llvm-project/llvm/test/Transforms/InstCombine/add2.ll

356 lines
9.8 KiB
LLVM
Raw Normal View History

2011-02-17 10:21:03 +08:00
; RUN: opt < %s -instcombine -S | FileCheck %s
2007-03-05 08:01:38 +08:00
define i64 @test1(i64 %A, i32 %B) {
%tmp12 = zext i32 %B to i64
%tmp3 = shl i64 %tmp12, 32
%tmp5 = add i64 %tmp3, %A
%tmp6 = and i64 %tmp5, 123
ret i64 %tmp6
; CHECK-LABEL: @test1(
2011-02-17 10:21:03 +08:00
; CHECK-NEXT: and i64 %A, 123
; CHECK-NEXT: ret i64
2007-03-05 08:01:38 +08:00
}
2011-02-17 10:21:03 +08:00
define i32 @test2(i32 %A) {
%B = and i32 %A, 7
%C = and i32 %A, 32
%F = add i32 %B, %C
ret i32 %F
; CHECK-LABEL: @test2(
2011-02-17 10:21:03 +08:00
; CHECK-NEXT: and i32 %A, 39
; CHECK-NEXT: ret i32
}
2011-02-17 10:21:03 +08:00
define i32 @test3(i32 %A) {
%B = and i32 %A, 128
%C = lshr i32 %A, 30
%F = add i32 %B, %C
ret i32 %F
; CHECK-LABEL: @test3(
2011-02-17 10:21:03 +08:00
; CHECK-NEXT: and
; CHECK-NEXT: lshr
; CHECK-NEXT: or i32 %B, %C
; CHECK-NEXT: ret i32
}
define i32 @test4(i32 %A) {
%B = add nuw i32 %A, %A
ret i32 %B
; CHECK-LABEL: @test4(
; CHECK-NEXT: %B = shl nuw i32 %A, 1
; CHECK-NEXT: ret i32 %B
}
define <2 x i1> @test5(<2 x i1> %A, <2 x i1> %B) {
%add = add <2 x i1> %A, %B
ret <2 x i1> %add
; CHECK-LABEL: @test5(
; CHECK-NEXT: %add = xor <2 x i1> %A, %B
; CHECK-NEXT: ret <2 x i1> %add
}
define <2 x i64> @test6(<2 x i64> %A) {
%shl = shl <2 x i64> %A, <i64 2, i64 3>
%add = add <2 x i64> %shl, %A
ret <2 x i64> %add
; CHECK-LABEL: @test6(
; CHECK-NEXT: %add = mul <2 x i64> %A, <i64 5, i64 9>
; CHECK-NEXT: ret <2 x i64> %add
}
define <2 x i64> @test7(<2 x i64> %A) {
%shl = shl <2 x i64> %A, <i64 2, i64 3>
%mul = mul <2 x i64> %A, <i64 3, i64 4>
%add = add <2 x i64> %shl, %mul
ret <2 x i64> %add
; CHECK-LABEL: @test7(
; CHECK-NEXT: %add = mul <2 x i64> %A, <i64 7, i64 12>
; CHECK-NEXT: ret <2 x i64> %add
}
define <2 x i64> @test8(<2 x i64> %A) {
%xor = xor <2 x i64> %A, <i64 -1, i64 -1>
%add = add <2 x i64> %xor, <i64 2, i64 3>
ret <2 x i64> %add
; CHECK-LABEL: @test8(
; CHECK-NEXT: %add = sub <2 x i64> <i64 1, i64 2>, %A
; CHECK-NEXT: ret <2 x i64> %add
}
define i16 @test9(i16 %a) {
%b = mul i16 %a, 2
%c = mul i16 %a, 32767
%d = add i16 %b, %c
ret i16 %d
; CHECK-LABEL: @test9(
; CHECK-NEXT: %d = mul i16 %a, -32767
; CHECK-NEXT: ret i16 %d
}
; y + (~((x >> 3) & 0x55555555) + 1) -> y - ((x >> 3) & 0x55555555)
define i32 @test10(i32 %x, i32 %y) {
%shr = ashr i32 %x, 3
%shr.not = or i32 %shr, -1431655766
%neg = xor i32 %shr.not, 1431655765
%add = add i32 %y, 1
%add1 = add i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test10(
; CHECK-NEXT: [[SHR:%[a-z0-9]+]] = ashr i32 %x, 3
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = and i32 [[SHR]], 1431655765
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; y + (~(x & 0x55555555) + 1) -> y - (x & 0x55555555)
define i32 @test11(i32 %x, i32 %y) {
%x.not = or i32 %x, -1431655766
%neg = xor i32 %x.not, 1431655765
%add = add i32 %y, 1
%add1 = add i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test11(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = and i32 %x, 1431655765
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; (y + 1) + ~(x & 0x55555555) -> y - (x & 0x55555555)
define i32 @test12(i32 %x, i32 %y) {
%add = add nsw i32 %y, 1
%x.not = or i32 %x, -1431655766
%neg = xor i32 %x.not, 1431655765
%add1 = add nsw i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test12(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = and i32 %x, 1431655765
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; y + (~(x & 0x55555556) + 1) -> y - (x & 0x55555556)
define i32 @test13(i32 %x, i32 %y) {
%x.not = or i32 %x, -1431655767
%neg = xor i32 %x.not, 1431655766
%add = add i32 %y, 1
%add1 = add i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test13(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = and i32 %x, 1431655766
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; (y + 1) + ~(x & 0x55555556) -> y - (x & 0x55555556)
define i32 @test14(i32 %x, i32 %y) {
%add = add nsw i32 %y, 1
%x.not = or i32 %x, -1431655767
%neg = xor i32 %x.not, 1431655766
%add1 = add nsw i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test14(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = and i32 %x, 1431655766
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; y + (~(x | 0x55555556) + 1) -> y - (x | 0x55555556)
define i32 @test15(i32 %x, i32 %y) {
%x.not = and i32 %x, -1431655767
%neg = xor i32 %x.not, -1431655767
%add = add i32 %y, 1
%add1 = add i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test15(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = or i32 %x, 1431655766
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; (y + 1) + ~(x | 0x55555556) -> y - (x | 0x555555556)
define i32 @test16(i32 %x, i32 %y) {
%add = add nsw i32 %y, 1
%x.not = and i32 %x, -1431655767
%neg = xor i32 %x.not, -1431655767
%add1 = add nsw i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test16(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = or i32 %x, 1431655766
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; y + (~(x | 0x55555555) + 1) -> y - (x | 0x55555555)
define i32 @test17(i32 %x, i32 %y) {
%x.not = and i32 %x, -1431655766
%add2 = xor i32 %x.not, -1431655765
%add1 = add nsw i32 %add2, %y
ret i32 %add1
; CHECK-LABEL: @test17(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = or i32 %x, 1431655765
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
; (y + 1) + ~(x | 0x55555555) -> y - (x | 0x55555555)
define i32 @test18(i32 %x, i32 %y) {
%add = add nsw i32 %y, 1
%x.not = and i32 %x, -1431655766
%neg = xor i32 %x.not, -1431655766
%add1 = add nsw i32 %add, %neg
ret i32 %add1
; CHECK-LABEL: @test18(
; CHECK-NEXT: [[AND:%[a-z0-9]+]] = or i32 %x, 1431655765
; CHECK-NEXT: [[SUB:%[a-z0-9]+]] = sub i32 %y, [[AND]]
; CHECK-NEXT: ret i32 [[SUB]]
}
define i16 @add_nsw_mul_nsw(i16 %x) {
%add1 = add nsw i16 %x, %x
%add2 = add nsw i16 %add1, %x
ret i16 %add2
; CHECK-LABEL: @add_nsw_mul_nsw(
; CHECK-NEXT: %add2 = mul nsw i16 %x, 3
; CHECK-NEXT: ret i16 %add2
}
define i16 @mul_add_to_mul_1(i16 %x) {
%mul1 = mul nsw i16 %x, 8
%add2 = add nsw i16 %x, %mul1
ret i16 %add2
; CHECK-LABEL: @mul_add_to_mul_1(
; CHECK-NEXT: %add2 = mul nsw i16 %x, 9
; CHECK-NEXT: ret i16 %add2
}
define i16 @mul_add_to_mul_2(i16 %x) {
%mul1 = mul nsw i16 %x, 8
%add2 = add nsw i16 %mul1, %x
ret i16 %add2
; CHECK-LABEL: @mul_add_to_mul_2(
; CHECK-NEXT: %add2 = mul nsw i16 %x, 9
; CHECK-NEXT: ret i16 %add2
}
define i16 @mul_add_to_mul_3(i16 %a) {
%mul1 = mul i16 %a, 2
%mul2 = mul i16 %a, 3
%add = add nsw i16 %mul1, %mul2
ret i16 %add
; CHECK-LABEL: @mul_add_to_mul_3(
; CHECK-NEXT: %add = mul i16 %a, 5
; CHECK-NEXT: ret i16 %add
}
define i16 @mul_add_to_mul_4(i16 %a) {
%mul1 = mul nsw i16 %a, 2
%mul2 = mul nsw i16 %a, 7
%add = add nsw i16 %mul1, %mul2
ret i16 %add
; CHECK-LABEL: @mul_add_to_mul_4(
; CHECK-NEXT: %add = mul nsw i16 %a, 9
; CHECK-NEXT: ret i16 %add
}
define i16 @mul_add_to_mul_5(i16 %a) {
%mul1 = mul nsw i16 %a, 3
%mul2 = mul nsw i16 %a, 7
%add = add nsw i16 %mul1, %mul2
ret i16 %add
; CHECK-LABEL: @mul_add_to_mul_5(
; CHECK-NEXT: %add = mul nsw i16 %a, 10
; CHECK-NEXT: ret i16 %add
}
define i32 @mul_add_to_mul_6(i32 %x, i32 %y) {
%mul1 = mul nsw i32 %x, %y
%mul2 = mul nsw i32 %mul1, 5
%add = add nsw i32 %mul1, %mul2
ret i32 %add
; CHECK-LABEL: @mul_add_to_mul_6(
; CHECK-NEXT: %mul1 = mul nsw i32 %x, %y
; CHECK-NEXT: %add = mul nsw i32 %mul1, 6
; CHECK-NEXT: ret i32 %add
}
; This test and the next test verify that when a range metadata is attached to
; llvm.cttz, ValueTracking correctly intersects the range specified by the
; metadata and the range implied by the intrinsic.
;
; In this test, the range specified by the metadata is more strict. Therefore,
; ValueTracking uses that range.
define i16 @add_cttz(i16 %a) {
; CHECK-LABEL: @add_cttz(
; llvm.cttz.i16(..., /*is_zero_undefined=*/true) implies the value returned
; is in [0, 16). The range metadata indicates the value returned is in [0, 8).
; Intersecting these ranges, we know the value returned is in [0, 8).
; Therefore, InstCombine will transform
; add %cttz, 1111 1111 1111 1000 ; decimal -8
; to
; or %cttz, 1111 1111 1111 1000
%cttz = call i16 @llvm.cttz.i16(i16 %a, i1 true), !range !0
%b = add i16 %cttz, -8
; CHECK: or i16 %cttz, -8
ret i16 %b
}
declare i16 @llvm.cttz.i16(i16, i1)
!0 = metadata !{i16 0, i16 8}
; Similar to @add_cttz, but in this test, the range implied by the
; intrinsic is more strict. Therefore, ValueTracking uses that range.
define i16 @add_cttz_2(i16 %a) {
; CHECK-LABEL: @add_cttz_2(
; llvm.cttz.i16(..., /*is_zero_undefined=*/true) implies the value returned
; is in [0, 16). The range metadata indicates the value returned is in
; [0, 32). Intersecting these ranges, we know the value returned is in
; [0, 16). Therefore, InstCombine will transform
; add %cttz, 1111 1111 1111 0000 ; decimal -16
; to
; or %cttz, 1111 1111 1111 0000
%cttz = call i16 @llvm.cttz.i16(i16 %a, i1 true), !range !1
%b = add i16 %cttz, -16
; CHECK: or i16 %cttz, -16
ret i16 %b
}
!1 = metadata !{i16 0, i16 32}
define i32 @add_or_and(i32 %x, i32 %y) {
%or = or i32 %x, %y
%and = and i32 %x, %y
%add = add i32 %or, %and
ret i32 %add
; CHECK-LABEL: @add_or_and(
; CHECK-NEXT: add i32 %x, %y
; CHECK-NEXT: ret i32
}
define i32 @add_nsw_or_and(i32 %x, i32 %y) {
%or = or i32 %x, %y
%and = and i32 %x, %y
%add = add nsw i32 %or, %and
ret i32 %add
; CHECK-LABEL: @add_nsw_or_and(
; CHECK-NEXT: add nsw i32 %x, %y
; CHECK-NEXT: ret i32
}
define i32 @add_nuw_or_and(i32 %x, i32 %y) {
%or = or i32 %x, %y
%and = and i32 %x, %y
%add = add nuw i32 %or, %and
ret i32 %add
; CHECK-LABEL: @add_nuw_or_and(
; CHECK-NEXT: add nuw i32 %x, %y
; CHECK-NEXT: ret i32
}
define i32 @add_nuw_nsw_or_and(i32 %x, i32 %y) {
%or = or i32 %x, %y
%and = and i32 %x, %y
%add = add nsw nuw i32 %or, %and
ret i32 %add
; CHECK-LABEL: @add_nuw_nsw_or_and(
; CHECK-NEXT: add nuw nsw i32 %x, %y
; CHECK-NEXT: ret i32
}