch) {
// If we haven't got a valid arch spec, or the architectures are compatible
// update the architecture, unless the one we already have is more specified
if (replace_local_arch)
m_arch = other;
if (log)
log->Printf("Target::SetArchitecture set architecture to %s (%s)",
m_arch.GetArchitectureName(),
m_arch.GetTriple().getTriple().c_str());
return true;
}
// If we have an executable file, try to reset the executable to the desired
// architecture
if (log)
log->Printf("Target::SetArchitecture changing architecture to %s (%s)",
arch_spec.GetArchitectureName(),
arch_spec.GetTriple().getTriple().c_str());
m_arch = other;
ModuleSP executable_sp = GetExecutableModule();
ClearModules(true);
// Need to do something about unsetting breakpoints.
if (executable_sp) {
if (log)
log->Printf("Target::SetArchitecture Trying to select executable file "
"architecture %s (%s)",
arch_spec.GetArchitectureName(),
arch_spec.GetTriple().getTriple().c_str());
ModuleSpec module_spec(executable_sp->GetFileSpec(), other);
Status error = ModuleList::GetSharedModule(module_spec, executable_sp,
&GetExecutableSearchPaths(),
nullptr, nullptr);
if (!error.Fail() && executable_sp) {
SetExecutableModule(executable_sp, true);
return true;
}
}
return false;
}
bool Target::MergeArchitecture(const ArchSpec &arch_spec) {
if (arch_spec.IsValid()) {
if (m_arch.IsCompatibleMatch(arch_spec)) {
// The current target arch is compatible with "arch_spec", see if we
// can improve our current architecture using bits from "arch_spec"
// Merge bits from arch_spec into "merged_arch" and set our architecture
ArchSpec merged_arch(m_arch);
merged_arch.MergeFrom(arch_spec);
return SetArchitecture(merged_arch);
} else {
// The new architecture is different, we just need to replace it
return SetArchitecture(arch_spec);
}
}
return false;
}
void Target::WillClearList(const ModuleList &module_list) {}
void Target::ModuleAdded(const ModuleList &module_list,
const ModuleSP &module_sp) {
// A module is being added to this target for the first time
if (m_valid) {
ModuleList my_module_list;
my_module_list.Append(module_sp);
LoadScriptingResourceForModule(module_sp, this);
ModulesDidLoad(my_module_list);
}
}
void Target::ModuleRemoved(const ModuleList &module_list,
const ModuleSP &module_sp) {
// A module is being removed from this target.
if (m_valid) {
ModuleList my_module_list;
my_module_list.Append(module_sp);
ModulesDidUnload(my_module_list, false);
}
}
void Target::ModuleUpdated(const ModuleList &module_list,
const ModuleSP &old_module_sp,
const ModuleSP &new_module_sp) {
// A module is replacing an already added module
if (m_valid) {
m_breakpoint_list.UpdateBreakpointsWhenModuleIsReplaced(old_module_sp,
new_module_sp);
m_internal_breakpoint_list.UpdateBreakpointsWhenModuleIsReplaced(
old_module_sp, new_module_sp);
}
}
void Target::ModulesDidLoad(ModuleList &module_list) {
if (m_valid && module_list.GetSize()) {
m_breakpoint_list.UpdateBreakpoints(module_list, true, false);
m_internal_breakpoint_list.UpdateBreakpoints(module_list, true, false);
if (m_process_sp) {
m_process_sp->ModulesDidLoad(module_list);
}
BroadcastEvent(eBroadcastBitModulesLoaded,
new TargetEventData(this->shared_from_this(), module_list));
}
}
void Target::SymbolsDidLoad(ModuleList &module_list) {
if (m_valid && module_list.GetSize()) {
if (m_process_sp) {
LanguageRuntime *runtime =
m_process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC);
if (runtime) {
ObjCLanguageRuntime *objc_runtime = (ObjCLanguageRuntime *)runtime;
objc_runtime->SymbolsDidLoad(module_list);
}
}
m_breakpoint_list.UpdateBreakpoints(module_list, true, false);
m_internal_breakpoint_list.UpdateBreakpoints(module_list, true, false);
BroadcastEvent(eBroadcastBitSymbolsLoaded,
new TargetEventData(this->shared_from_this(), module_list));
}
}
void Target::ModulesDidUnload(ModuleList &module_list, bool delete_locations) {
if (m_valid && module_list.GetSize()) {
UnloadModuleSections(module_list);
m_breakpoint_list.UpdateBreakpoints(module_list, false, delete_locations);
m_internal_breakpoint_list.UpdateBreakpoints(module_list, false,
delete_locations);
BroadcastEvent(eBroadcastBitModulesUnloaded,
new TargetEventData(this->shared_from_this(), module_list));
}
}
bool Target::ModuleIsExcludedForUnconstrainedSearches(
const FileSpec &module_file_spec) {
if (GetBreakpointsConsultPlatformAvoidList()) {
ModuleList matchingModules;
ModuleSpec module_spec(module_file_spec);
size_t num_modules = GetImages().FindModules(module_spec, matchingModules);
// If there is more than one module for this file spec, only return true if
// ALL the modules are on the
// black list.
if (num_modules > 0) {
for (size_t i = 0; i < num_modules; i++) {
if (!ModuleIsExcludedForUnconstrainedSearches(
matchingModules.GetModuleAtIndex(i)))
return false;
}
return true;
}
}
return false;
}
bool Target::ModuleIsExcludedForUnconstrainedSearches(
const lldb::ModuleSP &module_sp) {
if (GetBreakpointsConsultPlatformAvoidList()) {
if (m_platform_sp)
return m_platform_sp->ModuleIsExcludedForUnconstrainedSearches(*this,
module_sp);
}
return false;
}
size_t Target::ReadMemoryFromFileCache(const Address &addr, void *dst,
size_t dst_len, Status &error) {
SectionSP section_sp(addr.GetSection());
if (section_sp) {
// If the contents of this section are encrypted, the on-disk file is
// unusable. Read only from live memory.
if (section_sp->IsEncrypted()) {
error.SetErrorString("section is encrypted");
return 0;
}
ModuleSP module_sp(section_sp->GetModule());
if (module_sp) {
ObjectFile *objfile = section_sp->GetModule()->GetObjectFile();
if (objfile) {
size_t bytes_read = objfile->ReadSectionData(
section_sp.get(), addr.GetOffset(), dst, dst_len);
if (bytes_read > 0)
return bytes_read;
else
error.SetErrorStringWithFormat("error reading data from section %s",
section_sp->GetName().GetCString());
} else
error.SetErrorString("address isn't from a object file");
} else
error.SetErrorString("address isn't in a module");
} else
error.SetErrorString("address doesn't contain a section that points to a "
"section in a object file");
return 0;
}
size_t Target::ReadMemory(const Address &addr, bool prefer_file_cache,
void *dst, size_t dst_len, Status &error,
lldb::addr_t *load_addr_ptr) {
error.Clear();
// if we end up reading this from process memory, we will fill this
// with the actual load address
if (load_addr_ptr)
*load_addr_ptr = LLDB_INVALID_ADDRESS;
size_t bytes_read = 0;
addr_t load_addr = LLDB_INVALID_ADDRESS;
addr_t file_addr = LLDB_INVALID_ADDRESS;
Address resolved_addr;
if (!addr.IsSectionOffset()) {
SectionLoadList &section_load_list = GetSectionLoadList();
if (section_load_list.IsEmpty()) {
// No sections are loaded, so we must assume we are not running
// yet and anything we are given is a file address.
file_addr = addr.GetOffset(); // "addr" doesn't have a section, so its
// offset is the file address
m_images.ResolveFileAddress(file_addr, resolved_addr);
} else {
// We have at least one section loaded. This can be because
// we have manually loaded some sections with "target modules load ..."
// or because we have have a live process that has sections loaded
// through the dynamic loader
load_addr = addr.GetOffset(); // "addr" doesn't have a section, so its
// offset is the load address
section_load_list.ResolveLoadAddress(load_addr, resolved_addr);
}
}
if (!resolved_addr.IsValid())
resolved_addr = addr;
if (prefer_file_cache) {
bytes_read = ReadMemoryFromFileCache(resolved_addr, dst, dst_len, error);
if (bytes_read > 0)
return bytes_read;
}
if (ProcessIsValid()) {
if (load_addr == LLDB_INVALID_ADDRESS)
load_addr = resolved_addr.GetLoadAddress(this);
if (load_addr == LLDB_INVALID_ADDRESS) {
ModuleSP addr_module_sp(resolved_addr.GetModule());
if (addr_module_sp && addr_module_sp->GetFileSpec())
error.SetErrorStringWithFormatv(
"{0:F}[{1:x+}] can't be resolved, {0:F} is not currently loaded",
addr_module_sp->GetFileSpec(), resolved_addr.GetFileAddress());
else
error.SetErrorStringWithFormat("0x%" PRIx64 " can't be resolved",
resolved_addr.GetFileAddress());
} else {
bytes_read = m_process_sp->ReadMemory(load_addr, dst, dst_len, error);
if (bytes_read != dst_len) {
if (error.Success()) {
if (bytes_read == 0)
error.SetErrorStringWithFormat(
"read memory from 0x%" PRIx64 " failed", load_addr);
else
error.SetErrorStringWithFormat(
"only %" PRIu64 " of %" PRIu64
" bytes were read from memory at 0x%" PRIx64,
(uint64_t)bytes_read, (uint64_t)dst_len, load_addr);
}
}
if (bytes_read) {
if (load_addr_ptr)
*load_addr_ptr = load_addr;
return bytes_read;
}
// If the address is not section offset we have an address that
// doesn't resolve to any address in any currently loaded shared
// libraries and we failed to read memory so there isn't anything
// more we can do. If it is section offset, we might be able to
// read cached memory from the object file.
if (!resolved_addr.IsSectionOffset())
return 0;
}
}
if (!prefer_file_cache && resolved_addr.IsSectionOffset()) {
// If we didn't already try and read from the object file cache, then
// try it after failing to read from the process.
return ReadMemoryFromFileCache(resolved_addr, dst, dst_len, error);
}
return 0;
}
size_t Target::ReadCStringFromMemory(const Address &addr, std::string &out_str,
Status &error) {
char buf[256];
out_str.clear();
addr_t curr_addr = addr.GetLoadAddress(this);
Address address(addr);
while (1) {
size_t length = ReadCStringFromMemory(address, buf, sizeof(buf), error);
if (length == 0)
break;
out_str.append(buf, length);
// If we got "length - 1" bytes, we didn't get the whole C string, we
// need to read some more characters
if (length == sizeof(buf) - 1)
curr_addr += length;
else
break;
address = Address(curr_addr);
}
return out_str.size();
}
size_t Target::ReadCStringFromMemory(const Address &addr, char *dst,
size_t dst_max_len, Status &result_error) {
size_t total_cstr_len = 0;
if (dst && dst_max_len) {
result_error.Clear();
// NULL out everything just to be safe
memset(dst, 0, dst_max_len);
Status error;
addr_t curr_addr = addr.GetLoadAddress(this);
Address address(addr);
// We could call m_process_sp->GetMemoryCacheLineSize() but I don't
// think this really needs to be tied to the memory cache subsystem's
// cache line size, so leave this as a fixed constant.
const size_t cache_line_size = 512;
size_t bytes_left = dst_max_len - 1;
char *curr_dst = dst;
while (bytes_left > 0) {
addr_t cache_line_bytes_left =
cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read =
std::min<addr_t>(bytes_left, cache_line_bytes_left);
size_t bytes_read =
ReadMemory(address, false, curr_dst, bytes_to_read, error);
if (bytes_read == 0) {
result_error = error;
dst[total_cstr_len] = '\0';
break;
}
const size_t len = strlen(curr_dst);
total_cstr_len += len;
if (len < bytes_to_read)
break;
curr_dst += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
address = Address(curr_addr);
}
} else {
if (dst == nullptr)
result_error.SetErrorString("invalid arguments");
else
result_error.Clear();
}
return total_cstr_len;
}
size_t Target::ReadScalarIntegerFromMemory(const Address &addr,
bool prefer_file_cache,
uint32_t byte_size, bool is_signed,
Scalar &scalar, Status &error) {
uint64_t uval;
if (byte_size <= sizeof(uval)) {
size_t bytes_read =
ReadMemory(addr, prefer_file_cache, &uval, byte_size, error);
if (bytes_read == byte_size) {
DataExtractor data(&uval, sizeof(uval), m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
lldb::offset_t offset = 0;
if (byte_size <= 4)
scalar = data.GetMaxU32(&offset, byte_size);
else
scalar = data.GetMaxU64(&offset, byte_size);
if (is_signed)
scalar.SignExtend(byte_size * 8);
return bytes_read;
}
} else {
error.SetErrorStringWithFormat(
"byte size of %u is too large for integer scalar type", byte_size);
}
return 0;
}
uint64_t Target::ReadUnsignedIntegerFromMemory(const Address &addr,
bool prefer_file_cache,
size_t integer_byte_size,
uint64_t fail_value,
Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(addr, prefer_file_cache, integer_byte_size,
false, scalar, error))
return scalar.ULongLong(fail_value);
return fail_value;
}
bool Target::ReadPointerFromMemory(const Address &addr, bool prefer_file_cache,
Status &error, Address &pointer_addr) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(addr, prefer_file_cache,
m_arch.GetAddressByteSize(), false, scalar,
error)) {
addr_t pointer_vm_addr = scalar.ULongLong(LLDB_INVALID_ADDRESS);
if (pointer_vm_addr != LLDB_INVALID_ADDRESS) {
SectionLoadList &section_load_list = GetSectionLoadList();
if (section_load_list.IsEmpty()) {
// No sections are loaded, so we must assume we are not running
// yet and anything we are given is a file address.
m_images.ResolveFileAddress(pointer_vm_addr, pointer_addr);
} else {
// We have at least one section loaded. This can be because
// we have manually loaded some sections with "target modules load ..."
// or because we have have a live process that has sections loaded
// through the dynamic loader
section_load_list.ResolveLoadAddress(pointer_vm_addr, pointer_addr);
}
// We weren't able to resolve the pointer value, so just return
// an address with no section
if (!pointer_addr.IsValid())
pointer_addr.SetOffset(pointer_vm_addr);
return true;
}
}
return false;
}
ModuleSP Target::GetSharedModule(const ModuleSpec &module_spec,
Status *error_ptr) {
ModuleSP module_sp;
Status error;
// First see if we already have this module in our module list. If we do,
// then we're done, we don't need
// to consult the shared modules list. But only do this if we are passed a
// UUID.
if (module_spec.GetUUID().IsValid())
module_sp = m_images.FindFirstModule(module_spec);
if (!module_sp) {
ModuleSP old_module_sp; // This will get filled in if we have a new version
// of the library
bool did_create_module = false;
// If there are image search path entries, try to use them first to acquire
// a suitable image.
if (m_image_search_paths.GetSize()) {
ModuleSpec transformed_spec(module_spec);
if (m_image_search_paths.RemapPath(
module_spec.GetFileSpec().GetDirectory(),
transformed_spec.GetFileSpec().GetDirectory())) {
transformed_spec.GetFileSpec().GetFilename() =
module_spec.GetFileSpec().GetFilename();
error = ModuleList::GetSharedModule(transformed_spec, module_sp,
&GetExecutableSearchPaths(),
&old_module_sp, &did_create_module);
}
}
if (!module_sp) {
// If we have a UUID, we can check our global shared module list in case
// we already have it. If we don't have a valid UUID, then we can't since
// the path in "module_spec" will be a platform path, and we will need to
// let the platform find that file. For example, we could be asking for
// "/usr/lib/dyld" and if we do not have a UUID, we don't want to pick
// the local copy of "/usr/lib/dyld" since our platform could be a remote
// platform that has its own "/usr/lib/dyld" in an SDK or in a local file
// cache.
if (module_spec.GetUUID().IsValid()) {
// We have a UUID, it is OK to check the global module list...
error = ModuleList::GetSharedModule(module_spec, module_sp,
&GetExecutableSearchPaths(),
&old_module_sp, &did_create_module);
}
if (!module_sp) {
// The platform is responsible for finding and caching an appropriate
// module in the shared module cache.
if (m_platform_sp) {
error = m_platform_sp->GetSharedModule(
module_spec, m_process_sp.get(), module_sp,
&GetExecutableSearchPaths(), &old_module_sp, &did_create_module);
} else {
error.SetErrorString("no platform is currently set");
}
}
}
// We found a module that wasn't in our target list. Let's make sure that
// there wasn't an equivalent
// module in the list already, and if there was, let's remove it.
if (module_sp) {
ObjectFile *objfile = module_sp->GetObjectFile();
if (objfile) {
switch (objfile->GetType()) {
case ObjectFile::eTypeCoreFile: /// A core file that has a checkpoint of
/// a program's execution state
case ObjectFile::eTypeExecutable: /// A normal executable
case ObjectFile::eTypeDynamicLinker: /// The platform's dynamic linker
/// executable
case ObjectFile::eTypeObjectFile: /// An intermediate object file
case ObjectFile::eTypeSharedLibrary: /// A shared library that can be
/// used during execution
break;
case ObjectFile::eTypeDebugInfo: /// An object file that contains only
/// debug information
if (error_ptr)
error_ptr->SetErrorString("debug info files aren't valid target "
"modules, please specify an executable");
return ModuleSP();
case ObjectFile::eTypeStubLibrary: /// A library that can be linked
/// against but not used for
/// execution
if (error_ptr)
error_ptr->SetErrorString("stub libraries aren't valid target "
"modules, please specify an executable");
return ModuleSP();
default:
if (error_ptr)
error_ptr->SetErrorString(
"unsupported file type, please specify an executable");
return ModuleSP();
}
// GetSharedModule is not guaranteed to find the old shared module, for
// instance
// in the common case where you pass in the UUID, it is only going to
// find the one
// module matching the UUID. In fact, it has no good way to know what
// the "old module"
// relevant to this target is, since there might be many copies of a
// module with this file spec
// in various running debug sessions, but only one of them will belong
// to this target.
// So let's remove the UUID from the module list, and look in the
// target's module list.
// Only do this if there is SOMETHING else in the module spec...
if (!old_module_sp) {
if (module_spec.GetUUID().IsValid() &&
!module_spec.GetFileSpec().GetFilename().IsEmpty() &&
!module_spec.GetFileSpec().GetDirectory().IsEmpty()) {
ModuleSpec module_spec_copy(module_spec.GetFileSpec());
module_spec_copy.GetUUID().Clear();
ModuleList found_modules;
size_t num_found =
m_images.FindModules(module_spec_copy, found_modules);
if (num_found == 1) {
old_module_sp = found_modules.GetModuleAtIndex(0);
}
}
}
// Preload symbols outside of any lock, so hopefully we can do this for
// each library in parallel.
if (GetPreloadSymbols())
module_sp->PreloadSymbols();
if (old_module_sp &&
m_images.GetIndexForModule(old_module_sp.get()) !=
LLDB_INVALID_INDEX32) {
m_images.ReplaceModule(old_module_sp, module_sp);
Module *old_module_ptr = old_module_sp.get();
old_module_sp.reset();
ModuleList::RemoveSharedModuleIfOrphaned(old_module_ptr);
} else
m_images.Append(module_sp);
} else
module_sp.reset();
}
}
if (error_ptr)
*error_ptr = error;
return module_sp;
}
TargetSP Target::CalculateTarget() { return shared_from_this(); }
ProcessSP Target::CalculateProcess() { return m_process_sp; }
ThreadSP Target::CalculateThread() { return ThreadSP(); }
StackFrameSP Target::CalculateStackFrame() { return StackFrameSP(); }
void Target::CalculateExecutionContext(ExecutionContext &exe_ctx) {
exe_ctx.Clear();
exe_ctx.SetTargetPtr(this);
}
PathMappingList &Target::GetImageSearchPathList() {
return m_image_search_paths;
}
void Target::ImageSearchPathsChanged(const PathMappingList &path_list,
void *baton) {
Target *target = (Target *)baton;
ModuleSP exe_module_sp(target->GetExecutableModule());
if (exe_module_sp)
target->SetExecutableModule(exe_module_sp, true);
}
TypeSystem *Target::GetScratchTypeSystemForLanguage(Status *error,
lldb::LanguageType language,
bool create_on_demand) {
if (!m_valid)
return nullptr;
if (error) {
error->Clear();
}
if (language == eLanguageTypeMipsAssembler // GNU AS and LLVM use it for all
// assembly code
|| language == eLanguageTypeUnknown) {
std::set<lldb::LanguageType> languages_for_types;
std::set<lldb::LanguageType> languages_for_expressions;
Language::GetLanguagesSupportingTypeSystems(languages_for_types,
languages_for_expressions);
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
if (languages_for_expressions.count(eLanguageTypeC)) {
language = eLanguageTypeC; // LLDB's default. Override by setting the
// target language.
} else {
if (languages_for_expressions.empty()) {
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
return nullptr;
} else {
language = *languages_for_expressions.begin();
}
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
}
}
return m_scratch_type_system_map.GetTypeSystemForLanguage(language, this,
create_on_demand);
}
PersistentExpressionState *
Target::GetPersistentExpressionStateForLanguage(lldb::LanguageType language) {
TypeSystem *type_system =
GetScratchTypeSystemForLanguage(nullptr, language, true);
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
if (type_system) {
return type_system->GetPersistentExpressionState();
} else {
return nullptr;
}
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
}
UserExpression *Target::GetUserExpressionForLanguage(
llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language,
Expression::ResultType desired_type,
const EvaluateExpressionOptions &options, Status &error) {
Status type_system_error;
TypeSystem *type_system =
GetScratchTypeSystemForLanguage(&type_system_error, language);
UserExpression *user_expr = nullptr;
if (!type_system) {
error.SetErrorStringWithFormat(
"Could not find type system for language %s: %s",
Language::GetNameForLanguageType(language),
type_system_error.AsCString());
return nullptr;
}
user_expr = type_system->GetUserExpression(expr, prefix, language,
desired_type, options);
if (!user_expr)
error.SetErrorStringWithFormat(
"Could not create an expression for language %s",
Language::GetNameForLanguageType(language));
return user_expr;
}
FunctionCaller *Target::GetFunctionCallerForLanguage(
lldb::LanguageType language, const CompilerType &return_type,
const Address &function_address, const ValueList &arg_value_list,
const char *name, Status &error) {
Status type_system_error;
TypeSystem *type_system =
GetScratchTypeSystemForLanguage(&type_system_error, language);
FunctionCaller *persistent_fn = nullptr;
if (!type_system) {
error.SetErrorStringWithFormat(
"Could not find type system for language %s: %s",
Language::GetNameForLanguageType(language),
type_system_error.AsCString());
return persistent_fn;
}
persistent_fn = type_system->GetFunctionCaller(return_type, function_address,
arg_value_list, name);
if (!persistent_fn)
error.SetErrorStringWithFormat(
"Could not create an expression for language %s",
Language::GetNameForLanguageType(language));
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
return persistent_fn;
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
}
UtilityFunction *
Target::GetUtilityFunctionForLanguage(const char *text,
lldb::LanguageType language,
const char *name, Status &error) {
Status type_system_error;
TypeSystem *type_system =
GetScratchTypeSystemForLanguage(&type_system_error, language);
UtilityFunction *utility_fn = nullptr;
if (!type_system) {
error.SetErrorStringWithFormat(
"Could not find type system for language %s: %s",
Language::GetNameForLanguageType(language),
type_system_error.AsCString());
return utility_fn;
}
utility_fn = type_system->GetUtilityFunction(text, name);
if (!utility_fn)
error.SetErrorStringWithFormat(
"Could not create an expression for language %s",
Language::GetNameForLanguageType(language));
return utility_fn;
}
ClangASTContext *Target::GetScratchClangASTContext(bool create_on_demand) {
if (m_valid) {
if (TypeSystem *type_system = GetScratchTypeSystemForLanguage(
nullptr, eLanguageTypeC, create_on_demand))
return llvm::dyn_cast<ClangASTContext>(type_system);
}
return nullptr;
}
ClangASTImporterSP Target::GetClangASTImporter() {
if (m_valid) {
if (!m_ast_importer_sp) {
m_ast_importer_sp.reset(new ClangASTImporter());
}
return m_ast_importer_sp;
}
return ClangASTImporterSP();
}
void Target::SettingsInitialize() { Process::SettingsInitialize(); }
void Target::SettingsTerminate() { Process::SettingsTerminate(); }
FileSpecList Target::GetDefaultExecutableSearchPaths() {
TargetPropertiesSP properties_sp(Target::GetGlobalProperties());
if (properties_sp)
return properties_sp->GetExecutableSearchPaths();
return FileSpecList();
}
FileSpecList Target::GetDefaultDebugFileSearchPaths() {
TargetPropertiesSP properties_sp(Target::GetGlobalProperties());
if (properties_sp)
return properties_sp->GetDebugFileSearchPaths();
return FileSpecList();
}
FileSpecList Target::GetDefaultClangModuleSearchPaths() {
TargetPropertiesSP properties_sp(Target::GetGlobalProperties());
if (properties_sp)
return properties_sp->GetClangModuleSearchPaths();
return FileSpecList();
}
ArchSpec Target::GetDefaultArchitecture() {
TargetPropertiesSP properties_sp(Target::GetGlobalProperties());
if (properties_sp)
return properties_sp->GetDefaultArchitecture();
return ArchSpec();
}
void Target::SetDefaultArchitecture(const ArchSpec &arch) {
TargetPropertiesSP properties_sp(Target::GetGlobalProperties());
if (properties_sp) {
LogIfAnyCategoriesSet(
LIBLLDB_LOG_TARGET, "Target::SetDefaultArchitecture setting target's "
"default architecture to %s (%s)",
arch.GetArchitectureName(), arch.GetTriple().getTriple().c_str());
return properties_sp->SetDefaultArchitecture(arch);
}
}
Target *Target::GetTargetFromContexts(const ExecutionContext *exe_ctx_ptr,
const SymbolContext *sc_ptr) {
// The target can either exist in the "process" of ExecutionContext, or in
// the "target_sp" member of SymbolContext. This accessor helper function
// will get the target from one of these locations.
Target *target = nullptr;
if (sc_ptr != nullptr)
target = sc_ptr->target_sp.get();
if (target == nullptr && exe_ctx_ptr)
target = exe_ctx_ptr->GetTargetPtr();
return target;
}
ExpressionResults Target::EvaluateExpression(
llvm::StringRef expr, ExecutionContextScope *exe_scope,
lldb::ValueObjectSP &result_valobj_sp,
const EvaluateExpressionOptions &options, std::string *fixed_expression) {
result_valobj_sp.reset();
ExpressionResults execution_results = eExpressionSetupError;
if (expr.empty())
return execution_results;
// We shouldn't run stop hooks in expressions.
// Be sure to reset this if you return anywhere within this function.
bool old_suppress_value = m_suppress_stop_hooks;
m_suppress_stop_hooks = true;
ExecutionContext exe_ctx;
if (exe_scope) {
exe_scope->CalculateExecutionContext(exe_ctx);
} else if (m_process_sp) {
m_process_sp->CalculateExecutionContext(exe_ctx);
} else {
CalculateExecutionContext(exe_ctx);
}
// Make sure we aren't just trying to see the value of a persistent
// variable (something like "$0")
lldb::ExpressionVariableSP persistent_var_sp;
// Only check for persistent variables the expression starts with a '$'
if (expr[0] == '$')
persistent_var_sp = GetScratchTypeSystemForLanguage(nullptr, eLanguageTypeC)
->GetPersistentExpressionState()
->GetVariable(expr);
if (persistent_var_sp) {
result_valobj_sp = persistent_var_sp->GetValueObject();
execution_results = eExpressionCompleted;
} else {
const char *prefix = GetExpressionPrefixContentsAsCString();
Status error;
execution_results = UserExpression::Evaluate(exe_ctx, options, expr, prefix,
result_valobj_sp, error,
0, // Line Number
fixed_expression);
}
m_suppress_stop_hooks = old_suppress_value;
return execution_results;
}
lldb::ExpressionVariableSP
Target::GetPersistentVariable(const ConstString &name) {
lldb::ExpressionVariableSP variable_sp;
m_scratch_type_system_map.ForEach(
[name, &variable_sp](TypeSystem *type_system) -> bool {
if (PersistentExpressionState *persistent_state =
type_system->GetPersistentExpressionState()) {
variable_sp = persistent_state->GetVariable(name);
if (variable_sp)
return false; // Stop iterating the ForEach
}
return true; // Keep iterating the ForEach
});
return variable_sp;
}
lldb::addr_t Target::GetPersistentSymbol(const ConstString &name) {
lldb::addr_t address = LLDB_INVALID_ADDRESS;
m_scratch_type_system_map.ForEach(
[name, &address](TypeSystem *type_system) -> bool {
if (PersistentExpressionState *persistent_state =
type_system->GetPersistentExpressionState()) {
address = persistent_state->LookupSymbol(name);
if (address != LLDB_INVALID_ADDRESS)
return false; // Stop iterating the ForEach
}
return true; // Keep iterating the ForEach
});
return address;
}
lldb::addr_t Target::GetCallableLoadAddress(lldb::addr_t load_addr,
AddressClass addr_class) const {
addr_t code_addr = load_addr;
switch (m_arch.GetMachine()) {
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
switch (addr_class) {
case eAddressClassData:
case eAddressClassDebug:
return LLDB_INVALID_ADDRESS;
case eAddressClassUnknown:
case eAddressClassInvalid:
case eAddressClassCode:
case eAddressClassCodeAlternateISA:
case eAddressClassRuntime:
if ((code_addr & 2ull) || (addr_class == eAddressClassCodeAlternateISA))
code_addr |= 1ull;
break;
}
break;
case llvm::Triple::arm:
case llvm::Triple::thumb:
switch (addr_class) {
case eAddressClassData:
case eAddressClassDebug:
return LLDB_INVALID_ADDRESS;
case eAddressClassUnknown:
case eAddressClassInvalid:
case eAddressClassCode:
case eAddressClassCodeAlternateISA:
case eAddressClassRuntime:
// Check if bit zero it no set?
if ((code_addr & 1ull) == 0) {
// Bit zero isn't set, check if the address is a multiple of 2?
if (code_addr & 2ull) {
// The address is a multiple of 2 so it must be thumb, set bit zero
code_addr |= 1ull;
} else if (addr_class == eAddressClassCodeAlternateISA) {
// We checked the address and the address claims to be the alternate
// ISA
// which means thumb, so set bit zero.
code_addr |= 1ull;
}
}
break;
}
break;
default:
break;
}
return code_addr;
}
lldb::addr_t Target::GetOpcodeLoadAddress(lldb::addr_t load_addr,
AddressClass addr_class) const {
addr_t opcode_addr = load_addr;
switch (m_arch.GetMachine()) {
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::arm:
case llvm::Triple::thumb:
switch (addr_class) {
case eAddressClassData:
case eAddressClassDebug:
return LLDB_INVALID_ADDRESS;
case eAddressClassInvalid:
case eAddressClassUnknown:
case eAddressClassCode:
case eAddressClassCodeAlternateISA:
case eAddressClassRuntime:
opcode_addr &= ~(1ull);
break;
}
break;
default:
break;
}
return opcode_addr;
}
lldb::addr_t Target::GetBreakableLoadAddress(lldb::addr_t addr) {
addr_t breakable_addr = addr;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
switch (m_arch.GetMachine()) {
default:
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el: {
addr_t function_start = 0;
addr_t current_offset = 0;
uint32_t loop_count = 0;
Address resolved_addr;
uint32_t arch_flags = m_arch.GetFlags();
bool IsMips16 = arch_flags & ArchSpec::eMIPSAse_mips16;
bool IsMicromips = arch_flags & ArchSpec::eMIPSAse_micromips;
SectionLoadList &section_load_list = GetSectionLoadList();
if (section_load_list.IsEmpty())
// No sections are loaded, so we must assume we are not running yet
// and need to operate only on file address.
m_images.ResolveFileAddress(addr, resolved_addr);
else
section_load_list.ResolveLoadAddress(addr, resolved_addr);
// Get the function boundaries to make sure we don't scan back before the
// beginning of the current function.
ModuleSP temp_addr_module_sp(resolved_addr.GetModule());
if (temp_addr_module_sp) {
SymbolContext sc;
uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol;
temp_addr_module_sp->ResolveSymbolContextForAddress(resolved_addr,
resolve_scope, sc);
Address sym_addr;
if (sc.function)
sym_addr = sc.function->GetAddressRange().GetBaseAddress();
else if (sc.symbol)
sym_addr = sc.symbol->GetAddress();
function_start = sym_addr.GetLoadAddress(this);
if (function_start == LLDB_INVALID_ADDRESS)
function_start = sym_addr.GetFileAddress();
if (function_start)
current_offset = addr - function_start;
}
// If breakpoint address is start of function then we dont have to do
// anything.
if (current_offset == 0)
return breakable_addr;
else
loop_count = current_offset / 2;
if (loop_count > 3) {
// Scan previous 6 bytes
if (IsMips16 | IsMicromips)
loop_count = 3;
// For mips-only, instructions are always 4 bytes, so scan previous 4
// bytes only.
else
loop_count = 2;
}
// Create Disassembler Instance
lldb::DisassemblerSP disasm_sp(
Disassembler::FindPlugin(m_arch, nullptr, nullptr));
ExecutionContext exe_ctx;
CalculateExecutionContext(exe_ctx);
InstructionList instruction_list;
InstructionSP prev_insn;
bool prefer_file_cache = true; // Read from file
uint32_t inst_to_choose = 0;
for (uint32_t i = 1; i <= loop_count; i++) {
// Adjust the address to read from.
resolved_addr.Slide(-2);
AddressRange range(resolved_addr, i * 2);
uint32_t insn_size = 0;
disasm_sp->ParseInstructions(&exe_ctx, range, nullptr, prefer_file_cache);
uint32_t num_insns = disasm_sp->GetInstructionList().GetSize();
if (num_insns) {
prev_insn = disasm_sp->GetInstructionList().GetInstructionAtIndex(0);
insn_size = prev_insn->GetOpcode().GetByteSize();
if (i == 1 && insn_size == 2) {
// This looks like a valid 2-byte instruction (but it could be a part
// of upper 4 byte instruction).
instruction_list.Append(prev_insn);
inst_to_choose = 1;
} else if (i == 2) {
// Here we may get one 4-byte instruction or two 2-byte instructions.
if (num_insns == 2) {
// Looks like there are two 2-byte instructions above our breakpoint
// target address.
// Now the upper 2-byte instruction is either a valid 2-byte
// instruction or could be a part of it's upper 4-byte instruction.
// In both cases we don't care because in this case lower 2-byte
// instruction is definitely a valid instruction
// and whatever i=1 iteration has found out is true.
inst_to_choose = 1;
break;
} else if (insn_size == 4) {
// This instruction claims its a valid 4-byte instruction. But it
// could be a part of it's upper 4-byte instruction.
// Lets try scanning upper 2 bytes to verify this.
instruction_list.Append(prev_insn);
inst_to_choose = 2;
}
} else if (i == 3) {
if (insn_size == 4)
// FIXME: We reached here that means instruction at [target - 4] has
// already claimed to be a 4-byte instruction,
// and now instruction at [target - 6] is also claiming that it's a
// 4-byte instruction. This can not be true.
// In this case we can not decide the valid previous instruction so
// we let lldb set the breakpoint at the address given by user.
inst_to_choose = 0;
else
// This is straight-forward
inst_to_choose = 2;
break;
}
} else {
// Decode failed, bytes do not form a valid instruction. So whatever
// previous iteration has found out is true.
if (i > 1) {
inst_to_choose = i - 1;
break;
}
}
}
// Check if we are able to find any valid instruction.
if (inst_to_choose) {
if (inst_to_choose > instruction_list.GetSize())
inst_to_choose--;
prev_insn = instruction_list.GetInstructionAtIndex(inst_to_choose - 1);
if (prev_insn->HasDelaySlot()) {
uint32_t shift_size = prev_insn->GetOpcode().GetByteSize();
// Adjust the breakable address
breakable_addr = addr - shift_size;
if (log)
log->Printf("Target::%s Breakpoint at 0x%8.8" PRIx64
" is adjusted to 0x%8.8" PRIx64 " due to delay slot\n",
__FUNCTION__, addr, breakable_addr);
}
}
break;
}
}
return breakable_addr;
}
SourceManager &Target::GetSourceManager() {
if (!m_source_manager_ap)
m_source_manager_ap.reset(new SourceManager(shared_from_this()));
return *m_source_manager_ap;
}
ClangModulesDeclVendor *Target::GetClangModulesDeclVendor() {
static std::mutex s_clang_modules_decl_vendor_mutex; // If this is contended
// we can make it
// per-target
{
std::lock_guard<std::mutex> guard(s_clang_modules_decl_vendor_mutex);
if (!m_clang_modules_decl_vendor_ap) {
m_clang_modules_decl_vendor_ap.reset(
ClangModulesDeclVendor::Create(*this));
}
}
return m_clang_modules_decl_vendor_ap.get();
}
Target::StopHookSP Target::CreateStopHook() {
lldb::user_id_t new_uid = ++m_stop_hook_next_id;
Target::StopHookSP stop_hook_sp(new StopHook(shared_from_this(), new_uid));
m_stop_hooks[new_uid] = stop_hook_sp;
return stop_hook_sp;
}
bool Target::RemoveStopHookByID(lldb::user_id_t user_id) {
size_t num_removed = m_stop_hooks.erase(user_id);
return (num_removed != 0);
}
void Target::RemoveAllStopHooks() { m_stop_hooks.clear(); }
Target::StopHookSP Target::GetStopHookByID(lldb::user_id_t user_id) {
StopHookSP found_hook;
StopHookCollection::iterator specified_hook_iter;
specified_hook_iter = m_stop_hooks.find(user_id);
if (specified_hook_iter != m_stop_hooks.end())
found_hook = (*specified_hook_iter).second;
return found_hook;
}
bool Target::SetStopHookActiveStateByID(lldb::user_id_t user_id,
bool active_state) {
StopHookCollection::iterator specified_hook_iter;
specified_hook_iter = m_stop_hooks.find(user_id);
if (specified_hook_iter == m_stop_hooks.end())
return false;
(*specified_hook_iter).second->SetIsActive(active_state);
return true;
}
void Target::SetAllStopHooksActiveState(bool active_state) {
StopHookCollection::iterator pos, end = m_stop_hooks.end();
for (pos = m_stop_hooks.begin(); pos != end; pos++) {
(*pos).second->SetIsActive(active_state);
}
}
void Target::RunStopHooks() {
if (m_suppress_stop_hooks)
return;
if (!m_process_sp)
return;
// <rdar://problem/12027563> make sure we check that we are not stopped
// because of us running a user expression
// since in that case we do not want to run the stop-hooks
if (m_process_sp->GetModIDRef().IsLastResumeForUserExpression())
return;
if (m_stop_hooks.empty())
return;
StopHookCollection::iterator pos, end = m_stop_hooks.end();
// If there aren't any active stop hooks, don't bother either:
bool any_active_hooks = false;
for (pos = m_stop_hooks.begin(); pos != end; pos++) {
if ((*pos).second->IsActive()) {
any_active_hooks = true;
break;
}
}
if (!any_active_hooks)
return;
CommandReturnObject result;
std::vector<ExecutionContext> exc_ctx_with_reasons;
std::vector<SymbolContext> sym_ctx_with_reasons;
ThreadList &cur_threadlist = m_process_sp->GetThreadList();
size_t num_threads = cur_threadlist.GetSize();
for (size_t i = 0; i < num_threads; i++) {
lldb::ThreadSP cur_thread_sp = cur_threadlist.GetThreadAtIndex(i);
if (cur_thread_sp->ThreadStoppedForAReason()) {
lldb::StackFrameSP cur_frame_sp = cur_thread_sp->GetStackFrameAtIndex(0);
exc_ctx_with_reasons.push_back(ExecutionContext(
m_process_sp.get(), cur_thread_sp.get(), cur_frame_sp.get()));
sym_ctx_with_reasons.push_back(
cur_frame_sp->GetSymbolContext(eSymbolContextEverything));
}
}
// If no threads stopped for a reason, don't run the stop-hooks.
size_t num_exe_ctx = exc_ctx_with_reasons.size();
if (num_exe_ctx == 0)
return;
result.SetImmediateOutputStream(m_debugger.GetAsyncOutputStream());
result.SetImmediateErrorStream(m_debugger.GetAsyncErrorStream());
bool keep_going = true;
bool hooks_ran = false;
bool print_hook_header = (m_stop_hooks.size() != 1);
bool print_thread_header = (num_exe_ctx != 1);
for (pos = m_stop_hooks.begin(); keep_going && pos != end; pos++) {
// result.Clear();
StopHookSP cur_hook_sp = (*pos).second;
if (!cur_hook_sp->IsActive())
continue;
bool any_thread_matched = false;
for (size_t i = 0; keep_going && i < num_exe_ctx; i++) {
if ((cur_hook_sp->GetSpecifier() == nullptr ||
cur_hook_sp->GetSpecifier()->SymbolContextMatches(
sym_ctx_with_reasons[i])) &&
(cur_hook_sp->GetThreadSpecifier() == nullptr ||
cur_hook_sp->GetThreadSpecifier()->ThreadPassesBasicTests(
exc_ctx_with_reasons[i].GetThreadRef()))) {
if (!hooks_ran) {
hooks_ran = true;
}
if (print_hook_header && !any_thread_matched) {
const char *cmd =
(cur_hook_sp->GetCommands().GetSize() == 1
? cur_hook_sp->GetCommands().GetStringAtIndex(0)
: nullptr);
if (cmd)
result.AppendMessageWithFormat("\n- Hook %" PRIu64 " (%s)\n",
cur_hook_sp->GetID(), cmd);
else
result.AppendMessageWithFormat("\n- Hook %" PRIu64 "\n",
cur_hook_sp->GetID());
any_thread_matched = true;
}
if (print_thread_header)
result.AppendMessageWithFormat(
"-- Thread %d\n",
exc_ctx_with_reasons[i].GetThreadPtr()->GetIndexID());
CommandInterpreterRunOptions options;
options.SetStopOnContinue(true);
options.SetStopOnError(true);
options.SetEchoCommands(false);
options.SetPrintResults(true);
options.SetAddToHistory(false);
GetDebugger().GetCommandInterpreter().HandleCommands(
cur_hook_sp->GetCommands(), &exc_ctx_with_reasons[i], options,
result);
// If the command started the target going again, we should bag out of
// running the stop hooks.
if ((result.GetStatus() == eReturnStatusSuccessContinuingNoResult) ||
(result.GetStatus() == eReturnStatusSuccessContinuingResult)) {
result.AppendMessageWithFormat("Aborting stop hooks, hook %" PRIu64
" set the program running.",
cur_hook_sp->GetID());
keep_going = false;
}
}
}
}
result.GetImmediateOutputStream()->Flush();
result.GetImmediateErrorStream()->Flush();
}
const TargetPropertiesSP &Target::GetGlobalProperties() {
// NOTE: intentional leak so we don't crash if global destructor chain gets
// called as other threads still use the result of this function
static TargetPropertiesSP *g_settings_sp_ptr =
new TargetPropertiesSP(new TargetProperties(nullptr));
return *g_settings_sp_ptr;
}
Status Target::Install(ProcessLaunchInfo *launch_info) {
Status error;
PlatformSP platform_sp(GetPlatform());
if (platform_sp) {
if (platform_sp->IsRemote()) {
if (platform_sp->IsConnected()) {
// Install all files that have an install path, and always install the
// main executable when connected to a remote platform
const ModuleList &modules = GetImages();
const size_t num_images = modules.GetSize();
for (size_t idx = 0; idx < num_images; ++idx) {
ModuleSP module_sp(modules.GetModuleAtIndex(idx));
if (module_sp) {
const bool is_main_executable = module_sp == GetExecutableModule();
FileSpec local_file(module_sp->GetFileSpec());
if (local_file) {
FileSpec remote_file(module_sp->GetRemoteInstallFileSpec());
if (!remote_file) {
if (is_main_executable) // TODO: add setting for always
// installing main executable???
{
// Always install the main executable
remote_file = platform_sp->GetRemoteWorkingDirectory();
remote_file.AppendPathComponent(
module_sp->GetFileSpec().GetFilename().GetCString());
}
}
if (remote_file) {
error = platform_sp->Install(local_file, remote_file);
if (error.Success()) {
module_sp->SetPlatformFileSpec(remote_file);
if (is_main_executable) {
platform_sp->SetFilePermissions(remote_file, 0700);
if (launch_info)
launch_info->SetExecutableFile(remote_file, false);
}
} else
break;
}
}
}
}
}
}
}
return error;
}
bool Target::ResolveLoadAddress(addr_t load_addr, Address &so_addr,
uint32_t stop_id) {
return m_section_load_history.ResolveLoadAddress(stop_id, load_addr, so_addr);
}
bool Target::ResolveFileAddress(lldb::addr_t file_addr,
Address &resolved_addr) {
return m_images.ResolveFileAddress(file_addr, resolved_addr);
}
bool Target::SetSectionLoadAddress(const SectionSP &section_sp,
addr_t new_section_load_addr,
bool warn_multiple) {
const addr_t old_section_load_addr =
m_section_load_history.GetSectionLoadAddress(
SectionLoadHistory::eStopIDNow, section_sp);
if (old_section_load_addr != new_section_load_addr) {
uint32_t stop_id = 0;
ProcessSP process_sp(GetProcessSP());
if (process_sp)
stop_id = process_sp->GetStopID();
else
stop_id = m_section_load_history.GetLastStopID();
if (m_section_load_history.SetSectionLoadAddress(
stop_id, section_sp, new_section_load_addr, warn_multiple))
return true; // Return true if the section load address was changed...
}
return false; // Return false to indicate nothing changed
}
size_t Target::UnloadModuleSections(const ModuleList &module_list) {
size_t section_unload_count = 0;
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; ++i) {
section_unload_count +=
UnloadModuleSections(module_list.GetModuleAtIndex(i));
}
return section_unload_count;
}
size_t Target::UnloadModuleSections(const lldb::ModuleSP &module_sp) {
uint32_t stop_id = 0;
ProcessSP process_sp(GetProcessSP());
if (process_sp)
stop_id = process_sp->GetStopID();
else
stop_id = m_section_load_history.GetLastStopID();
SectionList *sections = module_sp->GetSectionList();
size_t section_unload_count = 0;
if (sections) {
const uint32_t num_sections = sections->GetNumSections(0);
for (uint32_t i = 0; i < num_sections; ++i) {
section_unload_count += m_section_load_history.SetSectionUnloaded(
stop_id, sections->GetSectionAtIndex(i));
}
}
return section_unload_count;
}
bool Target::SetSectionUnloaded(const lldb::SectionSP &section_sp) {
uint32_t stop_id = 0;
ProcessSP process_sp(GetProcessSP());
if (process_sp)
stop_id = process_sp->GetStopID();
else
stop_id = m_section_load_history.GetLastStopID();
return m_section_load_history.SetSectionUnloaded(stop_id, section_sp);
}
bool Target::SetSectionUnloaded(const lldb::SectionSP &section_sp,
addr_t load_addr) {
uint32_t stop_id = 0;
ProcessSP process_sp(GetProcessSP());
if (process_sp)
stop_id = process_sp->GetStopID();
else
stop_id = m_section_load_history.GetLastStopID();
return m_section_load_history.SetSectionUnloaded(stop_id, section_sp,
load_addr);
}
void Target::ClearAllLoadedSections() { m_section_load_history.Clear(); }
Status Target::Launch(ProcessLaunchInfo &launch_info, Stream *stream) {
Status error;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_TARGET));
if (log)
log->Printf("Target::%s() called for %s", __FUNCTION__,
launch_info.GetExecutableFile().GetPath().c_str());
StateType state = eStateInvalid;
// Scope to temporarily get the process state in case someone has manually
// remotely connected already to a process and we can skip the platform
// launching.
{
ProcessSP process_sp(GetProcessSP());
if (process_sp) {
state = process_sp->GetState();
if (log)
log->Printf(
"Target::%s the process exists, and its current state is %s",
__FUNCTION__, StateAsCString(state));
} else {
if (log)
log->Printf("Target::%s the process instance doesn't currently exist.",
__FUNCTION__);
}
}
launch_info.GetFlags().Set(eLaunchFlagDebug);
// Get the value of synchronous execution here. If you wait till after you
// have started to
// run, then you could have hit a breakpoint, whose command might switch the
// value, and
// then you'll pick up that incorrect value.
Debugger &debugger = GetDebugger();
const bool synchronous_execution =
debugger.GetCommandInterpreter().GetSynchronous();
PlatformSP platform_sp(GetPlatform());
// Finalize the file actions, and if none were given, default to opening
// up a pseudo terminal
const bool default_to_use_pty = platform_sp ? platform_sp->IsHost() : false;
if (log)
log->Printf("Target::%s have platform=%s, platform_sp->IsHost()=%s, "
"default_to_use_pty=%s",
__FUNCTION__, platform_sp ? "true" : "false",
platform_sp ? (platform_sp->IsHost() ? "true" : "false")
: "n/a",
default_to_use_pty ? "true" : "false");
launch_info.FinalizeFileActions(this, default_to_use_pty);
if (state == eStateConnected) {
if (launch_info.GetFlags().Test(eLaunchFlagLaunchInTTY)) {
error.SetErrorString(
"can't launch in tty when launching through a remote connection");
return error;
}
}
if (!launch_info.GetArchitecture().IsValid())
launch_info.GetArchitecture() = GetArchitecture();
// If we're not already connected to the process, and if we have a platform
// that can launch a process for debugging, go ahead and do that here.
if (state != eStateConnected && platform_sp &&
platform_sp->CanDebugProcess()) {
if (log)
log->Printf("Target::%s asking the platform to debug the process",
__FUNCTION__);
// Get a weak pointer to the previous process if we have one
ProcessWP process_wp;
if (m_process_sp)
process_wp = m_process_sp;
m_process_sp =
GetPlatform()->DebugProcess(launch_info, debugger, this, error);
// Cleanup the old process since someone might still have a strong
// reference to this process and we would like to allow it to cleanup
// as much as it can without the object being destroyed. We try to
// lock the shared pointer and if that works, then someone else still
// has a strong reference to the process.
ProcessSP old_process_sp(process_wp.lock());
if (old_process_sp)
old_process_sp->Finalize();
} else {
if (log)
log->Printf("Target::%s the platform doesn't know how to debug a "
"process, getting a process plugin to do this for us.",
__FUNCTION__);
if (state == eStateConnected) {
assert(m_process_sp);
} else {
// Use a Process plugin to construct the process.
const char *plugin_name = launch_info.GetProcessPluginName();
CreateProcess(launch_info.GetListenerForProcess(debugger), plugin_name,
nullptr);
}
// Since we didn't have a platform launch the process, launch it here.
if (m_process_sp)
error = m_process_sp->Launch(launch_info);
}
if (!m_process_sp) {
if (error.Success())
error.SetErrorString("failed to launch or debug process");
return error;
}
if (error.Success()) {
if (synchronous_execution ||
!launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) {
ListenerSP hijack_listener_sp(launch_info.GetHijackListener());
if (!hijack_listener_sp) {
hijack_listener_sp =
Listener::MakeListener("lldb.Target.Launch.hijack");
launch_info.SetHijackListener(hijack_listener_sp);
m_process_sp->HijackProcessEvents(hijack_listener_sp);
}
StateType state = m_process_sp->WaitForProcessToStop(
llvm::None, nullptr, false, hijack_listener_sp, nullptr);
if (state == eStateStopped) {
if (!launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) {
if (synchronous_execution) {
error = m_process_sp->PrivateResume();
if (error.Success()) {
state = m_process_sp->WaitForProcessToStop(
llvm::None, nullptr, true, hijack_listener_sp, stream);
const bool must_be_alive =
false; // eStateExited is ok, so this must be false
if (!StateIsStoppedState(state, must_be_alive)) {
error.SetErrorStringWithFormat("process isn't stopped: %s",
StateAsCString(state));
}
}
} else {
m_process_sp->RestoreProcessEvents();
error = m_process_sp->PrivateResume();
}
if (!error.Success()) {
Status error2;
error2.SetErrorStringWithFormat(
"process resume at entry point failed: %s", error.AsCString());
error = error2;
}
}
} else if (state == eStateExited) {
bool with_shell = !!launch_info.GetShell();
const int exit_status = m_process_sp->GetExitStatus();
const char *exit_desc = m_process_sp->GetExitDescription();
#define LAUNCH_SHELL_MESSAGE \
"\n'r' and 'run' are aliases that default to launching through a " \
"shell.\nTry launching without going through a shell by using 'process " \
"launch'."
if (exit_desc && exit_desc[0]) {
if (with_shell)
error.SetErrorStringWithFormat(
"process exited with status %i (%s)" LAUNCH_SHELL_MESSAGE,
exit_status, exit_desc);
else
error.SetErrorStringWithFormat("process exited with status %i (%s)",
exit_status, exit_desc);
} else {
if (with_shell)
error.SetErrorStringWithFormat(
"process exited with status %i" LAUNCH_SHELL_MESSAGE,
exit_status);
else
error.SetErrorStringWithFormat("process exited with status %i",
exit_status);
}
} else {
error.SetErrorStringWithFormat(
"initial process state wasn't stopped: %s", StateAsCString(state));
}
}
m_process_sp->RestoreProcessEvents();
} else {
Status error2;
error2.SetErrorStringWithFormat("process launch failed: %s",
error.AsCString());
error = error2;
}
return error;
}
Status Target::Attach(ProcessAttachInfo &attach_info, Stream *stream) {
auto state = eStateInvalid;
auto process_sp = GetProcessSP();
if (process_sp) {
state = process_sp->GetState();
if (process_sp->IsAlive() && state != eStateConnected) {
if (state == eStateAttaching)
return Status("process attach is in progress");
return Status("a process is already being debugged");
}
}
const ModuleSP old_exec_module_sp = GetExecutableModule();
// If no process info was specified, then use the target executable
// name as the process to attach to by default
if (!attach_info.ProcessInfoSpecified()) {
if (old_exec_module_sp)
attach_info.GetExecutableFile().GetFilename() =
old_exec_module_sp->GetPlatformFileSpec().GetFilename();
if (!attach_info.ProcessInfoSpecified()) {
return Status("no process specified, create a target with a file, or "
"specify the --pid or --name");
}
}
const auto platform_sp =
GetDebugger().GetPlatformList().GetSelectedPlatform();
ListenerSP hijack_listener_sp;
const bool async = attach_info.GetAsync();
if (!async) {
hijack_listener_sp =
Listener::MakeListener("lldb.Target.Attach.attach.hijack");
attach_info.SetHijackListener(hijack_listener_sp);
}
Status error;
if (state != eStateConnected && platform_sp != nullptr &&
platform_sp->CanDebugProcess()) {
SetPlatform(platform_sp);
process_sp = platform_sp->Attach(attach_info, GetDebugger(), this, error);
} else {
if (state != eStateConnected) {
const char *plugin_name = attach_info.GetProcessPluginName();
process_sp =
CreateProcess(attach_info.GetListenerForProcess(GetDebugger()),
plugin_name, nullptr);
if (process_sp == nullptr) {
error.SetErrorStringWithFormat(
"failed to create process using plugin %s",
(plugin_name) ? plugin_name : "null");
return error;
}
}
if (hijack_listener_sp)
process_sp->HijackProcessEvents(hijack_listener_sp);
error = process_sp->Attach(attach_info);
}
if (error.Success() && process_sp) {
if (async) {
process_sp->RestoreProcessEvents();
} else {
state = process_sp->WaitForProcessToStop(
llvm::None, nullptr, false, attach_info.GetHijackListener(), stream);
process_sp->RestoreProcessEvents();
if (state != eStateStopped) {
const char *exit_desc = process_sp->GetExitDescription();
if (exit_desc)
error.SetErrorStringWithFormat("%s", exit_desc);
else
error.SetErrorString(
"process did not stop (no such process or permission problem?)");
process_sp->Destroy(false);
}
}
}
return error;
}
//--------------------------------------------------------------
// Target::StopHook
//--------------------------------------------------------------
Target::StopHook::StopHook(lldb::TargetSP target_sp, lldb::user_id_t uid)
: UserID(uid), m_target_sp(target_sp), m_commands(), m_specifier_sp(),
m_thread_spec_ap(), m_active(true) {}
Target::StopHook::StopHook(const StopHook &rhs)
: UserID(rhs.GetID()), m_target_sp(rhs.m_target_sp),
m_commands(rhs.m_commands), m_specifier_sp(rhs.m_specifier_sp),
m_thread_spec_ap(), m_active(rhs.m_active) {
if (rhs.m_thread_spec_ap)
m_thread_spec_ap.reset(new ThreadSpec(*rhs.m_thread_spec_ap.get()));
}
Target::StopHook::~StopHook() = default;
void Target::StopHook::SetSpecifier(SymbolContextSpecifier *specifier) {
m_specifier_sp.reset(specifier);
}
void Target::StopHook::SetThreadSpecifier(ThreadSpec *specifier) {
m_thread_spec_ap.reset(specifier);
}
void Target::StopHook::GetDescription(Stream *s,
lldb::DescriptionLevel level) const {
int indent_level = s->GetIndentLevel();
s->SetIndentLevel(indent_level + 2);
s->Printf("Hook: %" PRIu64 "\n", GetID());
if (m_active)
s->Indent("State: enabled\n");
else
s->Indent("State: disabled\n");
if (m_specifier_sp) {
s->Indent();
s->PutCString("Specifier:\n");
s->SetIndentLevel(indent_level + 4);
m_specifier_sp->GetDescription(s, level);
s->SetIndentLevel(indent_level + 2);
}
if (m_thread_spec_ap) {
StreamString tmp;
s->Indent("Thread:\n");
m_thread_spec_ap->GetDescription(&tmp, level);
s->SetIndentLevel(indent_level + 4);
s->Indent(tmp.GetString());
s->PutCString("\n");
s->SetIndentLevel(indent_level + 2);
}
s->Indent("Commands: \n");
s->SetIndentLevel(indent_level + 4);
uint32_t num_commands = m_commands.GetSize();
for (uint32_t i = 0; i < num_commands; i++) {
s->Indent(m_commands.GetStringAtIndex(i));
s->PutCString("\n");
}
s->SetIndentLevel(indent_level);
}
//--------------------------------------------------------------
// class TargetProperties
//--------------------------------------------------------------
OptionEnumValueElement lldb_private::g_dynamic_value_types[] = {
{eNoDynamicValues, "no-dynamic-values",
"Don't calculate the dynamic type of values"},
{eDynamicCanRunTarget, "run-target", "Calculate the dynamic type of values "
"even if you have to run the target."},
{eDynamicDontRunTarget, "no-run-target",
"Calculate the dynamic type of values, but don't run the target."},
{0, nullptr, nullptr}};
static OptionEnumValueElement g_inline_breakpoint_enums[] = {
{eInlineBreakpointsNever, "never", "Never look for inline breakpoint "
"locations (fastest). This setting "
"should only be used if you know that "
"no inlining occurs in your programs."},
{eInlineBreakpointsHeaders, "headers",
"Only check for inline breakpoint locations when setting breakpoints in "
"header files, but not when setting breakpoint in implementation source "
"files (default)."},
{eInlineBreakpointsAlways, "always",
"Always look for inline breakpoint locations when setting file and line "
"breakpoints (slower but most accurate)."},
{0, nullptr, nullptr}};
typedef enum x86DisassemblyFlavor {
eX86DisFlavorDefault,
eX86DisFlavorIntel,
eX86DisFlavorATT
} x86DisassemblyFlavor;
static OptionEnumValueElement g_x86_dis_flavor_value_types[] = {
{eX86DisFlavorDefault, "default", "Disassembler default (currently att)."},
{eX86DisFlavorIntel, "intel", "Intel disassembler flavor."},
{eX86DisFlavorATT, "att", "AT&T disassembler flavor."},
{0, nullptr, nullptr}};
static OptionEnumValueElement g_hex_immediate_style_values[] = {
{Disassembler::eHexStyleC, "c", "C-style (0xffff)."},
{Disassembler::eHexStyleAsm, "asm", "Asm-style (0ffffh)."},
{0, nullptr, nullptr}};
static OptionEnumValueElement g_load_script_from_sym_file_values[] = {
{eLoadScriptFromSymFileTrue, "true",
"Load debug scripts inside symbol files"},
{eLoadScriptFromSymFileFalse, "false",
"Do not load debug scripts inside symbol files."},
{eLoadScriptFromSymFileWarn, "warn",
"Warn about debug scripts inside symbol files but do not load them."},
{0, nullptr, nullptr}};
static OptionEnumValueElement g_load_current_working_dir_lldbinit_values[] = {
{eLoadCWDlldbinitTrue, "true",
"Load .lldbinit files from current directory"},
{eLoadCWDlldbinitFalse, "false",
"Do not load .lldbinit files from current directory"},
{eLoadCWDlldbinitWarn, "warn",
"Warn about loading .lldbinit files from current directory"},
{0, nullptr, nullptr}};
static OptionEnumValueElement g_memory_module_load_level_values[] = {
{eMemoryModuleLoadLevelMinimal, "minimal",
"Load minimal information when loading modules from memory. Currently "
"this setting loads sections only."},
{eMemoryModuleLoadLevelPartial, "partial",
"Load partial information when loading modules from memory. Currently "
"this setting loads sections and function bounds."},
{eMemoryModuleLoadLevelComplete, "complete",
"Load complete information when loading modules from memory. Currently "
"this setting loads sections and all symbols."},
{0, nullptr, nullptr}};
static PropertyDefinition g_properties[] = {
{"default-arch", OptionValue::eTypeArch, true, 0, nullptr, nullptr,
"Default architecture to choose, when there's a choice."},
{"move-to-nearest-code", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "Move breakpoints to nearest code."},
{"language", OptionValue::eTypeLanguage, false, eLanguageTypeUnknown,
nullptr, nullptr,
"The language to use when interpreting expressions entered in commands."},
{"expr-prefix", OptionValue::eTypeFileSpec, false, 0, nullptr, nullptr,
"Path to a file containing expressions to be prepended to all "
"expressions."},
{"prefer-dynamic-value", OptionValue::eTypeEnum, false,
eDynamicDontRunTarget, nullptr, g_dynamic_value_types,
"Should printed values be shown as their dynamic value."},
{"enable-synthetic-value", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "Should synthetic values be used by default whenever available."},
{"skip-prologue", OptionValue::eTypeBoolean, false, true, nullptr, nullptr,
"Skip function prologues when setting breakpoints by name."},
{"source-map", OptionValue::eTypePathMap, false, 0, nullptr, nullptr,
"Source path remappings are used to track the change of location between "
"a source file when built, and "
"where it exists on the current system. It consists of an array of "
"duples, the first element of each duple is "
"some part (starting at the root) of the path to the file when it was "
"built, "
"and the second is where the remainder of the original build hierarchy is "
"rooted on the local system. "
"Each element of the array is checked in order and the first one that "
"results in a match wins."},
{"exec-search-paths", OptionValue::eTypeFileSpecList, false, 0, nullptr,
nullptr, "Executable search paths to use when locating executable files "
"whose paths don't match the local file system."},
{"debug-file-search-paths", OptionValue::eTypeFileSpecList, false, 0,
nullptr, nullptr,
"List of directories to be searched when locating debug symbol files."},
{"clang-module-search-paths", OptionValue::eTypeFileSpecList, false, 0,
nullptr, nullptr,
"List of directories to be searched when locating modules for Clang."},
{"auto-import-clang-modules", OptionValue::eTypeBoolean, false, true,
nullptr, nullptr,
"Automatically load Clang modules referred to by the program."},
{"auto-apply-fixits", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "Automatically apply fix-it hints to expressions."},
{"notify-about-fixits", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "Print the fixed expression text."},
{"save-jit-objects", OptionValue::eTypeBoolean, false, false, nullptr,
nullptr, "Save intermediate object files generated by the LLVM JIT"},
{"max-children-count", OptionValue::eTypeSInt64, false, 256, nullptr,
nullptr, "Maximum number of children to expand in any level of depth."},
{"max-string-summary-length", OptionValue::eTypeSInt64, false, 1024,
nullptr, nullptr,
"Maximum number of characters to show when using %s in summary strings."},
{"max-memory-read-size", OptionValue::eTypeSInt64, false, 1024, nullptr,
nullptr, "Maximum number of bytes that 'memory read' will fetch before "
"--force must be specified."},
{"breakpoints-use-platform-avoid-list", OptionValue::eTypeBoolean, false,
true, nullptr, nullptr, "Consult the platform module avoid list when "
"setting non-module specific breakpoints."},
{"arg0", OptionValue::eTypeString, false, 0, nullptr, nullptr,
"The first argument passed to the program in the argument array which can "
"be different from the executable itself."},
{"run-args", OptionValue::eTypeArgs, false, 0, nullptr, nullptr,
"A list containing all the arguments to be passed to the executable when "
"it is run. Note that this does NOT include the argv[0] which is in "
"target.arg0."},
{"env-vars", OptionValue::eTypeDictionary, false, OptionValue::eTypeString,
nullptr, nullptr, "A list of all the environment variables to be passed "
"to the executable's environment, and their values."},
{"inherit-env", OptionValue::eTypeBoolean, false, true, nullptr, nullptr,
"Inherit the environment from the process that is running LLDB."},
{"input-path", OptionValue::eTypeFileSpec, false, 0, nullptr, nullptr,
"The file/path to be used by the executable program for reading its "
"standard input."},
{"output-path", OptionValue::eTypeFileSpec, false, 0, nullptr, nullptr,
"The file/path to be used by the executable program for writing its "
"standard output."},
{"error-path", OptionValue::eTypeFileSpec, false, 0, nullptr, nullptr,
"The file/path to be used by the executable program for writing its "
"standard error."},
{"detach-on-error", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "debugserver will detach (rather than killing) a process if it "
"loses connection with lldb."},
{"preload-symbols", OptionValue::eTypeBoolean, false, true, nullptr, nullptr,
"Enable loading of symbol tables before they are needed."},
{"disable-aslr", OptionValue::eTypeBoolean, false, true, nullptr, nullptr,
"Disable Address Space Layout Randomization (ASLR)"},
{"disable-stdio", OptionValue::eTypeBoolean, false, false, nullptr, nullptr,
"Disable stdin/stdout for process (e.g. for a GUI application)"},
{"inline-breakpoint-strategy", OptionValue::eTypeEnum, false,
eInlineBreakpointsAlways, nullptr, g_inline_breakpoint_enums,
"The strategy to use when settings breakpoints by file and line. "
"Breakpoint locations can end up being inlined by the compiler, so that a "
"compile unit 'a.c' might contain an inlined function from another source "
"file. "
"Usually this is limited to breakpoint locations from inlined functions "
"from header or other include files, or more accurately "
"non-implementation source files. "
"Sometimes code might #include implementation files and cause inlined "
"breakpoint locations in inlined implementation files. "
"Always checking for inlined breakpoint locations can be expensive "
"(memory and time), so if you have a project with many headers "
"and find that setting breakpoints is slow, then you can change this "
"setting to headers. "
"This setting allows you to control exactly which strategy is used when "
"setting "
"file and line breakpoints."},
// FIXME: This is the wrong way to do per-architecture settings, but we
// don't have a general per architecture settings system in place yet.
{"x86-disassembly-flavor", OptionValue::eTypeEnum, false,
eX86DisFlavorDefault, nullptr, g_x86_dis_flavor_value_types,
"The default disassembly flavor to use for x86 or x86-64 targets."},
{"use-hex-immediates", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "Show immediates in disassembly as hexadecimal."},
{"hex-immediate-style", OptionValue::eTypeEnum, false,
Disassembler::eHexStyleC, nullptr, g_hex_immediate_style_values,
"Which style to use for printing hexadecimal disassembly values."},
{"use-fast-stepping", OptionValue::eTypeBoolean, false, true, nullptr,
nullptr, "Use a fast stepping algorithm based on running from branch to "
"branch rather than instruction single-stepping."},
{"load-script-from-symbol-file", OptionValue::eTypeEnum, false,
eLoadScriptFromSymFileWarn, nullptr, g_load_script_from_sym_file_values,
"Allow LLDB to load scripting resources embedded in symbol files when "
"available."},
{"load-cwd-lldbinit", OptionValue::eTypeEnum, false, eLoadCWDlldbinitWarn,
nullptr, g_load_current_working_dir_lldbinit_values,
"Allow LLDB to .lldbinit files from the current directory automatically."},
{"memory-module-load-level", OptionValue::eTypeEnum, false,
eMemoryModuleLoadLevelComplete, nullptr, g_memory_module_load_level_values,
"Loading modules from memory can be slow as reading the symbol tables and "
"other data can take a long time depending on your connection to the "
"debug target. "
"This setting helps users control how much information gets loaded when "
"loading modules from memory."
"'complete' is the default value for this setting which will load all "
"sections and symbols by reading them from memory (slowest, most "
"accurate). "
"'partial' will load sections and attempt to find function bounds without "
"downloading the symbol table (faster, still accurate, missing symbol "
"names). "
"'minimal' is the fastest setting and will load section data with no "
"symbols, but should rarely be used as stack frames in these memory "
"regions will be inaccurate and not provide any context (fastest). "},
{"display-expression-in-crashlogs", OptionValue::eTypeBoolean, false, false,
nullptr, nullptr, "Expressions that crash will show up in crash logs if "
"the host system supports executable specific crash log "
"strings and this setting is set to true."},
{"trap-handler-names", OptionValue::eTypeArray, true,
OptionValue::eTypeString, nullptr, nullptr,
"A list of trap handler function names, e.g. a common Unix user process "
"one is _sigtramp."},
{"display-runtime-support-values", OptionValue::eTypeBoolean, false, false,
nullptr, nullptr, "If true, LLDB will show variables that are meant to "
"support the operation of a language's runtime "
"support."},
{"non-stop-mode", OptionValue::eTypeBoolean, false, 0, nullptr, nullptr,
"Disable lock-step debugging, instead control threads independently."},
{nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}};
enum {
ePropertyDefaultArch,
ePropertyMoveToNearestCode,
ePropertyLanguage,
ePropertyExprPrefix,
ePropertyPreferDynamic,
ePropertyEnableSynthetic,
ePropertySkipPrologue,
ePropertySourceMap,
ePropertyExecutableSearchPaths,
ePropertyDebugFileSearchPaths,
ePropertyClangModuleSearchPaths,
ePropertyAutoImportClangModules,
ePropertyAutoApplyFixIts,
ePropertyNotifyAboutFixIts,
ePropertySaveObjects,
ePropertyMaxChildrenCount,
ePropertyMaxSummaryLength,
ePropertyMaxMemReadSize,
ePropertyBreakpointUseAvoidList,
ePropertyArg0,
ePropertyRunArgs,
ePropertyEnvVars,
ePropertyInheritEnv,
ePropertyInputPath,
ePropertyOutputPath,
ePropertyErrorPath,
ePropertyDetachOnError,
ePropertyPreloadSymbols,
ePropertyDisableASLR,
ePropertyDisableSTDIO,
ePropertyInlineStrategy,
ePropertyDisassemblyFlavor,
ePropertyUseHexImmediates,
ePropertyHexImmediateStyle,
ePropertyUseFastStepping,
ePropertyLoadScriptFromSymbolFile,
ePropertyLoadCWDlldbinitFile,
ePropertyMemoryModuleLoadLevel,
ePropertyDisplayExpressionsInCrashlogs,
ePropertyTrapHandlerNames,
ePropertyDisplayRuntimeSupportValues,
ePropertyNonStopModeEnabled,
ePropertyExperimental
};
Added new target instance settings for execution settings: Targets can now specify some additional parameters for when we debug executables that can help with plug-in selection: target.execution-level = auto | user | kernel target.execution-mode = auto | dynamic | static target.execution-os-type = auto | none | halted | live On some systems, the binaries that are created are the same wether you use them to debug a kernel, or a user space program. Many times inspecting an object file can reveal what an executable should be. For these cases we can now be a little more complete by specifying wether to detect all of these things automatically (inspect the main executable file and select a plug-in accordingly), or manually to force the selection of certain plug-ins. To do this we now allow the specficifation of wether one is debugging a user space program (target.execution-level = user) or a kernel program (target.execution-level = kernel). We can also specify if we want to debug a program where shared libraries are dynamically loaded using a DynamicLoader plug-in (target.execution-mode = dynamic), or wether we will treat all symbol files as already linked at the correct address (target.execution-mode = static). We can also specify if the inferior we are debugging is being debugged on a bare board (target.execution-os-type = none), or debugging an OS where we have a JTAG or other direct connection to the inferior stops the entire OS (target.execution-os-type = halted), or if we are debugging a program on something that has live debug services (target.execution-os-type = live). For the "target.execution-os-type = halted" mode, we will need to create ProcessHelper plug-ins that allow us to extract the process/thread and other OS information by reading/writing memory. This should allow LLDB to be used for a wide variety of debugging tasks and handle them all correctly. llvm-svn: 125815
2011-02-18 09:44:25 +08:00
class TargetOptionValueProperties : public OptionValueProperties {
public:
TargetOptionValueProperties(const ConstString &name)
: OptionValueProperties(name), m_target(nullptr), m_got_host_env(false) {}
// This constructor is used when creating TargetOptionValueProperties when it
// is part of a new lldb_private::Target instance. It will copy all current
// global property values as needed
TargetOptionValueProperties(Target *target,
const TargetPropertiesSP &target_properties_sp)
: OptionValueProperties(*target_properties_sp->GetValueProperties()),
m_target(target), m_got_host_env(false) {}
const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
bool will_modify,
uint32_t idx) const override {
// When getting the value for a key from the target options, we will always
// try and grab the setting from the current target if there is one. Else we
// just
// use the one from this instance.
if (idx == ePropertyEnvVars)
GetHostEnvironmentIfNeeded();
if (exe_ctx) {
Target *target = exe_ctx->GetTargetPtr();
if (target) {
TargetOptionValueProperties *target_properties =
static_cast<TargetOptionValueProperties *>(
target->GetValueProperties().get());
if (this != target_properties)
return target_properties->ProtectedGetPropertyAtIndex(idx);
}
}
return ProtectedGetPropertyAtIndex(idx);
}
lldb::TargetSP GetTargetSP() { return m_target->shared_from_this(); }
Added new target instance settings for execution settings: Targets can now specify some additional parameters for when we debug executables that can help with plug-in selection: target.execution-level = auto | user | kernel target.execution-mode = auto | dynamic | static target.execution-os-type = auto | none | halted | live On some systems, the binaries that are created are the same wether you use them to debug a kernel, or a user space program. Many times inspecting an object file can reveal what an executable should be. For these cases we can now be a little more complete by specifying wether to detect all of these things automatically (inspect the main executable file and select a plug-in accordingly), or manually to force the selection of certain plug-ins. To do this we now allow the specficifation of wether one is debugging a user space program (target.execution-level = user) or a kernel program (target.execution-level = kernel). We can also specify if we want to debug a program where shared libraries are dynamically loaded using a DynamicLoader plug-in (target.execution-mode = dynamic), or wether we will treat all symbol files as already linked at the correct address (target.execution-mode = static). We can also specify if the inferior we are debugging is being debugged on a bare board (target.execution-os-type = none), or debugging an OS where we have a JTAG or other direct connection to the inferior stops the entire OS (target.execution-os-type = halted), or if we are debugging a program on something that has live debug services (target.execution-os-type = live). For the "target.execution-os-type = halted" mode, we will need to create ProcessHelper plug-ins that allow us to extract the process/thread and other OS information by reading/writing memory. This should allow LLDB to be used for a wide variety of debugging tasks and handle them all correctly. llvm-svn: 125815
2011-02-18 09:44:25 +08:00
protected:
void GetHostEnvironmentIfNeeded() const {
if (!m_got_host_env) {
if (m_target) {
m_got_host_env = true;
const uint32_t idx = ePropertyInheritEnv;
if (GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0)) {
PlatformSP platform_sp(m_target->GetPlatform());
if (platform_sp) {
StringList env;
if (platform_sp->GetEnvironment(env)) {
OptionValueDictionary *env_dict =
GetPropertyAtIndexAsOptionValueDictionary(nullptr,
ePropertyEnvVars);
if (env_dict) {
const bool can_replace = false;
const size_t envc = env.GetSize();
for (size_t idx = 0; idx < envc; idx++) {
const char *env_entry = env.GetStringAtIndex(idx);
if (env_entry) {
const char *equal_pos = ::strchr(env_entry, '=');
ConstString key;
// It is ok to have environment variables with no values
const char *value = nullptr;
if (equal_pos) {
key.SetCStringWithLength(env_entry,
equal_pos - env_entry);
if (equal_pos[1])
value = equal_pos + 1;
} else {
key.SetCString(env_entry);
}
// Don't allow existing keys to be replaced with ones we get
// from the platform environment
env_dict->SetValueForKey(
key, OptionValueSP(new OptionValueString(value)),
can_replace);
}
}
}
}
}
}
}
}
}
Target *m_target;
mutable bool m_got_host_env;
};
//----------------------------------------------------------------------
// TargetProperties
//----------------------------------------------------------------------
static PropertyDefinition g_experimental_properties[]{
{"inject-local-vars", OptionValue::eTypeBoolean, true, true, nullptr,
nullptr,
"If true, inject local variables explicitly into the expression text. "
"This will fix symbol resolution when there are name collisions between "
"ivars and local variables. "
"But it can make expressions run much more slowly."},
{nullptr, OptionValue::eTypeInvalid, true, 0, nullptr, nullptr, nullptr}};
enum { ePropertyInjectLocalVars = 0 };
class TargetExperimentalOptionValueProperties : public OptionValueProperties {
public:
TargetExperimentalOptionValueProperties()
: OptionValueProperties(
ConstString(Properties::GetExperimentalSettingsName())) {}
};
TargetExperimentalProperties::TargetExperimentalProperties()
: Properties(OptionValuePropertiesSP(
new TargetExperimentalOptionValueProperties())) {
m_collection_sp->Initialize(g_experimental_properties);
}
//----------------------------------------------------------------------
// TargetProperties
//----------------------------------------------------------------------
TargetProperties::TargetProperties(Target *target)
: Properties(), m_launch_info() {
if (target) {
m_collection_sp.reset(
new TargetOptionValueProperties(target, Target::GetGlobalProperties()));
// Set callbacks to update launch_info whenever "settins set" updated any of
// these properties
m_collection_sp->SetValueChangedCallback(
ePropertyArg0, TargetProperties::Arg0ValueChangedCallback, this);
m_collection_sp->SetValueChangedCallback(
ePropertyRunArgs, TargetProperties::RunArgsValueChangedCallback, this);
m_collection_sp->SetValueChangedCallback(
ePropertyEnvVars, TargetProperties::EnvVarsValueChangedCallback, this);
m_collection_sp->SetValueChangedCallback(
ePropertyInputPath, TargetProperties::InputPathValueChangedCallback,
this);
m_collection_sp->SetValueChangedCallback(
ePropertyOutputPath, TargetProperties::OutputPathValueChangedCallback,
this);
m_collection_sp->SetValueChangedCallback(
ePropertyErrorPath, TargetProperties::ErrorPathValueChangedCallback,
this);
m_collection_sp->SetValueChangedCallback(
ePropertyDetachOnError,
TargetProperties::DetachOnErrorValueChangedCallback, this);
m_collection_sp->SetValueChangedCallback(
ePropertyDisableASLR, TargetProperties::DisableASLRValueChangedCallback,
this);
m_collection_sp->SetValueChangedCallback(
ePropertyDisableSTDIO,
TargetProperties::DisableSTDIOValueChangedCallback, this);
m_experimental_properties_up.reset(new TargetExperimentalProperties());
m_collection_sp->AppendProperty(
ConstString(Properties::GetExperimentalSettingsName()),
ConstString("Experimental settings - setting these won't produce "
"errors if the setting is not present."),
true, m_experimental_properties_up->GetValueProperties());
// Update m_launch_info once it was created
Arg0ValueChangedCallback(this, nullptr);
RunArgsValueChangedCallback(this, nullptr);
// EnvVarsValueChangedCallback(this, nullptr); // FIXME: cause segfault in
// Target::GetPlatform()
InputPathValueChangedCallback(this, nullptr);
OutputPathValueChangedCallback(this, nullptr);
ErrorPathValueChangedCallback(this, nullptr);
DetachOnErrorValueChangedCallback(this, nullptr);
DisableASLRValueChangedCallback(this, nullptr);
DisableSTDIOValueChangedCallback(this, nullptr);
} else {
m_collection_sp.reset(
new TargetOptionValueProperties(ConstString("target")));
m_collection_sp->Initialize(g_properties);
m_experimental_properties_up.reset(new TargetExperimentalProperties());
m_collection_sp->AppendProperty(
ConstString(Properties::GetExperimentalSettingsName()),
ConstString("Experimental settings - setting these won't produce "
"errors if the setting is not present."),
true, m_experimental_properties_up->GetValueProperties());
m_collection_sp->AppendProperty(
ConstString("process"), ConstString("Settings specific to processes."),
true, Process::GetGlobalProperties()->GetValueProperties());
}
}
TargetProperties::~TargetProperties() = default;
bool TargetProperties::GetInjectLocalVariables(
ExecutionContext *exe_ctx) const {
const Property *exp_property = m_collection_sp->GetPropertyAtIndex(
exe_ctx, false, ePropertyExperimental);
OptionValueProperties *exp_values =
exp_property->GetValue()->GetAsProperties();
if (exp_values)
return exp_values->GetPropertyAtIndexAsBoolean(
exe_ctx, ePropertyInjectLocalVars, true);
else
return true;
}
void TargetProperties::SetInjectLocalVariables(ExecutionContext *exe_ctx,
bool b) {
const Property *exp_property =
m_collection_sp->GetPropertyAtIndex(exe_ctx, true, ePropertyExperimental);
OptionValueProperties *exp_values =
exp_property->GetValue()->GetAsProperties();
if (exp_values)
exp_values->SetPropertyAtIndexAsBoolean(exe_ctx, ePropertyInjectLocalVars,
true);
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
}
Did some work on the "register read" command to only show the first register set by default when dumping registers. If you want to see all of the register sets you can use the "--all" option: (lldb) register read --all If you want to just see some register sets, you can currently specify them by index: (lldb) register read --set 0 --set 2 We need to get shorter register set names soon so we can specify the register sets by name without having to type too much. I will make this change soon. You can also have any integer encoded registers resolve the address values back to any code or data from the object files using the "--lookup" option. Below is sample output when stopped in the libc function "puts" with some const strings in registers: Process 8973 stopped * thread #1: tid = 0x2c03, 0x00007fff828fa30f libSystem.B.dylib`puts + 1, stop reason = instruction step into frame #0: 0x00007fff828fa30f libSystem.B.dylib`puts + 1 (lldb) register read --lookup General Purpose Registers: rax = 0x0000000100000e98 "----------------------------------------------------------------------" rbx = 0x0000000000000000 rcx = 0x0000000000000001 rdx = 0x0000000000000000 rdi = 0x0000000100000e98 "----------------------------------------------------------------------" rsi = 0x0000000100800000 rbp = 0x00007fff5fbff710 rsp = 0x00007fff5fbff280 r8 = 0x0000000000000040 r9 = 0x0000000000000000 r10 = 0x0000000000000000 r11 = 0x0000000000000246 r12 = 0x0000000000000000 r13 = 0x0000000000000000 r14 = 0x0000000000000000 r15 = 0x0000000000000000 rip = 0x00007fff828fa30f libSystem.B.dylib`puts + 1 rflags = 0x0000000000000246 cs = 0x0000000000000027 fs = 0x0000000000000000 gs = 0x0000000000000000 As we can see, we see two constant strings and the PC (register "rip") is showing the code it resolves to. I fixed the register "--format" option to work as expected. Added a setting to disable skipping the function prologue when setting breakpoints as a target settings variable: (lldb) settings set target.skip-prologue false Updated the user settings controller boolean value handler funciton to be able to take the default value so it can correctly respond to the eVarSetOperationClear operation. Did some usability work on the OptionValue classes. Fixed the "image lookup" command to correctly respond to the "--verbose" option and display the detailed symbol context information when looking up line table entries and functions by name. This previously was only working for address lookups. llvm-svn: 129977
2011-04-22 11:55:06 +08:00
ArchSpec TargetProperties::GetDefaultArchitecture() const {
OptionValueArch *value = m_collection_sp->GetPropertyAtIndexAsOptionValueArch(
nullptr, ePropertyDefaultArch);
if (value)
return value->GetCurrentValue();
return ArchSpec();
}
void TargetProperties::SetDefaultArchitecture(const ArchSpec &arch) {
OptionValueArch *value = m_collection_sp->GetPropertyAtIndexAsOptionValueArch(
nullptr, ePropertyDefaultArch);
if (value)
return value->SetCurrentValue(arch, true);
}
bool TargetProperties::GetMoveToNearestCode() const {
const uint32_t idx = ePropertyMoveToNearestCode;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
lldb::DynamicValueType TargetProperties::GetPreferDynamicValue() const {
const uint32_t idx = ePropertyPreferDynamic;
return (lldb::DynamicValueType)
m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
}
bool TargetProperties::SetPreferDynamicValue(lldb::DynamicValueType d) {
const uint32_t idx = ePropertyPreferDynamic;
return m_collection_sp->SetPropertyAtIndexAsEnumeration(nullptr, idx, d);
}
bool TargetProperties::GetPreloadSymbols() const {
const uint32_t idx = ePropertyPreloadSymbols;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
void TargetProperties::SetPreloadSymbols(bool b) {
const uint32_t idx = ePropertyPreloadSymbols;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, b);
}
bool TargetProperties::GetDisableASLR() const {
const uint32_t idx = ePropertyDisableASLR;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
void TargetProperties::SetDisableASLR(bool b) {
const uint32_t idx = ePropertyDisableASLR;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, b);
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
}
bool TargetProperties::GetDetachOnError() const {
const uint32_t idx = ePropertyDetachOnError;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
void TargetProperties::SetDetachOnError(bool b) {
const uint32_t idx = ePropertyDetachOnError;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, b);
}
bool TargetProperties::GetDisableSTDIO() const {
const uint32_t idx = ePropertyDisableSTDIO;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
void TargetProperties::SetDisableSTDIO(bool b) {
const uint32_t idx = ePropertyDisableSTDIO;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, b);
}
const char *TargetProperties::GetDisassemblyFlavor() const {
const uint32_t idx = ePropertyDisassemblyFlavor;
const char *return_value;
x86DisassemblyFlavor flavor_value =
(x86DisassemblyFlavor)m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
return_value = g_x86_dis_flavor_value_types[flavor_value].string_value;
return return_value;
}
InlineStrategy TargetProperties::GetInlineStrategy() const {
const uint32_t idx = ePropertyInlineStrategy;
return (InlineStrategy)m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
}
llvm::StringRef TargetProperties::GetArg0() const {
const uint32_t idx = ePropertyArg0;
return m_collection_sp->GetPropertyAtIndexAsString(nullptr, idx, llvm::StringRef());
}
void TargetProperties::SetArg0(llvm::StringRef arg) {
const uint32_t idx = ePropertyArg0;
m_collection_sp->SetPropertyAtIndexAsString(
nullptr, idx, arg);
m_launch_info.SetArg0(arg);
}
bool TargetProperties::GetRunArguments(Args &args) const {
const uint32_t idx = ePropertyRunArgs;
return m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
}
void TargetProperties::SetRunArguments(const Args &args) {
const uint32_t idx = ePropertyRunArgs;
m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
m_launch_info.GetArguments() = args;
}
size_t TargetProperties::GetEnvironmentAsArgs(Args &env) const {
const uint32_t idx = ePropertyEnvVars;
return m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, env);
}
void TargetProperties::SetEnvironmentFromArgs(const Args &env) {
const uint32_t idx = ePropertyEnvVars;
m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, env);
m_launch_info.GetEnvironmentEntries() = env;
}
bool TargetProperties::GetSkipPrologue() const {
const uint32_t idx = ePropertySkipPrologue;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
PathMappingList &TargetProperties::GetSourcePathMap() const {
const uint32_t idx = ePropertySourceMap;
OptionValuePathMappings *option_value =
m_collection_sp->GetPropertyAtIndexAsOptionValuePathMappings(nullptr,
false, idx);
assert(option_value);
return option_value->GetCurrentValue();
}
FileSpecList &TargetProperties::GetExecutableSearchPaths() {
const uint32_t idx = ePropertyExecutableSearchPaths;
OptionValueFileSpecList *option_value =
m_collection_sp->GetPropertyAtIndexAsOptionValueFileSpecList(nullptr,
false, idx);
assert(option_value);
return option_value->GetCurrentValue();
}
FileSpecList &TargetProperties::GetDebugFileSearchPaths() {
const uint32_t idx = ePropertyDebugFileSearchPaths;
OptionValueFileSpecList *option_value =
m_collection_sp->GetPropertyAtIndexAsOptionValueFileSpecList(nullptr,
false, idx);
assert(option_value);
return option_value->GetCurrentValue();
}
FileSpecList &TargetProperties::GetClangModuleSearchPaths() {
const uint32_t idx = ePropertyClangModuleSearchPaths;
OptionValueFileSpecList *option_value =
m_collection_sp->GetPropertyAtIndexAsOptionValueFileSpecList(nullptr,
false, idx);
assert(option_value);
return option_value->GetCurrentValue();
}
bool TargetProperties::GetEnableAutoImportClangModules() const {
const uint32_t idx = ePropertyAutoImportClangModules;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetEnableAutoApplyFixIts() const {
const uint32_t idx = ePropertyAutoApplyFixIts;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetEnableNotifyAboutFixIts() const {
const uint32_t idx = ePropertyNotifyAboutFixIts;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetEnableSaveObjects() const {
const uint32_t idx = ePropertySaveObjects;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetEnableSyntheticValue() const {
const uint32_t idx = ePropertyEnableSynthetic;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
uint32_t TargetProperties::GetMaximumNumberOfChildrenToDisplay() const {
const uint32_t idx = ePropertyMaxChildrenCount;
return m_collection_sp->GetPropertyAtIndexAsSInt64(
nullptr, idx, g_properties[idx].default_uint_value);
}
uint32_t TargetProperties::GetMaximumSizeOfStringSummary() const {
const uint32_t idx = ePropertyMaxSummaryLength;
return m_collection_sp->GetPropertyAtIndexAsSInt64(
nullptr, idx, g_properties[idx].default_uint_value);
}
uint32_t TargetProperties::GetMaximumMemReadSize() const {
const uint32_t idx = ePropertyMaxMemReadSize;
return m_collection_sp->GetPropertyAtIndexAsSInt64(
nullptr, idx, g_properties[idx].default_uint_value);
}
FileSpec TargetProperties::GetStandardInputPath() const {
const uint32_t idx = ePropertyInputPath;
return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
}
void TargetProperties::SetStandardInputPath(llvm::StringRef path) {
const uint32_t idx = ePropertyInputPath;
m_collection_sp->SetPropertyAtIndexAsString(nullptr, idx, path);
}
FileSpec TargetProperties::GetStandardOutputPath() const {
const uint32_t idx = ePropertyOutputPath;
return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
}
void TargetProperties::SetStandardOutputPath(llvm::StringRef path) {
const uint32_t idx = ePropertyOutputPath;
m_collection_sp->SetPropertyAtIndexAsString(nullptr, idx, path);
}
FileSpec TargetProperties::GetStandardErrorPath() const {
const uint32_t idx = ePropertyErrorPath;
return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
}
void TargetProperties::SetStandardErrorPath(llvm::StringRef path) {
const uint32_t idx = ePropertyErrorPath;
m_collection_sp->SetPropertyAtIndexAsString(nullptr, idx, path);
}
LanguageType TargetProperties::GetLanguage() const {
OptionValueLanguage *value =
m_collection_sp->GetPropertyAtIndexAsOptionValueLanguage(
nullptr, ePropertyLanguage);
if (value)
return value->GetCurrentValue();
return LanguageType();
}
const char *TargetProperties::GetExpressionPrefixContentsAsCString() {
const uint32_t idx = ePropertyExprPrefix;
OptionValueFileSpec *file =
m_collection_sp->GetPropertyAtIndexAsOptionValueFileSpec(nullptr, false,
idx);
if (file) {
const bool null_terminate = true;
DataBufferSP data_sp(file->GetFileContents(null_terminate));
if (data_sp)
return (const char *)data_sp->GetBytes();
}
return nullptr;
}
bool TargetProperties::GetBreakpointsConsultPlatformAvoidList() {
const uint32_t idx = ePropertyBreakpointUseAvoidList;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetUseHexImmediates() const {
const uint32_t idx = ePropertyUseHexImmediates;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetUseFastStepping() const {
const uint32_t idx = ePropertyUseFastStepping;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
bool TargetProperties::GetDisplayExpressionsInCrashlogs() const {
const uint32_t idx = ePropertyDisplayExpressionsInCrashlogs;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_properties[idx].default_uint_value != 0);
}
LoadScriptFromSymFile TargetProperties::GetLoadScriptFromSymbolFile() const {
const uint32_t idx = ePropertyLoadScriptFromSymbolFile;
return (LoadScriptFromSymFile)
m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
}
LoadCWDlldbinitFile TargetProperties::GetLoadCWDlldbinitFile() const {
const uint32_t idx = ePropertyLoadCWDlldbinitFile;
return (LoadCWDlldbinitFile)m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
}
Disassembler::HexImmediateStyle TargetProperties::GetHexImmediateStyle() const {
const uint32_t idx = ePropertyHexImmediateStyle;
return (Disassembler::HexImmediateStyle)
m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
}
MemoryModuleLoadLevel TargetProperties::GetMemoryModuleLoadLevel() const {
const uint32_t idx = ePropertyMemoryModuleLoadLevel;
return (MemoryModuleLoadLevel)
m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx, g_properties[idx].default_uint_value);
}
bool TargetProperties::GetUserSpecifiedTrapHandlerNames(Args &args) const {
const uint32_t idx = ePropertyTrapHandlerNames;
return m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
}
void TargetProperties::SetUserSpecifiedTrapHandlerNames(const Args &args) {
const uint32_t idx = ePropertyTrapHandlerNames;
m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
}
bool TargetProperties::GetDisplayRuntimeSupportValues() const {
const uint32_t idx = ePropertyDisplayRuntimeSupportValues;
return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, false);
}
void TargetProperties::SetDisplayRuntimeSupportValues(bool b) {
const uint32_t idx = ePropertyDisplayRuntimeSupportValues;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, b);
}
bool TargetProperties::GetNonStopModeEnabled() const {
const uint32_t idx = ePropertyNonStopModeEnabled;
return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, false);
}
void TargetProperties::SetNonStopModeEnabled(bool b) {
const uint32_t idx = ePropertyNonStopModeEnabled;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, b);
}
const ProcessLaunchInfo &TargetProperties::GetProcessLaunchInfo() {
m_launch_info.SetArg0(GetArg0()); // FIXME: Arg0 callback doesn't work
return m_launch_info;
}
void TargetProperties::SetProcessLaunchInfo(
const ProcessLaunchInfo &launch_info) {
m_launch_info = launch_info;
SetArg0(launch_info.GetArg0());
SetRunArguments(launch_info.GetArguments());
SetEnvironmentFromArgs(launch_info.GetEnvironmentEntries());
const FileAction *input_file_action =
launch_info.GetFileActionForFD(STDIN_FILENO);
if (input_file_action) {
SetStandardInputPath(input_file_action->GetPath());
}
const FileAction *output_file_action =
launch_info.GetFileActionForFD(STDOUT_FILENO);
if (output_file_action) {
SetStandardOutputPath(output_file_action->GetPath());
}
const FileAction *error_file_action =
launch_info.GetFileActionForFD(STDERR_FILENO);
if (error_file_action) {
SetStandardErrorPath(error_file_action->GetPath());
}
SetDetachOnError(launch_info.GetFlags().Test(lldb::eLaunchFlagDetachOnError));
SetDisableASLR(launch_info.GetFlags().Test(lldb::eLaunchFlagDisableASLR));
SetDisableSTDIO(launch_info.GetFlags().Test(lldb::eLaunchFlagDisableSTDIO));
}
void TargetProperties::Arg0ValueChangedCallback(void *target_property_ptr,
OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
this_->m_launch_info.SetArg0(this_->GetArg0());
}
void TargetProperties::RunArgsValueChangedCallback(void *target_property_ptr,
OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
Args args;
if (this_->GetRunArguments(args))
this_->m_launch_info.GetArguments() = args;
}
void TargetProperties::EnvVarsValueChangedCallback(void *target_property_ptr,
OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
Args args;
if (this_->GetEnvironmentAsArgs(args))
this_->m_launch_info.GetEnvironmentEntries() = args;
}
void TargetProperties::InputPathValueChangedCallback(void *target_property_ptr,
OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
this_->m_launch_info.AppendOpenFileAction(
STDIN_FILENO, this_->GetStandardInputPath(), true, false);
}
void TargetProperties::OutputPathValueChangedCallback(void *target_property_ptr,
OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
this_->m_launch_info.AppendOpenFileAction(
STDOUT_FILENO, this_->GetStandardOutputPath(), false, true);
}
void TargetProperties::ErrorPathValueChangedCallback(void *target_property_ptr,
OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
this_->m_launch_info.AppendOpenFileAction(
STDERR_FILENO, this_->GetStandardErrorPath(), false, true);
}
void TargetProperties::DetachOnErrorValueChangedCallback(
void *target_property_ptr, OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
if (this_->GetDetachOnError())
this_->m_launch_info.GetFlags().Set(lldb::eLaunchFlagDetachOnError);
else
this_->m_launch_info.GetFlags().Clear(lldb::eLaunchFlagDetachOnError);
}
void TargetProperties::DisableASLRValueChangedCallback(
void *target_property_ptr, OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
if (this_->GetDisableASLR())
this_->m_launch_info.GetFlags().Set(lldb::eLaunchFlagDisableASLR);
else
this_->m_launch_info.GetFlags().Clear(lldb::eLaunchFlagDisableASLR);
}
void TargetProperties::DisableSTDIOValueChangedCallback(
void *target_property_ptr, OptionValue *) {
TargetProperties *this_ =
reinterpret_cast<TargetProperties *>(target_property_ptr);
if (this_->GetDisableSTDIO())
this_->m_launch_info.GetFlags().Set(lldb::eLaunchFlagDisableSTDIO);
else
this_->m_launch_info.GetFlags().Clear(lldb::eLaunchFlagDisableSTDIO);
}
//----------------------------------------------------------------------
// Target::TargetEventData
//----------------------------------------------------------------------
Target::TargetEventData::TargetEventData(const lldb::TargetSP &target_sp)
: EventData(), m_target_sp(target_sp), m_module_list() {}
Target::TargetEventData::TargetEventData(const lldb::TargetSP &target_sp,
const ModuleList &module_list)
: EventData(), m_target_sp(target_sp), m_module_list(module_list) {}
Target::TargetEventData::~TargetEventData() = default;
const ConstString &Target::TargetEventData::GetFlavorString() {
static ConstString g_flavor("Target::TargetEventData");
return g_flavor;
}
void Target::TargetEventData::Dump(Stream *s) const {
for (size_t i = 0; i < m_module_list.GetSize(); ++i) {
if (i != 0)
*s << ", ";
m_module_list.GetModuleAtIndex(i)->GetDescription(
s, lldb::eDescriptionLevelBrief);
}
}
const Target::TargetEventData *
Target::TargetEventData::GetEventDataFromEvent(const Event *event_ptr) {
if (event_ptr) {
const EventData *event_data = event_ptr->GetData();
if (event_data &&
event_data->GetFlavor() == TargetEventData::GetFlavorString())
return static_cast<const TargetEventData *>(event_ptr->GetData());
}
return nullptr;
}
TargetSP Target::TargetEventData::GetTargetFromEvent(const Event *event_ptr) {
TargetSP target_sp;
const TargetEventData *event_data = GetEventDataFromEvent(event_ptr);
if (event_data)
target_sp = event_data->m_target_sp;
return target_sp;
}
ModuleList
Target::TargetEventData::GetModuleListFromEvent(const Event *event_ptr) {
ModuleList module_list;
const TargetEventData *event_data = GetEventDataFromEvent(event_ptr);
if (event_data)
module_list = event_data->m_module_list;
return module_list;
}