llvm-project/polly/lib/Analysis/ScopDetection.cpp

789 lines
24 KiB
C++
Raw Normal View History

//===----- ScopDetection.cpp - Detect Scops --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fullfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Only function calls and intrinsics that do not have side effects are allowed
// (readnone).
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//
#include "polly/ScopDetection.h"
#include "polly/LinkAllPasses.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/AffineSCEVIterator.h"
#include "llvm/LLVMContext.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Assembly/Writer.h"
#define DEBUG_TYPE "polly-detect"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
static cl::opt<std::string>
OnlyFunction("polly-detect-only",
cl::desc("Only detect scops in function"), cl::Hidden,
cl::value_desc("The function name to detect scops in"),
cl::ValueRequired, cl::init(""));
//===----------------------------------------------------------------------===//
// Statistics.
STATISTIC(ValidRegion, "Number of regions that a valid part of Scop");
#define BADSCOP_STAT(NAME, DESC) STATISTIC(Bad##NAME##ForScop, \
"Number of bad regions for Scop: "\
DESC)
#define STATSCOP(NAME); assert(!Context.Verifying && #NAME); \
if (!Context.Verifying) ++Bad##NAME##ForScop;
#define INVALID(NAME, MESSAGE) \
do { \
std::string Buf; \
raw_string_ostream fmt(Buf); \
fmt << MESSAGE; \
fmt.flush(); \
LastFailure = Buf; \
DEBUG(dbgs() << MESSAGE); \
DEBUG(dbgs() << "\n"); \
STATSCOP(NAME); \
return false; \
} while (0);
BADSCOP_STAT(CFG, "CFG too complex");
BADSCOP_STAT(IndVar, "Non canonical induction variable in loop");
BADSCOP_STAT(LoopBound, "Loop bounds can not be computed");
BADSCOP_STAT(FuncCall, "Function call with side effects appeared");
BADSCOP_STAT(AffFunc, "Expression not affine");
BADSCOP_STAT(Scalar, "Found scalar dependency");
BADSCOP_STAT(Alias, "Found base address alias");
BADSCOP_STAT(SimpleRegion, "Region not simple");
BADSCOP_STAT(Other, "Others");
//===----------------------------------------------------------------------===//
// ScopDetection.
namespace SCEVType {
enum TYPE {INT, PARAM, IV, INVALID};
}
/// Check if a SCEV is valid in a SCoP.
struct SCEVValidator : public SCEVVisitor<SCEVValidator, SCEVType::TYPE> {
private:
const Region *R;
ScalarEvolution &SE;
const Value **BaseAddress;
public:
static bool isValid(const Region *R, const SCEV *Scev,
ScalarEvolution &SE,
const Value **BaseAddress = NULL) {
if (isa<SCEVCouldNotCompute>(Scev))
return false;
SCEVValidator Validator(R, SE, BaseAddress);
return Validator.visit(Scev) != SCEVType::INVALID;
}
SCEVValidator(const Region *R, ScalarEvolution &SE,
const Value **BaseAddress) : R(R), SE(SE),
BaseAddress(BaseAddress) {};
SCEVType::TYPE visitConstant(const SCEVConstant *Constant) {
return SCEVType::INT;
}
SCEVType::TYPE visitTruncateExpr(const SCEVTruncateExpr* Expr) {
SCEVType::TYPE Op = visit(Expr->getOperand());
// We cannot represent this as a affine expression yet. If it is constant
// during Scop execution treat this as a parameter, otherwise bail out.
if (Op == SCEVType::INT || Op == SCEVType::PARAM)
return SCEVType::PARAM;
return SCEVType::INVALID;
}
SCEVType::TYPE visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr) {
SCEVType::TYPE Op = visit(Expr->getOperand());
// We cannot represent this as a affine expression yet. If it is constant
// during Scop execution treat this as a parameter, otherwise bail out.
if (Op == SCEVType::INT || Op == SCEVType::PARAM)
return SCEVType::PARAM;
return SCEVType::INVALID;
}
SCEVType::TYPE visitSignExtendExpr(const SCEVSignExtendExpr* Expr) {
// Assuming the value is signed, a sign extension is basically a noop.
// TODO: Reconsider this as soon as we support unsigned values.
return visit(Expr->getOperand());
}
SCEVType::TYPE visitAddExpr(const SCEVAddExpr* Expr) {
SCEVType::TYPE Return = SCEVType::INT;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
Return = std::max(Return, OpType);
}
// TODO: Check for NSW and NUW.
return Return;
}
SCEVType::TYPE visitMulExpr(const SCEVMulExpr* Expr) {
SCEVType::TYPE Return = SCEVType::INT;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
if (OpType == SCEVType::INVALID)
return SCEVType::INVALID;
if (OpType == SCEVType::IV) {
if (Return == SCEVType::PARAM || Return == SCEVType::IV)
return SCEVType::INVALID;
Return = OpType;
continue;
}
if (OpType == SCEVType::PARAM) {
if (Return == SCEVType::PARAM)
return SCEVType::INVALID;
Return = SCEVType::PARAM;
continue;
}
// OpType == SCEVType::INT, no need to change anything.
}
// TODO: Check for NSW and NUW.
return Return;
}
SCEVType::TYPE visitUDivExpr(const SCEVUDivExpr* Expr) {
// We do not yet support unsigned operations.
return SCEVType::INVALID;
}
SCEVType::TYPE visitAddRecExpr(const SCEVAddRecExpr* Expr) {
if (!Expr->isAffine())
return SCEVType::INVALID;
SCEVType::TYPE Start = visit(Expr->getStart());
if (Start == SCEVType::INVALID)
return Start;
SCEVType::TYPE Recurrence = visit(Expr->getStepRecurrence(SE));
if (Recurrence != SCEVType::INT)
return SCEVType::INVALID;
return SCEVType::PARAM;
}
SCEVType::TYPE visitSMaxExpr(const SCEVSMaxExpr* Expr) {
SCEVType::TYPE Return = SCEVType::INT;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
if (OpType == SCEVType::INVALID)
return SCEVType::INVALID;
if (OpType == SCEVType::PARAM)
Return = SCEVType::PARAM;
}
return Return;
}
SCEVType::TYPE visitUMaxExpr(const SCEVUMaxExpr* Expr) {
// We do not yet support unsigned operations. If 'Expr' is constant
// during Scop execution treat this as a parameter, otherwise bail out.
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
if (OpType != SCEVType::INT && OpType != SCEVType::PARAM)
return SCEVType::PARAM;
}
return SCEVType::PARAM;
}
SCEVType::TYPE visitUnknown(const SCEVUnknown* Expr) {
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue()))
if (R->contains(I))
return SCEVType::INVALID;
return SCEVType::PARAM;
}
};
bool ScopDetection::isMaxRegionInScop(const Region &R) const {
// The Region is valid only if it could be found in the set.
return ValidRegions.count(&R);
}
std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
if (!InvalidRegions.count(R))
return "";
return InvalidRegions.find(R)->second;
}
bool ScopDetection::isValidAffineFunction(const SCEV *S, Region &RefRegion,
Value **BasePtr) const {
assert(S && "S must not be null!");
bool isMemoryAccess = (BasePtr != 0);
if (isMemoryAccess) *BasePtr = 0;
DEBUG(dbgs() << "Checking " << *S << " ... ");
if (isa<SCEVCouldNotCompute>(S)) {
DEBUG(dbgs() << "Non Affine: SCEV could not be computed\n");
return false;
}
for (AffineSCEVIterator I = affine_begin(S, SE), E = affine_end(); I != E;
++I) {
// The constant part must be a SCEVConstant.
// TODO: support sizeof in coefficient.
if (!isa<SCEVConstant>(I->second)) {
DEBUG(dbgs() << "Non Affine: Right hand side is not constant\n");
return false;
}
const SCEV *Var = I->first;
// A constant offset is affine.
if(isa<SCEVConstant>(Var))
continue;
// Memory accesses are allowed to have a base pointer.
if (Var->getType()->isPointerTy()) {
if (!isMemoryAccess) {
DEBUG(dbgs() << "Non Affine: Pointer in non memory access\n");
return false;
}
assert(I->second->isOne() && "Only one as pointer coefficient allowed.\n");
const SCEVUnknown *BaseAddr = dyn_cast<SCEVUnknown>(Var);
if (!BaseAddr || isa<UndefValue>(BaseAddr->getValue())){
DEBUG(dbgs() << "Cannot handle base: " << *Var << "\n");
return false;
}
// BaseAddr must be invariant in Scop.
if (!isParameter(BaseAddr, RefRegion, *LI, *SE)) {
DEBUG(dbgs() << "Non Affine: Base address not invariant in SCoP\n");
return false;
}
assert(*BasePtr == 0 && "Found second base pointer.\n");
*BasePtr = BaseAddr->getValue();
continue;
}
if (isParameter(Var, RefRegion, *LI, *SE)
|| isIndVar(Var, RefRegion, *LI, *SE))
continue;
DEBUG(dbgs() << "Non Affine: " ;
Var->print(dbgs());
dbgs() << " is neither parameter nor induction variable\n");
return false;
}
DEBUG(dbgs() << " is affine.\n");
return !isMemoryAccess || (*BasePtr != 0);
}
bool ScopDetection::isValidCFG(BasicBlock &BB, DetectionContext &Context) const
{
Region &RefRegion = Context.CurRegion;
TerminatorInst *TI = BB.getTerminator();
// Return instructions are only valid if the region is the top level region.
if (isa<ReturnInst>(TI) && !RefRegion.getExit() && TI->getNumOperands() == 0)
return true;
BranchInst *Br = dyn_cast<BranchInst>(TI);
if (!Br)
INVALID(CFG, "Non branch instruction terminates BB: " + BB.getNameStr());
if (Br->isUnconditional()) return true;
Value *Condition = Br->getCondition();
// UndefValue is not allowed as condition.
if (isa<UndefValue>(Condition))
INVALID(AffFunc, "Condition based on 'undef' value in BB: "
+ BB.getNameStr());
// Only Constant and ICmpInst are allowed as condition.
if (!(isa<Constant>(Condition) || isa<ICmpInst>(Condition)))
INVALID(AffFunc, "Condition in BB '" + BB.getNameStr() + "' neither "
"constant nor an icmp instruction");
// Allow perfectly nested conditions.
assert(Br->getNumSuccessors() == 2 && "Unexpected number of successors");
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Condition)) {
// Unsigned comparisons are not allowed. They trigger overflow problems
// in the code generation.
//
// TODO: This is not sufficient and just hides bugs. However it does pretty
// well.
if(ICmp->isUnsigned())
return false;
// Are both operands of the ICmp affine?
if (isa<UndefValue>(ICmp->getOperand(0))
|| isa<UndefValue>(ICmp->getOperand(1)))
INVALID(AffFunc, "undef operand in branch at BB: " + BB.getNameStr());
const SCEV *ScevLHS = SE->getSCEV(ICmp->getOperand(0));
const SCEV *ScevRHS = SE->getSCEV(ICmp->getOperand(1));
bool affineLHS = SCEVValidator::isValid(&Context.CurRegion, ScevLHS, *SE);
bool affineRHS = SCEVValidator::isValid(&Context.CurRegion, ScevRHS, *SE);
if (!affineLHS || !affineRHS)
INVALID(AffFunc, "Non affine branch in BB: " + BB.getNameStr());
}
// Allow loop exit conditions.
Loop *L = LI->getLoopFor(&BB);
if (L && L->getExitingBlock() == &BB)
return true;
// Allow perfectly nested conditions.
Region *R = RI->getRegionFor(&BB);
if (R->getEntry() != &BB)
INVALID(CFG, "Not well structured condition at BB: " + BB.getNameStr());
return true;
}
bool ScopDetection::isValidCallInst(CallInst &CI) {
if (CI.mayHaveSideEffects() || CI.doesNotReturn())
return false;
if (CI.doesNotAccessMemory())
return true;
Function *CalledFunction = CI.getCalledFunction();
// Indirect calls are not supported.
if (CalledFunction == 0)
return false;
// TODO: Intrinsics.
return false;
}
bool ScopDetection::isValidMemoryAccess(Instruction &Inst,
DetectionContext &Context) const {
Value *Ptr = getPointerOperand(Inst), *BasePtr;
const SCEV *AccessFunction = SE->getSCEV(Ptr);
if (!isValidAffineFunction(AccessFunction, Context.CurRegion, &BasePtr))
INVALID(AffFunc, "Bad memory address " << *AccessFunction);
// FIXME: Alias Analysis thinks IntToPtrInst aliases with alloca instructions
// created by IndependentBlocks Pass.
if (isa<IntToPtrInst>(BasePtr))
INVALID(Other, "Find bad intToptr prt: " << *BasePtr);
// Check if the base pointer of the memory access does alias with
// any other pointer. This cannot be handled at the moment.
AliasSet &AS =
Context.AST.getAliasSetForPointer(BasePtr, AliasAnalysis::UnknownSize,
Inst.getMetadata(LLVMContext::MD_tbaa));
if (!AS.isMustAlias()) {
DEBUG(dbgs() << "Bad pointer alias found:" << *BasePtr << "\nAS:\n" << AS);
// STATSCOP triggers an assertion if we are in verifying mode.
// This is generally good to check that we do not change the SCoP after we
// run the SCoP detection and consequently to ensure that we can still
// represent that SCoP. However, in case of aliasing this does not work.
// The independent blocks pass may create memory references which seem to
// alias, if -basicaa is not available. They actually do not. As we do not
// not know this and we would fail here if we verify it.
if (!Context.Verifying) {
STATSCOP(Alias);
}
return false;
}
return true;
}
bool ScopDetection::hasScalarDependency(Instruction &Inst,
Region &RefRegion) const {
for (Instruction::use_iterator UI = Inst.use_begin(), UE = Inst.use_end();
UI != UE; ++UI)
if (Instruction *Use = dyn_cast<Instruction>(*UI))
if (!RefRegion.contains(Use->getParent())) {
// DirtyHack 1: PHINode user outside the Scop is not allow, if this
// PHINode is induction variable, the scalar to array transform may
// break it and introduce a non-indvar PHINode, which is not allow in
// Scop.
// This can be fix by:
// Introduce a IndependentBlockPrepare pass, which translate all
// PHINodes not in Scop to array.
// The IndependentBlockPrepare pass can also split the entry block of
// the function to hold the alloca instruction created by scalar to
// array. and split the exit block of the Scop so the new create load
// instruction for escape users will not break other Scops.
if (isa<PHINode>(Use))
return true;
}
return false;
}
bool ScopDetection::isValidInstruction(Instruction &Inst,
DetectionContext &Context) const {
// Only canonical IVs are allowed.
if (PHINode *PN = dyn_cast<PHINode>(&Inst))
if (!isIndVar(PN, LI))
INVALID(IndVar, "Non canonical PHI node: " << Inst);
// Scalar dependencies are not allowed.
if (hasScalarDependency(Inst, Context.CurRegion))
INVALID(Scalar, "Scalar dependency found: " << Inst);
// We only check the call instruction but not invoke instruction.
if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
if (isValidCallInst(*CI))
return true;
INVALID(FuncCall, "Call instruction: " << Inst);
}
if (!Inst.mayWriteToMemory() && !Inst.mayReadFromMemory()) {
// Handle cast instruction.
if (isa<IntToPtrInst>(Inst) || isa<BitCastInst>(Inst))
INVALID(Other, "Cast instruction: " << Inst);
if (isa<AllocaInst>(Inst))
INVALID(Other, "Alloca instruction: " << Inst);
return true;
}
// Check the access function.
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
return isValidMemoryAccess(Inst, Context);
// We do not know this instruction, therefore we assume it is invalid.
INVALID(Other, "Unknown instruction: " << Inst);
}
bool ScopDetection::isValidBasicBlock(BasicBlock &BB,
DetectionContext &Context) const {
if (!isValidCFG(BB, Context))
return false;
// Check all instructions, except the terminator instruction.
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
if (!isValidInstruction(*I, Context))
return false;
Loop *L = LI->getLoopFor(&BB);
if (L && L->getHeader() == &BB && !isValidLoop(L, Context))
return false;
return true;
}
bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
PHINode *IndVar = L->getCanonicalInductionVariable();
// No canonical induction variable.
if (!IndVar)
INVALID(IndVar, "No canonical IV at loop header: "
<< L->getHeader()->getNameStr());
// Is the loop count affine?
const SCEV *LoopCount = SE->getBackedgeTakenCount(L);
if (!SCEVValidator::isValid(&Context.CurRegion, LoopCount, *SE))
INVALID(LoopBound, "Non affine loop bound '" << *LoopCount << "' in loop: "
<< L->getHeader()->getNameStr());
return true;
}
Region *ScopDetection::expandRegion(Region &R) {
Region *CurrentRegion = &R;
Region *TmpRegion = R.getExpandedRegion();
DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
while (TmpRegion) {
DetectionContext Context(*TmpRegion, *AA, false /*verifying*/);
DEBUG(dbgs() << "\t\tTrying " << TmpRegion->getNameStr() << "\n");
if (!allBlocksValid(Context))
break;
if (isValidExit(Context)) {
if (CurrentRegion != &R)
delete CurrentRegion;
CurrentRegion = TmpRegion;
}
Region *TmpRegion2 = TmpRegion->getExpandedRegion();
if (TmpRegion != &R && TmpRegion != CurrentRegion)
delete TmpRegion;
TmpRegion = TmpRegion2;
}
if (&R == CurrentRegion)
return NULL;
DEBUG(dbgs() << "\tto " << CurrentRegion->getNameStr() << "\n");
return CurrentRegion;
}
void ScopDetection::findScops(Region &R) {
DetectionContext Context(R, *AA, false /*verifying*/);
if (isValidRegion(Context)) {
++ValidRegion;
ValidRegions.insert(&R);
return;
}
InvalidRegions[&R] = LastFailure;
for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
findScops(**I);
// Try to expand regions.
//
// As the region tree normally only contains canonical regions, non canonical
// regions that form a Scop are not found. Therefore, those non canonical
// regions are checked by expanding the canonical ones.
std::vector<Region*> ToExpand;
for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
ToExpand.push_back(*I);
for (std::vector<Region*>::iterator RI = ToExpand.begin(),
RE = ToExpand.end(); RI != RE; ++RI) {
Region *CurrentRegion = *RI;
// Skip invalid regions. Regions may become invalid, if they are element of
// an already expanded region.
if (ValidRegions.find(CurrentRegion) == ValidRegions.end())
continue;
Region *ExpandedR = expandRegion(*CurrentRegion);
if (!ExpandedR)
continue;
R.addSubRegion(ExpandedR, true);
ValidRegions.insert(ExpandedR);
ValidRegions.erase(CurrentRegion);
for (Region::iterator I = ExpandedR->begin(), E = ExpandedR->end(); I != E;
++I)
ValidRegions.erase(*I);
}
}
bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
Region &R = Context.CurRegion;
for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E;
++I)
if (!isValidBasicBlock(*(I->getNodeAs<BasicBlock>()), Context))
return false;
return true;
}
bool ScopDetection::isValidExit(DetectionContext &Context) const {
Region &R = Context.CurRegion;
// PHI nodes are not allowed in the exit basic block.
if (BasicBlock *Exit = R.getExit()) {
BasicBlock::iterator I = Exit->begin();
if (I != Exit->end() && isa<PHINode> (*I))
INVALID(Other, "PHI node in exit BB");
}
return true;
}
bool ScopDetection::isValidRegion(DetectionContext &Context) const {
Region &R = Context.CurRegion;
DEBUG(dbgs() << "Checking region: " << R.getNameStr() << "\n\t");
// The toplevel region is no valid region.
if (!R.getParent()) {
DEBUG(dbgs() << "Top level region is invalid";
dbgs() << "\n");
return false;
}
// SCoP can not contains the entry block of the function, because we need
// to insert alloca instruction there when translate scalar to array.
if (R.getEntry() == &(R.getEntry()->getParent()->getEntryBlock()))
INVALID(Other, "Region containing entry block of function is invalid!");
// Only a simple region is allowed.
if (!R.isSimple())
INVALID(SimpleRegion, "Region not simple: " << R.getNameStr());
if (!allBlocksValid(Context))
return false;
if (!isValidExit(Context))
return false;
DEBUG(dbgs() << "OK\n");
return true;
}
bool ScopDetection::isValidFunction(llvm::Function &F) {
return !InvalidFunctions.count(&F);
}
bool ScopDetection::runOnFunction(llvm::Function &F) {
AA = &getAnalysis<AliasAnalysis>();
SE = &getAnalysis<ScalarEvolution>();
LI = &getAnalysis<LoopInfo>();
RI = &getAnalysis<RegionInfo>();
Region *TopRegion = RI->getTopLevelRegion();
releaseMemory();
if (OnlyFunction != "" && F.getNameStr() != OnlyFunction)
return false;
if(!isValidFunction(F))
return false;
findScops(*TopRegion);
return false;
}
void polly::ScopDetection::verifyRegion(const Region &R) const {
assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
DetectionContext Context(const_cast<Region&>(R), *AA, true /*verifying*/);
isValidRegion(Context);
}
void polly::ScopDetection::verifyAnalysis() const {
for (RegionSet::const_iterator I = ValidRegions.begin(),
E = ValidRegions.end(); I != E; ++I)
verifyRegion(**I);
}
void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<PostDominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
// We also need AA and RegionInfo when we are verifying analysis.
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<RegionInfo>();
AU.setPreservesAll();
}
void ScopDetection::print(raw_ostream &OS, const Module *) const {
for (RegionSet::const_iterator I = ValidRegions.begin(),
E = ValidRegions.end(); I != E; ++I)
OS << "Valid Region for Scop: " << (*I)->getNameStr() << '\n';
OS << "\n";
}
void ScopDetection::releaseMemory() {
ValidRegions.clear();
InvalidRegions.clear();
// Do not clear the invalid function set.
}
char ScopDetection::ID = 0;
INITIALIZE_PASS_BEGIN(ScopDetection, "polly-detect",
"Polly - Detect static control parts (SCoPs)", false,
false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(RegionInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(ScopDetection, "polly-detect",
"Polly - Detect static control parts (SCoPs)", false, false)
Pass *polly::createScopDetectionPass() {
return new ScopDetection();
}