llvm-project/lldb/source/Expression/FunctionCaller.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

391 lines
13 KiB
C++
Raw Normal View History

//===-- FunctionCaller.cpp ---------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/FunctionCaller.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ValueObject.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Expression/DiagnosticManager.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"
using namespace lldb_private;
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
// FunctionCaller constructor
FunctionCaller::FunctionCaller(ExecutionContextScope &exe_scope,
const CompilerType &return_type,
const Address &functionAddress,
const ValueList &arg_value_list,
const char *name)
: Expression(exe_scope, eKindFunctionCaller), m_execution_unit_sp(),
m_parser(), m_jit_module_wp(), m_name(name ? name : "<unknown>"),
m_function_ptr(nullptr), m_function_addr(functionAddress),
m_function_return_type(return_type),
m_wrapper_function_name("__lldb_caller_function"),
m_wrapper_struct_name("__lldb_caller_struct"), m_wrapper_args_addrs(),
m_struct_valid(false), m_arg_values(arg_value_list), m_compiled(false),
m_JITted(false) {
m_jit_process_wp = lldb::ProcessWP(exe_scope.CalculateProcess());
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
// Can't make a FunctionCaller without a process.
assert(m_jit_process_wp.lock());
}
// Destructor
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
FunctionCaller::~FunctionCaller() {
lldb::ProcessSP process_sp(m_jit_process_wp.lock());
if (process_sp) {
lldb::ModuleSP jit_module_sp(m_jit_module_wp.lock());
if (jit_module_sp)
process_sp->GetTarget().GetImages().Remove(jit_module_sp);
}
}
bool FunctionCaller::WriteFunctionWrapper(
ExecutionContext &exe_ctx, DiagnosticManager &diagnostic_manager) {
Process *process = exe_ctx.GetProcessPtr();
if (!process)
return false;
lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock());
if (process != jit_process_sp.get())
return false;
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
if (!m_compiled)
return false;
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
if (m_JITted)
return true;
This commit changes the way LLDB executes user expressions. Previously, ClangUserExpression assumed that if there was a constant result for an expression then it could be determined during parsing. In particular, the IRInterpreter ran while parser state (in particular, ClangExpressionDeclMap) was present. This approach is flawed, because the IRInterpreter actually is capable of using external variables, and hence the result might be different each run. Until now, we papered over this flaw by re-parsing the expression each time we ran it. I have rewritten the IRInterpreter to be completely independent of the ClangExpressionDeclMap. Instead of special-casing external variable lookup, which ties the IRInterpreter closely to LLDB, we now interpret the exact same IR that the JIT would see. This IR assumes that materialization has occurred; hence the recent implementation of the Materializer, which does not require parser state (in the form of ClangExpressionDeclMap) to be present. Materialization, interpretation, and dematerialization are now all independent of parsing. This means that in theory we can parse expressions once and run them many times. I have three outstanding tasks before shutting this down: - First, I will ensure that all of this works with core files. Core files have a Process but do not allow allocating memory, which currently confuses materialization. - Second, I will make expression breakpoint conditions remember their ClangUserExpression and re-use it. - Third, I will tear out all the redundant code (for example, materialization logic in ClangExpressionDeclMap) that is no longer used. While implementing this fix, I also found a bug in IRForTarget's handling of floating-point constants. This should be fixed. llvm-svn: 179801
2013-04-19 06:06:33 +08:00
bool can_interpret = false; // should stay that way
Status jit_error(m_parser->PrepareForExecution(
m_jit_start_addr, m_jit_end_addr, m_execution_unit_sp, exe_ctx,
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
can_interpret, eExecutionPolicyAlways));
if (!jit_error.Success()) {
diagnostic_manager.Printf(eDiagnosticSeverityError,
"Error in PrepareForExecution: %s.",
jit_error.AsCString());
return false;
}
if (m_parser->GetGenerateDebugInfo()) {
lldb::ModuleSP jit_module_sp(m_execution_unit_sp->GetJITModule());
if (jit_module_sp) {
ConstString const_func_name(FunctionName());
FileSpec jit_file;
jit_file.GetFilename() = const_func_name;
jit_module_sp->SetFileSpecAndObjectName(jit_file, ConstString());
m_jit_module_wp = jit_module_sp;
process->GetTarget().GetImages().Append(jit_module_sp,
true /* notify */);
}
}
if (process && m_jit_start_addr)
m_jit_process_wp = process->shared_from_this();
m_JITted = true;
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
return true;
}
bool FunctionCaller::WriteFunctionArguments(
ExecutionContext &exe_ctx, lldb::addr_t &args_addr_ref,
DiagnosticManager &diagnostic_manager) {
return WriteFunctionArguments(exe_ctx, args_addr_ref, m_arg_values,
diagnostic_manager);
}
// FIXME: Assure that the ValueList we were passed in is consistent with the one
// that defined this function.
bool FunctionCaller::WriteFunctionArguments(
ExecutionContext &exe_ctx, lldb::addr_t &args_addr_ref,
ValueList &arg_values, DiagnosticManager &diagnostic_manager) {
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
// All the information to reconstruct the struct is provided by the
// StructExtractor.
if (!m_struct_valid) {
diagnostic_manager.PutString(eDiagnosticSeverityError,
"Argument information was not correctly "
"parsed, so the function cannot be called.");
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
return false;
}
Status error;
lldb::ExpressionResults return_value = lldb::eExpressionSetupError;
Process *process = exe_ctx.GetProcessPtr();
if (process == nullptr)
return return_value;
lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock());
if (process != jit_process_sp.get())
return false;
if (args_addr_ref == LLDB_INVALID_ADDRESS) {
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
args_addr_ref = process->AllocateMemory(
m_struct_size, lldb::ePermissionsReadable | lldb::ePermissionsWritable,
error);
if (args_addr_ref == LLDB_INVALID_ADDRESS)
return false;
m_wrapper_args_addrs.push_back(args_addr_ref);
} else {
// Make sure this is an address that we've already handed out.
if (find(m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(),
args_addr_ref) == m_wrapper_args_addrs.end()) {
return false;
}
}
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
// TODO: verify fun_addr needs to be a callable address
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
Scalar fun_addr(
m_function_addr.GetCallableLoadAddress(exe_ctx.GetTargetPtr()));
uint64_t first_offset = m_member_offsets[0];
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
process->WriteScalarToMemory(args_addr_ref + first_offset, fun_addr,
process->GetAddressByteSize(), error);
// FIXME: We will need to extend this for Variadic functions.
Status value_error;
size_t num_args = arg_values.GetSize();
if (num_args != m_arg_values.GetSize()) {
diagnostic_manager.Printf(
eDiagnosticSeverityError,
"Wrong number of arguments - was: %" PRIu64 " should be: %" PRIu64 "",
(uint64_t)num_args, (uint64_t)m_arg_values.GetSize());
return false;
}
for (size_t i = 0; i < num_args; i++) {
// FIXME: We should sanity check sizes.
uint64_t offset = m_member_offsets[i + 1]; // Clang sizes are in bytes.
Value *arg_value = arg_values.GetValueAtIndex(i);
// FIXME: For now just do scalars:
// Special case: if it's a pointer, don't do anything (the ABI supports
// passing cstrings)
if (arg_value->GetValueType() == Value::eValueTypeHostAddress &&
arg_value->GetContextType() == Value::eContextTypeInvalid &&
arg_value->GetCompilerType().IsPointerType())
continue;
const Scalar &arg_scalar = arg_value->ResolveValue(&exe_ctx);
if (!process->WriteScalarToMemory(args_addr_ref + offset, arg_scalar,
arg_scalar.GetByteSize(), error))
return false;
}
return true;
}
bool FunctionCaller::InsertFunction(ExecutionContext &exe_ctx,
lldb::addr_t &args_addr_ref,
DiagnosticManager &diagnostic_manager) {
if (CompileFunction(exe_ctx.GetThreadSP(), diagnostic_manager) != 0)
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
return false;
if (!WriteFunctionWrapper(exe_ctx, diagnostic_manager))
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
return false;
if (!WriteFunctionArguments(exe_ctx, args_addr_ref, diagnostic_manager))
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
LLDB_LOGF(log, "Call Address: 0x%" PRIx64 " Struct Address: 0x%" PRIx64 ".\n",
m_jit_start_addr, args_addr_ref);
return true;
}
lldb::ThreadPlanSP FunctionCaller::GetThreadPlanToCallFunction(
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
ExecutionContext &exe_ctx, lldb::addr_t args_addr,
const EvaluateExpressionOptions &options,
DiagnosticManager &diagnostic_manager) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EXPRESSIONS |
LIBLLDB_LOG_STEP));
LLDB_LOGF(log,
"-- [FunctionCaller::GetThreadPlanToCallFunction] Creating "
"thread plan to call function \"%s\" --",
m_name.c_str());
// FIXME: Use the errors Stream for better error reporting.
Thread *thread = exe_ctx.GetThreadPtr();
if (thread == nullptr) {
diagnostic_manager.PutString(
eDiagnosticSeverityError,
"Can't call a function without a valid thread.");
return nullptr;
}
// Okay, now run the function:
Address wrapper_address(m_jit_start_addr);
lldb::addr_t args = {args_addr};
lldb::ThreadPlanSP new_plan_sp(new ThreadPlanCallFunction(
*thread, wrapper_address, CompilerType(), args, options));
new_plan_sp->SetIsMasterPlan(true);
new_plan_sp->SetOkayToDiscard(false);
return new_plan_sp;
}
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
bool FunctionCaller::FetchFunctionResults(ExecutionContext &exe_ctx,
lldb::addr_t args_addr,
Value &ret_value) {
// Read the return value - it is the last field in the struct:
// FIXME: How does clang tell us there's no return value? We need to handle
// that case.
// FIXME: Create our ThreadPlanCallFunction with the return CompilerType, and
// then use GetReturnValueObject
// to fetch the value. That way we can fetch any values we need.
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EXPRESSIONS |
LIBLLDB_LOG_STEP));
LLDB_LOGF(log,
"-- [FunctionCaller::FetchFunctionResults] Fetching function "
"results for \"%s\"--",
m_name.c_str());
Process *process = exe_ctx.GetProcessPtr();
if (process == nullptr)
return false;
lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock());
if (process != jit_process_sp.get())
return false;
Status error;
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
ret_value.GetScalar() = process->ReadUnsignedIntegerFromMemory(
args_addr + m_return_offset, m_return_size, 0, error);
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
if (error.Fail())
return false;
Final bit of type system cleanup that abstracts declaration contexts into lldb_private::CompilerDeclContext and renames ClangType to CompilerType in many accessors and functions. Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files. Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types. Bulk renames for things that used to return a ClangASTType which is now CompilerType: "Type::GetClangFullType()" to "Type::GetFullCompilerType()" "Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()" "Type::GetClangForwardType()" to "Type::GetForwardCompilerType()" "Value::GetClangType()" to "Value::GetCompilerType()" "Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)" "ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()" many more renames that are similar. llvm-svn: 245905
2015-08-25 07:46:31 +08:00
ret_value.SetCompilerType(m_function_return_type);
ret_value.SetValueType(Value::eValueTypeScalar);
return true;
}
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
void FunctionCaller::DeallocateFunctionResults(ExecutionContext &exe_ctx,
lldb::addr_t args_addr) {
std::list<lldb::addr_t>::iterator pos;
pos = std::find(m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(),
args_addr);
if (pos != m_wrapper_args_addrs.end())
m_wrapper_args_addrs.erase(pos);
exe_ctx.GetProcessRef().DeallocateMemory(args_addr);
}
lldb::ExpressionResults FunctionCaller::ExecuteFunction(
ExecutionContext &exe_ctx, lldb::addr_t *args_addr_ptr,
const EvaluateExpressionOptions &options,
DiagnosticManager &diagnostic_manager, Value &results) {
lldb::ExpressionResults return_value = lldb::eExpressionSetupError;
// FunctionCaller::ExecuteFunction execution is always just to get the
// result. Do make sure we ignore breakpoints, unwind on error, and don't try
// to debug it.
EvaluateExpressionOptions real_options = options;
real_options.SetDebug(false);
real_options.SetUnwindOnError(true);
real_options.SetIgnoreBreakpoints(true);
lldb::addr_t args_addr;
if (args_addr_ptr != nullptr)
args_addr = *args_addr_ptr;
else
args_addr = LLDB_INVALID_ADDRESS;
if (CompileFunction(exe_ctx.GetThreadSP(), diagnostic_manager) != 0)
return lldb::eExpressionSetupError;
if (args_addr == LLDB_INVALID_ADDRESS) {
if (!InsertFunction(exe_ctx, args_addr, diagnostic_manager))
return lldb::eExpressionSetupError;
}
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EXPRESSIONS |
LIBLLDB_LOG_STEP));
LLDB_LOGF(log,
"== [FunctionCaller::ExecuteFunction] Executing function \"%s\" ==",
m_name.c_str());
lldb::ThreadPlanSP call_plan_sp = GetThreadPlanToCallFunction(
exe_ctx, args_addr, real_options, diagnostic_manager);
if (!call_plan_sp)
return lldb::eExpressionSetupError;
// We need to make sure we record the fact that we are running an expression
// here otherwise this fact will fail to be recorded when fetching an
// Objective-C object description
if (exe_ctx.GetProcessPtr())
exe_ctx.GetProcessPtr()->SetRunningUserExpression(true);
return_value = exe_ctx.GetProcessRef().RunThreadPlan(
exe_ctx, call_plan_sp, real_options, diagnostic_manager);
if (log) {
if (return_value != lldb::eExpressionCompleted) {
LLDB_LOGF(log,
"== [FunctionCaller::ExecuteFunction] Execution of \"%s\" "
"completed abnormally ==",
m_name.c_str());
} else {
LLDB_LOGF(log,
"== [FunctionCaller::ExecuteFunction] Execution of \"%s\" "
"completed normally ==",
m_name.c_str());
}
}
if (exe_ctx.GetProcessPtr())
exe_ctx.GetProcessPtr()->SetRunningUserExpression(false);
if (args_addr_ptr != nullptr)
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
*args_addr_ptr = args_addr;
if (return_value != lldb::eExpressionCompleted)
return return_value;
FetchFunctionResults(exe_ctx, args_addr, results);
if (args_addr_ptr == nullptr)
DeallocateFunctionResults(exe_ctx, args_addr);
return lldb::eExpressionCompleted;
}