llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp

614 lines
22 KiB
C++
Raw Normal View History

//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//
#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPUISelLowering.h"
#include "AMDGPUSubtarget.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/LowLevelTypeImpl.h"
using namespace llvm;
namespace {
struct OutgoingArgHandler : public CallLowering::ValueHandler {
OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
: ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
MachineInstrBuilder MIB;
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
llvm_unreachable("not implemented");
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
llvm_unreachable("not implemented");
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
MIB.addUse(PhysReg);
MIRBuilder.buildCopy(PhysReg, ValVReg);
}
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info,
CCState &State) override {
return AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State);
}
};
struct IncomingArgHandler : public CallLowering::ValueHandler {
uint64_t StackUsed = 0;
IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: ValueHandler(MIRBuilder, MRI, AssignFn) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
int FI = MFI.CreateFixedObject(Size, Offset, true);
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
Register AddrReg = MRI.createGenericVirtualRegister(
LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
MIRBuilder.buildFrameIndex(AddrReg, FI);
StackUsed = std::max(StackUsed, Size + Offset);
return AddrReg;
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
markPhysRegUsed(PhysReg);
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to do
// a 32-bit copy, and truncate to avoid the verifier complaining about it.
auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
return;
}
switch (VA.getLocInfo()) {
case CCValAssign::LocInfo::SExt:
case CCValAssign::LocInfo::ZExt:
case CCValAssign::LocInfo::AExt: {
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
break;
}
default:
MIRBuilder.buildCopy(ValVReg, PhysReg);
break;
}
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
// FIXME: Get alignment
auto MMO = MIRBuilder.getMF().getMachineMemOperand(
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
}
/// How the physical register gets marked varies between formal
/// parameters (it's a basic-block live-in), and a call instruction
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
// FIXME: What is the point of this being a callback?
bool isArgumentHandler() const override { return true; }
};
struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIRBuilder.getMBB().addLiveIn(PhysReg);
}
};
}
AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
: CallLowering(&TLI) {
}
void AMDGPUCallLowering::splitToValueTypes(
const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
SplitArgTy PerformArgSplit) const {
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
LLVMContext &Ctx = OrigArg.Ty->getContext();
if (OrigArg.Ty->isVoidTy())
return;
SmallVector<EVT, 4> SplitVTs;
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
assert(OrigArg.Regs.size() == SplitVTs.size());
int SplitIdx = 0;
for (EVT VT : SplitVTs) {
unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
Type *Ty = VT.getTypeForEVT(Ctx);
if (NumParts == 1) {
// No splitting to do, but we want to replace the original type (e.g. [1 x
// double] -> double).
SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
OrigArg.Flags, OrigArg.IsFixed);
++SplitIdx;
continue;
}
LLT LLTy = getLLTForType(*Ty, DL);
SmallVector<Register, 8> SplitRegs;
EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
Type *PartTy = PartVT.getTypeForEVT(Ctx);
LLT PartLLT = getLLTForType(*PartTy, DL);
// FIXME: Should we be reporting all of the part registers for a single
// argument, and let handleAssignments take care of the repacking?
for (unsigned i = 0; i < NumParts; ++i) {
Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
SplitRegs.push_back(PartReg);
SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
}
PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
++SplitIdx;
}
}
bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val,
ArrayRef<Register> VRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MFI->setIfReturnsVoid(!Val);
if (!Val) {
MIRBuilder.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
return true;
}
Register VReg = VRegs[0];
const Function &F = MF.getFunction();
auto &DL = F.getParent()->getDataLayout();
if (!AMDGPU::isShader(F.getCallingConv()))
return false;
const AMDGPUTargetLowering &TLI = *getTLI<AMDGPUTargetLowering>();
SmallVector<EVT, 4> SplitVTs;
SmallVector<uint64_t, 4> Offsets;
ArgInfo OrigArg{VReg, Val->getType()};
setArgFlags(OrigArg, AttributeList::ReturnIndex, DL, F);
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
SmallVector<ArgInfo, 8> SplitArgs;
CCAssignFn *AssignFn = CCAssignFnForReturn(F.getCallingConv(), false);
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
Type *SplitTy = SplitVTs[i].getTypeForEVT(F.getContext());
SplitArgs.push_back({VRegs[i], SplitTy, OrigArg.Flags, OrigArg.IsFixed});
}
auto RetInstr = MIRBuilder.buildInstrNoInsert(AMDGPU::SI_RETURN_TO_EPILOG);
OutgoingArgHandler Handler(MIRBuilder, MRI, RetInstr, AssignFn);
if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
return false;
MIRBuilder.insertInstr(RetInstr);
return true;
}
Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &MIRBuilder,
Type *ParamTy,
uint64_t Offset) const {
MachineFunction &MF = MIRBuilder.getMF();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
LLT PtrType = getLLTForType(*PtrTy, DL);
Register DstReg = MRI.createGenericVirtualRegister(PtrType);
Register KernArgSegmentPtr =
MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
MIRBuilder.buildConstant(OffsetReg, Offset);
MIRBuilder.buildGEP(DstReg, KernArgSegmentVReg, OffsetReg);
return DstReg;
}
void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &MIRBuilder,
Type *ParamTy, uint64_t Offset,
unsigned Align,
Register DstReg) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
Register PtrReg = lowerParameterPtr(MIRBuilder, ParamTy, Offset);
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
MachineMemOperand::MONonTemporal |
MachineMemOperand::MOInvariant,
TypeSize, Align);
MIRBuilder.buildLoad(DstReg, PtrReg, *MMO);
}
// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
MachineIRBuilder &MIRBuilder,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info.hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info.hasDispatchPtr()) {
unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info.hasQueuePtr()) {
unsigned QueuePtrReg = Info.addQueuePtr(TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info.hasKernargSegmentPtr()) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register VReg = MRI.createGenericVirtualRegister(P4);
MRI.addLiveIn(InputPtrReg, VReg);
MIRBuilder.getMBB().addLiveIn(InputPtrReg);
MIRBuilder.buildCopy(VReg, InputPtrReg);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info.hasDispatchID()) {
unsigned DispatchIDReg = Info.addDispatchID(TRI);
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchIDReg);
}
if (Info.hasFlatScratchInit()) {
unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
}
bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
MachineIRBuilder &MIRBuilder, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
allocateHSAUserSGPRs(CCInfo, MIRBuilder, MF, *TRI, *Info);
unsigned i = 0;
const unsigned KernArgBaseAlign = 16;
const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
uint64_t ExplicitArgOffset = 0;
// TODO: Align down to dword alignment and extract bits for extending loads.
for (auto &Arg : F.args()) {
Type *ArgTy = Arg.getType();
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
if (AllocSize == 0)
continue;
unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
ArrayRef<Register> OrigArgRegs = VRegs[i];
Register ArgReg =
OrigArgRegs.size() == 1
? OrigArgRegs[0]
: MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
lowerParameter(MIRBuilder, ArgTy, ArgOffset, Align, ArgReg);
if (OrigArgRegs.size() > 1)
unpackRegs(OrigArgRegs, ArgReg, ArgTy, MIRBuilder);
++i;
}
TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
return true;
}
static void packSplitRegsToOrigType(MachineIRBuilder &MIRBuilder,
ArrayRef<Register> OrigRegs,
ArrayRef<Register> Regs,
LLT LLTy,
LLT PartLLT) {
if (!LLTy.isVector() && !PartLLT.isVector()) {
MIRBuilder.buildMerge(OrigRegs[0], Regs);
return;
}
if (LLTy.isVector() && PartLLT.isVector()) {
assert(LLTy.getElementType() == PartLLT.getElementType());
int DstElts = LLTy.getNumElements();
int PartElts = PartLLT.getNumElements();
if (DstElts % PartElts == 0)
MIRBuilder.buildConcatVectors(OrigRegs[0], Regs);
else {
// Deal with v3s16 split into v2s16
assert(PartElts == 2 && DstElts % 2 != 0);
int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);
LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
auto RoundedConcat = MIRBuilder.buildConcatVectors(RoundedDestTy, Regs);
MIRBuilder.buildExtract(OrigRegs[0], RoundedConcat, 0);
}
return;
}
assert(LLTy.isVector() && !PartLLT.isVector());
LLT DstEltTy = LLTy.getElementType();
if (DstEltTy == PartLLT) {
// Vector was trivially scalarized.
MIRBuilder.buildBuildVector(OrigRegs[0], Regs);
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
// Deal with vector with 64-bit elements decomposed to 32-bit
// registers. Need to create intermediate 64-bit elements.
SmallVector<Register, 8> EltMerges;
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
auto Merge = MIRBuilder.buildMerge(DstEltTy,
Regs.take_front(PartsPerElt));
EltMerges.push_back(Merge.getReg(0));
Regs = Regs.drop_front(PartsPerElt);
}
MIRBuilder.buildBuildVector(OrigRegs[0], EltMerges);
} else {
// Vector was split, and elements promoted to a wider type.
LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
auto BV = MIRBuilder.buildBuildVector(BVType, Regs);
MIRBuilder.buildTrunc(OrigRegs[0], BV);
}
}
[GlobalISel] Accept multiple vregs in lowerFormalArgs Change the interface of CallLowering::lowerFormalArguments to accept several virtual registers for each formal argument, instead of just one. This is a follow-up to D46018. CallLowering::lowerReturn was similarly refactored in D49660. lowerCall will be refactored in the same way in follow-up patches. With this change, we forward the virtual registers generated for aggregates to CallLowering. Therefore, the target can decide itself whether it wants to handle them as separate pieces or use one big register. We also copy the pack/unpackRegs helpers to CallLowering to facilitate this. ARM and AArch64 have been updated to use the passed in virtual registers directly, which means we no longer need to generate so many merge/extract instructions. AArch64 seems to have had a bug when lowering e.g. [1 x i8*], which was put into a s64 instead of a p0. Added a test-case which illustrates the problem more clearly (it crashes without this patch) and fixed the existing test-case to expect p0. AMDGPU has been updated to unpack into the virtual registers for kernels. I think the other code paths fall back for aggregates, so this should be NFC. Mips doesn't support aggregates yet, so it's also NFC. x86 seems to have code for dealing with aggregates, but I couldn't find the tests for it, so I just added a fallback to DAGISel if we get more than one virtual register for an argument. Differential Revision: https://reviews.llvm.org/D63549 llvm-svn: 364510
2019-06-27 16:54:17 +08:00
bool AMDGPUCallLowering::lowerFormalArguments(
MachineIRBuilder &MIRBuilder, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
CallingConv::ID CC = F.getCallingConv();
// The infrastructure for normal calling convention lowering is essentially
// useless for kernels. We want to avoid any kind of legalization or argument
// splitting.
if (CC == CallingConv::AMDGPU_KERNEL)
return lowerFormalArgumentsKernel(MIRBuilder, F, VRegs);
// AMDGPU_GS and AMDGP_HS are not supported yet.
if (CC == CallingConv::AMDGPU_GS || CC == CallingConv::AMDGPU_HS)
return false;
const bool IsShader = AMDGPU::isShader(CC);
const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
MachineFunction &MF = MIRBuilder.getMF();
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
if (Info->hasImplicitBufferPtr()) {
Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(ImplicitBufferPtrReg);
}
SmallVector<ArgInfo, 32> SplitArgs;
unsigned Idx = 0;
unsigned PSInputNum = 0;
for (auto &Arg : F.args()) {
if (DL.getTypeStoreSize(Arg.getType()) == 0)
continue;
const bool InReg = Arg.hasAttribute(Attribute::InReg);
// SGPR arguments to functions not implemented.
if (!IsShader && InReg)
return false;
// TODO: Handle sret.
if (Arg.hasAttribute(Attribute::StructRet) ||
Arg.hasAttribute(Attribute::SwiftSelf) ||
Arg.hasAttribute(Attribute::SwiftError) ||
Arg.hasAttribute(Attribute::Nest))
return false;
if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
const bool ArgUsed = !Arg.use_empty();
bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
if (!SkipArg) {
Info->markPSInputAllocated(PSInputNum);
if (ArgUsed)
Info->markPSInputEnabled(PSInputNum);
}
++PSInputNum;
if (SkipArg) {
for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
MIRBuilder.buildUndef(VRegs[Idx][I]);
++Idx;
continue;
}
}
ArgInfo OrigArg(VRegs[Idx], Arg.getType());
setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
splitToValueTypes(
OrigArg, SplitArgs, DL, MRI, CC,
// FIXME: We should probably be passing multiple registers to
// handleAssignments to do this
[&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
packSplitRegsToOrigType(MIRBuilder, VRegs[Idx][VTSplitIdx], Regs,
LLTy, PartLLT);
});
++Idx;
}
// At least one interpolation mode must be enabled or else the GPU will
// hang.
//
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
// set PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CC == CallingConv::AMDGPU_PS) {
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->markPSInputEnabled(0);
}
if (Subtarget.isAmdPalOS()) {
// For isAmdPalOS, the user does not enable some bits after compilation
// based on run-time states; the register values being generated here are
// the final ones set in hardware. Therefore we need to apply the
// workaround to PSInputAddr and PSInputEnable together. (The case where
// a bit is set in PSInputAddr but not PSInputEnable is where the frontend
// set up an input arg for a particular interpolation mode, but nothing
// uses that input arg. Really we should have an earlier pass that removes
// such an arg.)
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
if ((PsInputBits & 0x7F) == 0 ||
((PsInputBits & 0xF) == 0 &&
(PsInputBits >> 11 & 1)))
Info->markPSInputEnabled(
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
}
}
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
if (!MBB.empty())
MIRBuilder.setInstr(*MBB.begin());
FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, SplitArgs, Handler))
return false;
if (!IsEntryFunc) {
// Special inputs come after user arguments.
TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
}
// Start adding system SGPRs.
if (IsEntryFunc) {
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
} else {
CCInfo.AllocateReg(Info->getScratchRSrcReg());
CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
CCInfo.AllocateReg(Info->getFrameOffsetReg());
TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
}
// Move back to the end of the basic block.
MIRBuilder.setMBB(MBB);
return true;
}