2012-01-11 20:36:39 +08:00
|
|
|
// Test that different values of -mfpu pick correct ARM FPU target-feature(s).
|
|
|
|
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi %s -### -o %t.o 2>&1 \
|
2012-01-11 20:36:39 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-DEFAULT %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// CHECK-DEFAULT-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-DEFAULT-DAG: "-target-feature" "+soft-float-abi"
|
2012-01-11 20:36:39 +08:00
|
|
|
// CHECK-DEFAULT-NOT: "-target-feature" "+vfp2"
|
|
|
|
// CHECK-DEFAULT-NOT: "-target-feature" "+vfp3"
|
|
|
|
// CHECK-DEFAULT-NOT: "-target-feature" "+neon"
|
|
|
|
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpa %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FPA %s
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpe2 %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FPA %s
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpe3 %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FPA %s
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=maverick %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FPA %s
|
2015-06-05 21:34:11 +08:00
|
|
|
// CHECK-FPA: error: {{.*}} does not support '-mfpu={{fpa|fpe|fpe2|fpe3|maverick}}'
|
2012-01-11 19:21:31 +08:00
|
|
|
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfp %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfp %s -mfloat-abi=soft -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-2 %s
|
|
|
|
// CHECK-VFP-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP-DAG: "-target-feature" "+vfp2"
|
|
|
|
// CHECK-VFP-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-VFP-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "-crypto"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-2-DAG: "-target-feature" "-vfp2sp"
|
2012-01-11 19:21:31 +08:00
|
|
|
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfp3 %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3 %s
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3 %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-3 %s
|
|
|
|
// CHECK-VFP3-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP3-DAG: "-target-feature" "+vfp3"
|
|
|
|
// CHECK-VFP3-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP3-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP3-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-3-DAG: "-target-feature" "-vfp3d16sp"
|
2012-01-11 19:21:31 +08:00
|
|
|
|
2015-06-29 17:30:19 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3-fp16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3-FP16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3-fp16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-3 %s
|
|
|
|
// CHECK-VFP3-FP16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "+vfp3"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "+fp16"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "+fp64"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "+d32"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-VFP3-FP16-DAG: "-target-feature" "-crypto"
|
2015-06-29 17:30:19 +08:00
|
|
|
|
2014-11-29 04:39:54 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfp3-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3-D16 %s
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3-D16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3-d16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-3 %s
|
|
|
|
// CHECK-VFP3-D16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "+vfp3d16"
|
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "+fp64"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3-D16-DAG: "-target-feature" "-neon"
|
2014-11-29 04:39:54 +08:00
|
|
|
|
2015-06-29 17:30:19 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3-d16-fp16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3-D16-FP16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3-d16-fp16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-3 %s
|
|
|
|
// CHECK-VFP3-D16-FP16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "+vfp3d16"
|
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "+fp16"
|
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "+fp64"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-VFP3-D16-FP16-DAG: "-target-feature" "-crypto"
|
2015-06-29 17:30:19 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3xd %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3XD %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3xd -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-3 %s
|
|
|
|
// CHECK-VFP3XD-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "+soft-float-abi"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "+vfp3d16sp"
|
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-fp16"
|
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-VFP3XD-DAG: "-target-feature" "-crypto"
|
2015-06-29 17:30:19 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3xd-fp16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP3XD-FP16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv3xd-fp16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-3 %s
|
|
|
|
// CHECK-VFP3XD-FP16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "+vfp3d16sp"
|
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "+fp16"
|
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "-fp-armv8d16sp"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-VFP3XD-FP16-DAG: "-target-feature" "-crypto"
|
2015-06-29 17:30:19 +08:00
|
|
|
|
2013-11-21 22:04:38 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfp4 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP4 %s
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv4 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP4 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv4 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-4 %s
|
|
|
|
// CHECK-VFP4-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP4-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP4-DAG: "-target-feature" "+vfp4"
|
|
|
|
// CHECK-VFP4-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP4-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-4-DAG: "-target-feature" "-vfp4d16sp"
|
2013-11-21 22:04:38 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfp4-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP4-D16 %s
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv4-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-VFP4-D16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=vfpv4-d16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-4 %s
|
|
|
|
// CHECK-VFP4-D16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP4-D16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-VFP4-D16-DAG: "-target-feature" "+vfp4d16"
|
|
|
|
// CHECK-VFP4-D16-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-VFP4-D16-DAG: "-target-feature" "+fp64"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-VFP4-D16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-VFP4-D16-DAG: "-target-feature" "-neon"
|
2013-11-21 22:04:38 +08:00
|
|
|
|
2014-02-21 18:39:15 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fp4-sp-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP4-SP-D16 %s
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpv4-sp-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP4-SP-D16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpv4-sp-d16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-4 %s
|
|
|
|
// CHECK-FP4-SP-D16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP4-SP-D16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-FP4-SP-D16-DAG: "-target-feature" "+vfp4d16sp"
|
|
|
|
// CHECK-FP4-SP-D16-DAG: "-target-feature" "-fp-armv8d16sp"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-FP4-SP-D16-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-FP4-SP-D16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP4-SP-D16-DAG: "-target-feature" "-neon"
|
2013-11-21 22:04:38 +08:00
|
|
|
|
2014-10-01 17:03:02 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fp5-sp-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP5-SP-D16 %s
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpv5-sp-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP5-SP-D16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fp-armv8-sp-d16 -mfloat-abi=soft %s -### -o %t.o \
|
|
|
|
// RUN: 2>&1 | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// CHECK-FP5-SP-D16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP5-SP-D16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-FP5-SP-D16-DAG: "-target-feature" "+fp-armv8d16sp"
|
|
|
|
// CHECK-FP5-SP-D16-DAG: "-target-feature" "-neon"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-FP5-SP-D16-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-FP5-SP-D16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP5-SP-D16-DAG: "-target-feature" "-crypto"
|
2014-10-01 17:03:02 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fp5-dp-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP5-DP-D16 %s
|
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpv5-dp-d16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP5-DP-D16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=fpv5-dp-d16 %s -mfloat-abi=soft -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-5 %s
|
|
|
|
// CHECK-FP5-DP-D16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP5-DP-D16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-FP5-DP-D16-DAG: "-target-feature" "+fp-armv8d16"
|
|
|
|
// CHECK-FP5-DP-D16-DAG: "-target-feature" "+fp64"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-FP5-DP-D16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP5-DP-D16-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-FP5-DP-D16-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-5-DAG: "-target-feature" "-fp-armv8d16sp"
|
2014-10-01 17:03:02 +08:00
|
|
|
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon %s -### -o %t.o 2>&1 \
|
2012-01-11 19:21:31 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-NEON %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-6 %s
|
|
|
|
// CHECK-NEON-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NEON-DAG: "-target-feature" "+neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-6-DAG: "-target-feature" "-neon"
|
2012-01-11 19:21:31 +08:00
|
|
|
|
2015-06-29 17:30:19 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon-fp16 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-NEON-FP16 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon-fp16 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-6 %s
|
|
|
|
// CHECK-NEON-FP16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "+vfp3"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "+fp16"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "+fp64"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "+d32"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "+neon"
|
|
|
|
// CHECK-NEON-FP16-DAG: "-target-feature" "-crypto"
|
2015-06-29 17:30:19 +08:00
|
|
|
|
2014-11-29 04:39:59 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon-vfpv3 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-NEON-VFPV3 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon-vfpv3 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-6 %s
|
|
|
|
// CHECK-NEON-VFPV3-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NEON-VFPV3-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-NEON-VFPV3-DAG: "-target-feature" "+vfp3"
|
|
|
|
// CHECK-NEON-VFPV3-DAG: "-target-feature" "+neon"
|
2014-11-29 04:39:59 +08:00
|
|
|
|
2014-11-29 04:39:54 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon-vfpv4 %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-NEON-VFPV4 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -mfpu=neon-vfpv4 -mfloat-abi=soft %s -### -o %t.o 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-7 %s
|
|
|
|
// CHECK-NEON-VFPV4-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NEON-VFPV4-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-NEON-VFPV4-DAG: "-target-feature" "+vfp4"
|
|
|
|
// CHECK-NEON-VFPV4-DAG: "-target-feature" "+neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-7-DAG: "-target-feature" "-neon"
|
2014-11-29 04:39:54 +08:00
|
|
|
|
2012-01-21 06:01:23 +08:00
|
|
|
// RUN: %clang -target arm-linux-eabi -msoft-float %s -### -o %t.o 2>&1 \
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
2014-02-12 18:22:35 +08:00
|
|
|
// RUN: %clang -target armv8 %s -### 2>&1 \
|
2018-02-19 20:40:26 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv8a -mfpu=neon %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP-8 %s
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-8-DAG: "-target-feature" "-neon"
|
2014-02-12 18:22:35 +08:00
|
|
|
|
2013-10-25 02:32:51 +08:00
|
|
|
// RUN: %clang -target armv8 -mfpu=fp-armv8 %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-ARMV8-SOFT-FLOAT %s
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARMV8-SOFT-FLOAT-DAG: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-ARMV8-SOFT-FLOAT-DAG: "-target-feature" "+soft-float-abi"
|
2018-02-19 20:40:26 +08:00
|
|
|
// NOT-CHECK-ARMV8-SOFT-FLOAT: "-target-feature" "+fp-armv8"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARMV9-SOFT-FLOAT-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-ARMV8-SOFT-FLOAT-DAG: "-target-feature" "-crypto"
|
2013-10-25 02:32:51 +08:00
|
|
|
|
2013-06-27 21:19:54 +08:00
|
|
|
// RUN: %clang -target armv8-linux-gnueabihf -mfpu=fp-armv8 %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-FP-ARMV8 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// CHECK-FP-ARMV8-NOT: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-FP-ARMV8-NOT: "-target-feature" "+soft-float-abi"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-FP-ARMV8-DAG: "-target-feature" "+fp-armv8"
|
|
|
|
// CHECK-FP-ARMV8-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-FP-ARMV8-DAG: "-target-feature" "-crypto"
|
2013-06-27 21:19:54 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target armv8-linux-gnueabihf -mfpu=neon-fp-armv8 %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-NEON-FP-ARMV8 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// CHECK-NEON-FP-ARMV8-NOT: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-NEON-FP-ARMV8-NOT: "-target-feature" "+soft-float-abi"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NEON-FP-ARMV8-DAG: "-target-feature" "+fp-armv8"
|
|
|
|
// CHECK-NEON-FP-ARMV8-DAG: "-target-feature" "+neon"
|
|
|
|
// CHECK-NEON-FP-ARMV8-DAG: "-target-feature" "-crypto"
|
2013-08-20 21:19:43 +08:00
|
|
|
|
2013-09-19 21:54:03 +08:00
|
|
|
// RUN: %clang -target armv8-linux-gnueabihf -mfpu=crypto-neon-fp-armv8 %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-CRYPTO-NEON-FP-ARMV8 %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// CHECK-CRYPTO-NEON-FP-ARMV8-NOT: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-CRYPTO-NEON-FP-ARMV8-NOT: "-target-feature" "+soft-float-abi"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-CRYPTO-NEON-FP-ARMV8-DAG: "-target-feature" "+fp-armv8"
|
|
|
|
// CHECK-CRYPTO-NEON-FP-ARMV8-DAG: "-target-feature" "+crypto"
|
2013-09-19 21:54:03 +08:00
|
|
|
|
2013-10-01 18:20:54 +08:00
|
|
|
// RUN: %clang -target armv8-linux-gnueabi -mfpu=none %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-NO-FP %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// CHECK-NO-FP-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-fpregs"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-fp-armv8d16sp"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-NO-FP-DAG: "-target-feature" "-crypto"
|
2013-10-01 18:20:54 +08:00
|
|
|
|
2013-08-20 21:19:43 +08:00
|
|
|
// RUN: %clang -target arm-linux-gnueabihf %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-HF %s
|
2016-06-25 05:35:06 +08:00
|
|
|
// RUN: %clang -target arm-linux-musleabihf %s -### 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-HF %s
|
2018-02-19 20:40:26 +08:00
|
|
|
// CHECK-HF-NOT: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-HF-NOT: "-target-feature" "+soft-float-abi"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-HF-DAG: "-target-cpu" "arm1176jzf-s"
|
2013-11-23 22:36:40 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target armv7-apple-darwin -x assembler %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=ASM %s
|
|
|
|
// ASM-NOT: -target-feature
|
2018-02-19 20:40:26 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target armv8-linux-gnueabi -mfloat-abi=soft -mfpu=none %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv7-linux-gnueabi -mfloat-abi=soft -mfpu=none %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv6-linux-gnueabi -mfloat-abi=soft -mfpu=none %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv5-linux-gnueabi -mfloat-abi=soft -mfpu=none %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv4-linux-gnueabi -mfloat-abi=soft -mfpu=none %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv8-linux-gnueabi -msoft-float -mfpu=none %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv8-linux-gnueabi -mfloat-abi=soft %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
|
|
|
// RUN: %clang -target armv8-linux-gnueabi -msoft-float %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFT-ABI-FP %s
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "+soft-float-abi"
|
2019-09-18 05:43:19 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-vfp2sp"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-SOFT-ABI-FP-DAG: "-target-feature" "-fpregs"
|
2018-10-13 01:06:31 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-linux-androideabi21 %s -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-ARM5-ANDROID-FP-DEFAULT %s
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-DAG: "-target-feature" "+soft-float"
|
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-DAG: "-target-feature" "+soft-float-abi"
|
[ARM] Replace fp-only-sp and d16 with fp64 and d32.
Those two subtarget features were awkward because their semantics are
reversed: each one indicates the _lack_ of support for something in
the architecture, rather than the presence. As a consequence, you
don't get the behavior you want if you combine two sets of feature
bits.
Each SubtargetFeature for an FP architecture version now comes in four
versions, one for each combination of those options. So you can still
say (for example) '+vfp2' in a feature string and it will mean what
it's always meant, but there's a new string '+vfp2d16sp' meaning the
version without those extra options.
A lot of this change is just mechanically replacing positive checks
for the old features with negative checks for the new ones. But one
more interesting change is that I've rearranged getFPUFeatures() so
that the main FPU feature is appended to the output list *before*
rather than after the features derived from the Restriction field, so
that -fp64 and -d32 can override defaults added by the main feature.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: srhines, javed.absar, eraman, kristof.beyls, hiraditya, zzheng, Petar.Avramovic, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60691
llvm-svn: 361845
2019-05-29 00:13:20 +08:00
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+d32"
|
2018-10-13 01:06:31 +08:00
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+vfp3"
|
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+vfp4"
|
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+fp-armv8"
|
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+neon"
|
|
|
|
// CHECK-ARM5-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+crypto"
|
|
|
|
|
|
|
|
// RUN: %clang -target armv7-linux-androideabi21 %s -### -c 2>&1 \
|
2019-02-16 04:31:54 +08:00
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-ARM7-ANDROID-FP-DEFAULT %s
|
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-DAG: "-target-feature" "+soft-float-abi"
|
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-DAG: "-target-feature" "+vfp3"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-DAG: "-target-feature" "-vfp4"
|
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-DAG: "-target-feature" "-fp-armv8"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-DAG: "-target-feature" "+neon"
|
2019-02-16 04:31:54 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-DEFAULT-NOT: "-target-feature" "+crypto"
|
|
|
|
|
|
|
|
// RUN: %clang -target armv7-linux-androideabi21 %s -mfpu=vfp3-d16 -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-ARM7-ANDROID-FP-D16 %s
|
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-NOT: "-target-feature" "+soft-float"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-DAG: "-target-feature" "+soft-float-abi"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-DAG: "-target-feature" "-d32"
|
[ARM] Fix bugs introduced by the fp64/d32 rework.
Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
2019-06-07 20:42:54 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-DAG: "-target-feature" "+vfp3d16"
|
2019-02-16 04:31:54 +08:00
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-NOT: "-target-feature" "+vfp4"
|
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-NOT: "-target-feature" "+fp-armv8"
|
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-NOT: "-target-feature" "+neon"
|
|
|
|
// CHECK-ARM7-ANDROID-FP-D16-NOT: "-target-feature" "+crypto"
|
2019-10-16 21:23:39 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-none-none-eabi %s -march=armv8.1-m.main+mve.fp+fp.dp -mfloat-abi=soft -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-SOFTFLOATABI-INHIBITS-MVE %s
|
|
|
|
// CHECK-SOFTFLOATABI-INHIBITS-MVE-NOT: "-target-feature" "+mve"
|
|
|
|
// CHECK-SOFTFLOATABI-INHIBITS-MVE-DAG: "-target-feature" "-mve"
|
|
|
|
// CHECK-SOFTFLOATABI-INHIBITS-MVE-DAG: "-target-feature" "-mve.fp"
|
2020-01-09 21:47:52 +08:00
|
|
|
|
|
|
|
// RUN: %clang -target arm-none-none-eabi %s -march=armv8.1-m.main+mve.fp -mfpu=none -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-MVEFP-FPUNONE %s
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-vfp2sp"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-d32"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-crypto"
|
2020-02-05 23:19:03 +08:00
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "+mve"
|
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "+dsp"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-MVEFP-FPUNONE-DAG: "-target-feature" "-mve.fp"
|
|
|
|
// CHECK-MVEFP-FPUNONE-NOT: "-target-feature" "-fpregs"
|
|
|
|
|
2020-02-11 20:01:17 +08:00
|
|
|
// RUN: %clang -target arm-none-none-eabi %s -march=armv8.1-m.main+mve.fp+nomve -mfpu=none -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-MVEFP-NOMVE-FPUNONE %s
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-vfp2sp"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-vfp3d16sp"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-vfp4d16sp"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-fp-armv8d16sp"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-fp64"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-d32"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-neon"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-crypto"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "+dsp"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-mve"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-mve.fp"
|
|
|
|
// CHECK-MVEFP-NOMVE-FPUNONE-DAG: "-target-feature" "-fpregs"
|
|
|
|
|
2020-01-09 21:47:52 +08:00
|
|
|
// RUN: %clang -target arm-none-none-eabi %s -march=armv8.1-m.main+mve -mfpu=none -### -c 2>&1 \
|
|
|
|
// RUN: | FileCheck --check-prefix=CHECK-MVEI-FPUNONE %s
|
|
|
|
// CHECK-MVEI-FPUNONE-DAG: "-target-feature" "-mve.fp"
|
|
|
|
// CHECK-MVEI-FPUNONE-DAG: "-target-feature" "+mve"
|
2020-02-05 23:19:03 +08:00
|
|
|
// CHECK-MVEI-FPUNONE-DAG: "-target-feature" "+dsp"
|
2020-01-09 21:47:52 +08:00
|
|
|
// CHECK-MVEI-FPUNONE-NOT: "-target-feature" "-fpregs"
|