llvm-project/lldb/source/Core/Scalar.cpp

2281 lines
83 KiB
C++
Raw Normal View History

//===-- Scalar.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Scalar.h"
#include <math.h>
#include <inttypes.h>
#include "lldb/Interpreter/Args.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/StringConvert.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Promote to max type currently follows the ANSI C rule for type
// promotion in expressions.
//----------------------------------------------------------------------
static Scalar::Type
PromoteToMaxType
(
const Scalar& lhs, // The const left hand side object
const Scalar& rhs, // The const right hand side object
Scalar& temp_value, // A modifiable temp value than can be used to hold either the promoted lhs or rhs object
const Scalar* &promoted_lhs_ptr, // Pointer to the resulting possibly promoted value of lhs (at most one of lhs/rhs will get promoted)
const Scalar* &promoted_rhs_ptr // Pointer to the resulting possibly promoted value of rhs (at most one of lhs/rhs will get promoted)
)
{
Scalar result;
// Initialize the promoted values for both the right and left hand side values
// to be the objects themselves. If no promotion is needed (both right and left
// have the same type), then the temp_value will not get used.
promoted_lhs_ptr = &lhs;
promoted_rhs_ptr = &rhs;
// Extract the types of both the right and left hand side values
Scalar::Type lhs_type = lhs.GetType();
Scalar::Type rhs_type = rhs.GetType();
if (lhs_type > rhs_type)
{
// Right hand side need to be promoted
temp_value = rhs; // Copy right hand side into the temp value
if (temp_value.Promote(lhs_type)) // Promote it
promoted_rhs_ptr = &temp_value; // Update the pointer for the promoted right hand side
}
else if (lhs_type < rhs_type)
{
// Left hand side need to be promoted
temp_value = lhs; // Copy left hand side value into the temp value
if (temp_value.Promote(rhs_type)) // Promote it
promoted_lhs_ptr = &temp_value; // Update the pointer for the promoted left hand side
}
2014-07-02 05:22:11 +08:00
// Make sure our type promotion worked as expected
if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType())
return promoted_lhs_ptr->GetType(); // Return the resulting max type
// Return the void type (zero) if we fail to promote either of the values.
return Scalar::e_void;
}
//----------------------------------------------------------------------
// Scalar constructor
//----------------------------------------------------------------------
Scalar::Scalar() :
m_type(e_void),
m_data()
{
}
//----------------------------------------------------------------------
// Scalar copy constructor
//----------------------------------------------------------------------
Scalar::Scalar(const Scalar& rhs) :
m_type(rhs.m_type),
m_data(rhs.m_data) // TODO: verify that for C++ this will correctly copy the union??
{
}
//Scalar::Scalar(const RegisterValue& reg) :
// m_type(e_void),
// m_data()
//{
// switch (reg.info.encoding)
// {
// case eEncodingUint: // unsigned integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_uint; m_data.uint = reg.value.uint8; break;
// case 2: m_type = e_uint; m_data.uint = reg.value.uint16; break;
// case 4: m_type = e_uint; m_data.uint = reg.value.uint32; break;
// case 8: m_type = e_ulonglong; m_data.ulonglong = reg.value.uint64; break;
// break;
// }
// break;
//
// case eEncodingSint: // signed integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_sint; m_data.sint = reg.value.sint8; break;
// case 2: m_type = e_sint; m_data.sint = reg.value.sint16; break;
// case 4: m_type = e_sint; m_data.sint = reg.value.sint32; break;
// case 8: m_type = e_slonglong; m_data.slonglong = reg.value.sint64; break;
// break;
// }
// break;
//
// case eEncodingIEEE754: // float
// switch (reg.info.byte_size)
// {
// case 4: m_type = e_float; m_data.flt = reg.value.float32; break;
// case 8: m_type = e_double; m_data.dbl = reg.value.float64; break;
// break;
// }
// break;
// case eEncodingVector: // vector registers
// break;
// }
//}
bool
Scalar::GetData (DataExtractor &data, size_t limit_byte_size) const
{
size_t byte_size = GetByteSize();
if (byte_size > 0)
{
if (limit_byte_size < byte_size)
{
if (lldb::endian::InlHostByteOrder() == eByteOrderLittle)
{
// On little endian systems if we want fewer bytes from the
// current type we just specify fewer bytes since the LSByte
// is first...
data.SetData((uint8_t*)&m_data, limit_byte_size, lldb::endian::InlHostByteOrder());
}
else if (lldb::endian::InlHostByteOrder() == eByteOrderBig)
{
// On big endian systems if we want fewer bytes from the
// current type have to advance our initial byte pointer and
// trim down the number of bytes since the MSByte is first
data.SetData(((uint8_t*)&m_data) + byte_size - limit_byte_size, limit_byte_size, lldb::endian::InlHostByteOrder());
}
}
else
{
// We want all of the data
data.SetData((uint8_t*)&m_data, byte_size, lldb::endian::InlHostByteOrder());
}
return true;
}
data.Clear();
return false;
}
size_t
Scalar::GetByteSize() const
{
switch (m_type)
{
case e_void:
break;
case e_sint: return sizeof(m_data.sint);
case e_uint: return sizeof(m_data.uint);
case e_slong: return sizeof(m_data.slong);
case e_ulong: return sizeof(m_data.ulong);
case e_slonglong: return sizeof(m_data.slonglong);
case e_ulonglong: return sizeof(m_data.ulonglong);
case e_float: return sizeof(m_data.flt);
case e_double: return sizeof(m_data.dbl);
case e_long_double: return sizeof(m_data.ldbl);
}
return 0;
}
bool
Scalar::IsZero() const
{
switch (m_type)
{
case e_void:
break;
case e_sint: return m_data.sint == 0;
case e_uint: return m_data.uint == 0;
case e_slong: return m_data.slong == 0;
case e_ulong: return m_data.ulong == 0;
case e_slonglong: return m_data.slonglong == 0;
case e_ulonglong: return m_data.ulonglong == 0;
case e_float: return m_data.flt == 0.0f;
case e_double: return m_data.dbl == 0.0;
case e_long_double: return m_data.ldbl == 0.0;
}
return false;
}
void
Scalar::GetValue (Stream *s, bool show_type) const
{
if (show_type)
s->Printf("(%s) ", GetTypeAsCString());
switch (m_type)
{
case e_void:
break;
case e_sint: s->Printf("%i", m_data.sint); break;
case e_uint: s->Printf("0x%8.8x", m_data.uint); break;
case e_slong: s->Printf("%li", m_data.slong); break;
case e_ulong: s->Printf("0x%8.8lx", m_data.ulong); break;
case e_slonglong: s->Printf("%lli", m_data.slonglong); break;
case e_ulonglong: s->Printf("0x%16.16llx", m_data.ulonglong); break;
case e_float: s->Printf("%f", m_data.flt); break;
case e_double: s->Printf("%g", m_data.dbl); break;
case e_long_double: s->Printf("%Lg", m_data.ldbl); break;
}
}
const char *
Scalar::GetTypeAsCString() const
{
switch (m_type)
{
case e_void: return "void";
case e_sint: return "int";
case e_uint: return "unsigned int";
case e_slong: return "long";
case e_ulong: return "unsigned long";
case e_slonglong: return "long long";
case e_ulonglong: return "unsigned long long";
case e_float: return "float";
case e_double: return "double";
case e_long_double: return "long double";
}
return "<invalid Scalar type>";
}
//----------------------------------------------------------------------
// Scalar copy constructor
//----------------------------------------------------------------------
Scalar&
Scalar::operator=(const Scalar& rhs)
{
if (this != &rhs)
{
m_type = rhs.m_type;
::memcpy (&m_data, &rhs.m_data, sizeof(m_data));
}
return *this;
}
Scalar&
Scalar::operator= (const int v)
{
m_type = e_sint;
m_data.sint = v;
return *this;
}
Scalar&
Scalar::operator= (unsigned int v)
{
m_type = e_uint;
m_data.uint = v;
return *this;
}
Scalar&
Scalar::operator= (long v)
{
m_type = e_slong;
m_data.slong = v;
return *this;
}
Scalar&
Scalar::operator= (unsigned long v)
{
m_type = e_ulong;
m_data.ulong = v;
return *this;
}
Scalar&
Scalar::operator= (long long v)
{
m_type = e_slonglong;
m_data.slonglong = v;
return *this;
}
Scalar&
Scalar::operator= (unsigned long long v)
{
m_type = e_ulonglong;
m_data.ulonglong = v;
return *this;
}
Scalar&
Scalar::operator= (float v)
{
m_type = e_float;
m_data.flt = v;
return *this;
}
Scalar&
Scalar::operator= (double v)
{
m_type = e_double;
m_data.dbl = v;
return *this;
}
Scalar&
Scalar::operator= (long double v)
{
m_type = e_long_double;
m_data.ldbl = v;
return *this;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Scalar::~Scalar()
{
}
bool
Scalar::Promote(Scalar::Type type)
{
bool success = false;
switch (m_type)
{
case e_void:
break;
case e_sint:
switch (type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint: m_data.uint = m_data.sint; success = true; break;
case e_slong: m_data.slong = m_data.sint; success = true; break;
case e_ulong: m_data.ulong = m_data.sint; success = true; break;
case e_slonglong: m_data.slonglong = m_data.sint; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.sint; success = true; break;
case e_float: m_data.flt = m_data.sint; success = true; break;
case e_double: m_data.dbl = m_data.sint; success = true; break;
case e_long_double: m_data.ldbl = m_data.sint; success = true; break;
}
break;
case e_uint:
switch (type)
{
case e_void:
case e_sint: break;
case e_uint: success = true; break;
case e_slong: m_data.slong = m_data.uint; success = true; break;
case e_ulong: m_data.ulong = m_data.uint; success = true; break;
case e_slonglong: m_data.slonglong = m_data.uint; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.uint; success = true; break;
case e_float: m_data.flt = m_data.uint; success = true; break;
case e_double: m_data.dbl = m_data.uint; success = true; break;
case e_long_double: m_data.ldbl = m_data.uint; success = true; break;
}
break;
case e_slong:
switch (type)
{
case e_void:
case e_sint:
case e_uint: break;
case e_slong: success = true; break;
case e_ulong: m_data.ulong = m_data.slong; success = true; break;
case e_slonglong: m_data.slonglong = m_data.slong; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.slong; success = true; break;
case e_float: m_data.flt = m_data.slong; success = true; break;
case e_double: m_data.dbl = m_data.slong; success = true; break;
case e_long_double: m_data.ldbl = m_data.slong; success = true; break;
}
break;
case e_ulong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong: break;
case e_ulong: success = true; break;
case e_slonglong: m_data.slonglong = m_data.ulong; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.ulong; success = true; break;
case e_float: m_data.flt = m_data.ulong; success = true; break;
case e_double: m_data.dbl = m_data.ulong; success = true; break;
case e_long_double: m_data.ldbl = m_data.ulong; success = true; break;
}
break;
case e_slonglong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong: break;
case e_slonglong: success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.slonglong; success = true; break;
case e_float: m_data.flt = m_data.slonglong; success = true; break;
case e_double: m_data.dbl = m_data.slonglong; success = true; break;
case e_long_double: m_data.ldbl = m_data.slonglong; success = true; break;
}
break;
case e_ulonglong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong: break;
case e_ulonglong: success = true; break;
case e_float: m_data.flt = m_data.ulonglong; success = true; break;
case e_double: m_data.dbl = m_data.ulonglong; success = true; break;
case e_long_double: m_data.ldbl = m_data.ulonglong; success = true; break;
}
break;
case e_float:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong: break;
case e_float: success = true; break;
case e_double: m_data.dbl = m_data.flt; success = true; break;
case e_long_double: m_data.ldbl = m_data.ulonglong; success = true; break;
}
break;
case e_double:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_float: break;
case e_double: success = true; break;
case e_long_double: m_data.ldbl = m_data.dbl; success = true; break;
}
break;
case e_long_double:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_float:
case e_double: break;
case e_long_double: success = true; break;
}
break;
}
if (success)
m_type = type;
return success;
}
const char *
Scalar::GetValueTypeAsCString (Scalar::Type type)
{
switch (type)
{
case e_void: return "void";
case e_sint: return "int";
case e_uint: return "unsigned int";
case e_slong: return "long";
case e_ulong: return "unsigned long";
case e_slonglong: return "long long";
case e_ulonglong: return "unsigned long long";
case e_float: return "float";
case e_double: return "double";
case e_long_double: return "long double";
}
return "???";
}
Scalar::Type
Scalar::GetValueTypeForSignedIntegerWithByteSize (size_t byte_size)
{
if (byte_size <= sizeof(sint_t))
return e_sint;
if (byte_size <= sizeof(slong_t))
return e_slong;
if (byte_size <= sizeof(slonglong_t))
return e_slonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForUnsignedIntegerWithByteSize (size_t byte_size)
{
if (byte_size <= sizeof(uint_t))
return e_uint;
if (byte_size <= sizeof(ulong_t))
return e_ulong;
if (byte_size <= sizeof(ulonglong_t))
return e_ulonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForFloatWithByteSize (size_t byte_size)
{
if (byte_size == sizeof(float_t))
return e_float;
if (byte_size == sizeof(double_t))
return e_double;
if (byte_size == sizeof(long_double_t))
return e_long_double;
return e_void;
}
bool
Scalar::Cast(Scalar::Type type)
{
bool success = false;
switch (m_type)
{
case e_void:
break;
case e_sint:
switch (type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint: m_data.uint = m_data.sint; success = true; break;
case e_slong: m_data.slong = m_data.sint; success = true; break;
case e_ulong: m_data.ulong = m_data.sint; success = true; break;
case e_slonglong: m_data.slonglong = m_data.sint; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.sint; success = true; break;
case e_float: m_data.flt = m_data.sint; success = true; break;
case e_double: m_data.dbl = m_data.sint; success = true; break;
case e_long_double: m_data.ldbl = m_data.sint; success = true; break;
}
break;
case e_uint:
switch (type)
{
case e_void:
case e_sint: m_data.sint = m_data.uint; success = true; break;
case e_uint: success = true; break;
case e_slong: m_data.slong = m_data.uint; success = true; break;
case e_ulong: m_data.ulong = m_data.uint; success = true; break;
case e_slonglong: m_data.slonglong = m_data.uint; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.uint; success = true; break;
case e_float: m_data.flt = m_data.uint; success = true; break;
case e_double: m_data.dbl = m_data.uint; success = true; break;
case e_long_double: m_data.ldbl = m_data.uint; success = true; break;
}
break;
case e_slong:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.slong; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.slong; success = true; break;
case e_slong: success = true; break;
case e_ulong: m_data.ulong = m_data.slong; success = true; break;
case e_slonglong: m_data.slonglong = m_data.slong; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.slong; success = true; break;
case e_float: m_data.flt = m_data.slong; success = true; break;
case e_double: m_data.dbl = m_data.slong; success = true; break;
case e_long_double: m_data.ldbl = m_data.slong; success = true; break;
}
break;
case e_ulong:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.ulong; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.ulong; success = true; break;
case e_slong: m_data.slong = m_data.ulong; success = true; break;
case e_ulong: success = true; break;
case e_slonglong: m_data.slonglong = m_data.ulong; success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.ulong; success = true; break;
case e_float: m_data.flt = m_data.ulong; success = true; break;
case e_double: m_data.dbl = m_data.ulong; success = true; break;
case e_long_double: m_data.ldbl = m_data.ulong; success = true; break;
}
break;
case e_slonglong:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.slonglong; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.slonglong; success = true; break;
case e_slong: m_data.slong = m_data.slonglong; success = true; break;
case e_ulong: m_data.ulong = m_data.slonglong; success = true; break;
case e_slonglong: success = true; break;
case e_ulonglong: m_data.ulonglong = m_data.slonglong; success = true; break;
case e_float: m_data.flt = m_data.slonglong; success = true; break;
case e_double: m_data.dbl = m_data.slonglong; success = true; break;
case e_long_double: m_data.ldbl = m_data.slonglong; success = true; break;
}
break;
case e_ulonglong:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.ulonglong; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.ulonglong; success = true; break;
case e_slong: m_data.slong = m_data.ulonglong; success = true; break;
case e_ulong: m_data.ulong = m_data.ulonglong; success = true; break;
case e_slonglong: m_data.slonglong = m_data.ulonglong; success = true; break;
case e_ulonglong: success = true; break;
case e_float: m_data.flt = m_data.ulonglong; success = true; break;
case e_double: m_data.dbl = m_data.ulonglong; success = true; break;
case e_long_double: m_data.ldbl = m_data.ulonglong; success = true; break;
}
break;
case e_float:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.flt; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.flt; success = true; break;
case e_slong: m_data.slong = (slong_t)m_data.flt; success = true; break;
case e_ulong: m_data.ulong = (ulong_t)m_data.flt; success = true; break;
case e_slonglong: m_data.slonglong = (slonglong_t)m_data.flt; success = true; break;
case e_ulonglong: m_data.ulonglong = (ulonglong_t)m_data.flt; success = true; break;
case e_float: success = true; break;
case e_double: m_data.dbl = m_data.flt; success = true; break;
case e_long_double: m_data.ldbl = m_data.flt; success = true; break;
}
break;
case e_double:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.dbl; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.dbl; success = true; break;
case e_slong: m_data.slong = (slong_t)m_data.dbl; success = true; break;
case e_ulong: m_data.ulong = (ulong_t)m_data.dbl; success = true; break;
case e_slonglong: m_data.slonglong = (slonglong_t)m_data.dbl; success = true; break;
case e_ulonglong: m_data.ulonglong = (ulonglong_t)m_data.dbl; success = true; break;
case e_float: m_data.flt = (float_t)m_data.dbl; success = true; break;
case e_double: success = true; break;
case e_long_double: m_data.ldbl = m_data.dbl; success = true; break;
}
break;
case e_long_double:
switch (type)
{
case e_void:
case e_sint: m_data.sint = (sint_t)m_data.ldbl; success = true; break;
case e_uint: m_data.uint = (uint_t)m_data.ldbl; success = true; break;
case e_slong: m_data.slong = (slong_t)m_data.ldbl; success = true; break;
case e_ulong: m_data.ulong = (ulong_t)m_data.ldbl; success = true; break;
case e_slonglong: m_data.slonglong = (slonglong_t)m_data.ldbl; success = true; break;
case e_ulonglong: m_data.ulonglong = (ulonglong_t)m_data.ldbl; success = true; break;
case e_float: m_data.flt = (float_t)m_data.ldbl; success = true; break;
case e_double: m_data.dbl = (double_t)m_data.ldbl; success = true; break;
case e_long_double: success = true; break;
}
break;
}
if (success)
m_type = type;
return success;
}
bool
Scalar::MakeSigned ()
{
bool success = false;
switch (m_type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint: m_type = e_sint; success = true; break;
case e_slong: success = true; break;
case e_ulong: m_type = e_slong; success = true; break;
case e_slonglong: success = true; break;
case e_ulonglong: m_type = e_slonglong; success = true; break;
case e_float: success = true; break;
case e_double: success = true; break;
case e_long_double: success = true; break;
}
return success;
}
int
Scalar::SInt(int fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return m_data.sint;
case e_uint: return (int)m_data.uint;
case e_slong: return (int)m_data.slong;
case e_ulong: return (int)m_data.ulong;
case e_slonglong: return (int)m_data.slonglong;
case e_ulonglong: return (int)m_data.ulonglong;
case e_float: return (int)m_data.flt;
case e_double: return (int)m_data.dbl;
case e_long_double: return (int)m_data.ldbl;
}
return fail_value;
}
unsigned int
Scalar::UInt(unsigned int fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (unsigned int)m_data.sint;
case e_uint: return (unsigned int)m_data.uint;
case e_slong: return (unsigned int)m_data.slong;
case e_ulong: return (unsigned int)m_data.ulong;
case e_slonglong: return (unsigned int)m_data.slonglong;
case e_ulonglong: return (unsigned int)m_data.ulonglong;
case e_float: return (unsigned int)m_data.flt;
case e_double: return (unsigned int)m_data.dbl;
case e_long_double: return (unsigned int)m_data.ldbl;
}
return fail_value;
}
long
Scalar::SLong(long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (long)m_data.sint;
case e_uint: return (long)m_data.uint;
case e_slong: return (long)m_data.slong;
case e_ulong: return (long)m_data.ulong;
case e_slonglong: return (long)m_data.slonglong;
case e_ulonglong: return (long)m_data.ulonglong;
case e_float: return (long)m_data.flt;
case e_double: return (long)m_data.dbl;
case e_long_double: return (long)m_data.ldbl;
}
return fail_value;
}
unsigned long
Scalar::ULong(unsigned long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (unsigned long)m_data.sint;
case e_uint: return (unsigned long)m_data.uint;
case e_slong: return (unsigned long)m_data.slong;
case e_ulong: return (unsigned long)m_data.ulong;
case e_slonglong: return (unsigned long)m_data.slonglong;
case e_ulonglong: return (unsigned long)m_data.ulonglong;
case e_float: return (unsigned long)m_data.flt;
case e_double: return (unsigned long)m_data.dbl;
case e_long_double: return (unsigned long)m_data.ldbl;
}
return fail_value;
}
uint64_t
Scalar::GetRawBits64(uint64_t fail_value) const
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
return m_data.uint;
case e_slong:
case e_ulong:
return m_data.ulong;
case e_slonglong:
case e_ulonglong:
return m_data.ulonglong;
case e_float:
if (sizeof(m_data.flt) == sizeof(m_data.uint))
return m_data.uint;
else if (sizeof(m_data.flt) == sizeof(m_data.ulong))
return m_data.ulong;
else if (sizeof(m_data.flt) == sizeof(m_data.ulonglong))
return m_data.ulonglong;
break;
case e_double:
if (sizeof(m_data.dbl) == sizeof(m_data.uint))
return m_data.uint;
else if (sizeof(m_data.dbl) == sizeof(m_data.ulong))
return m_data.ulong;
else if (sizeof(m_data.dbl) == sizeof(m_data.ulonglong))
return m_data.ulonglong;
break;
case e_long_double:
if (sizeof(m_data.ldbl) == sizeof(m_data.uint))
return m_data.uint;
else if (sizeof(m_data.ldbl) == sizeof(m_data.ulong))
return m_data.ulong;
else if (sizeof(m_data.ldbl) == sizeof(m_data.ulonglong))
return m_data.ulonglong;
break;
}
return fail_value;
}
long long
Scalar::SLongLong(long long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (long long)m_data.sint;
case e_uint: return (long long)m_data.uint;
case e_slong: return (long long)m_data.slong;
case e_ulong: return (long long)m_data.ulong;
case e_slonglong: return (long long)m_data.slonglong;
case e_ulonglong: return (long long)m_data.ulonglong;
case e_float: return (long long)m_data.flt;
case e_double: return (long long)m_data.dbl;
case e_long_double: return (long long)m_data.ldbl;
}
return fail_value;
}
unsigned long long
Scalar::ULongLong(unsigned long long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (unsigned long long)m_data.sint;
case e_uint: return (unsigned long long)m_data.uint;
case e_slong: return (unsigned long long)m_data.slong;
case e_ulong: return (unsigned long long)m_data.ulong;
case e_slonglong: return (unsigned long long)m_data.slonglong;
case e_ulonglong: return (unsigned long long)m_data.ulonglong;
case e_float: return (unsigned long long)m_data.flt;
case e_double: return (unsigned long long)m_data.dbl;
case e_long_double: return (unsigned long long)m_data.ldbl;
}
return fail_value;
}
float
Scalar::Float(float fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (float)m_data.sint;
case e_uint: return (float)m_data.uint;
case e_slong: return (float)m_data.slong;
case e_ulong: return (float)m_data.ulong;
case e_slonglong: return (float)m_data.slonglong;
case e_ulonglong: return (float)m_data.ulonglong;
case e_float: return (float)m_data.flt;
case e_double: return (float)m_data.dbl;
case e_long_double: return (float)m_data.ldbl;
}
return fail_value;
}
double
Scalar::Double(double fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (double)m_data.sint;
case e_uint: return (double)m_data.uint;
case e_slong: return (double)m_data.slong;
case e_ulong: return (double)m_data.ulong;
case e_slonglong: return (double)m_data.slonglong;
case e_ulonglong: return (double)m_data.ulonglong;
case e_float: return (double)m_data.flt;
case e_double: return (double)m_data.dbl;
case e_long_double: return (double)m_data.ldbl;
}
return fail_value;
}
long double
Scalar::LongDouble(long double fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint: return (long double)m_data.sint;
case e_uint: return (long double)m_data.uint;
case e_slong: return (long double)m_data.slong;
case e_ulong: return (long double)m_data.ulong;
case e_slonglong: return (long double)m_data.slonglong;
case e_ulonglong: return (long double)m_data.ulonglong;
case e_float: return (long double)m_data.flt;
case e_double: return (long double)m_data.dbl;
case e_long_double: return (long double)m_data.ldbl;
}
return fail_value;
}
Scalar&
Scalar::operator+= (const Scalar& rhs)
{
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (m_type)
{
case e_void: break;
case e_sint: m_data.sint = a->m_data.sint + b->m_data.sint; break;
case e_uint: m_data.uint = a->m_data.uint + b->m_data.uint; break;
case e_slong: m_data.slong = a->m_data.slong + b->m_data.slong; break;
case e_ulong: m_data.ulong = a->m_data.ulong + b->m_data.ulong; break;
case e_slonglong: m_data.slonglong = a->m_data.slonglong + b->m_data.slonglong; break;
case e_ulonglong: m_data.ulonglong = a->m_data.ulonglong + b->m_data.ulonglong; break;
case e_float: m_data.flt = a->m_data.flt + b->m_data.flt; break;
case e_double: m_data.dbl = a->m_data.dbl + b->m_data.dbl; break;
case e_long_double: m_data.ldbl = a->m_data.ldbl + b->m_data.ldbl; break;
}
}
return *this;
}
Scalar&
Scalar::operator<<= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.sint <<= rhs.m_data.sint; break;
case e_uint: m_data.sint <<= rhs.m_data.uint; break;
case e_slong: m_data.sint <<= rhs.m_data.slong; break;
case e_ulong: m_data.sint <<= rhs.m_data.ulong; break;
case e_slonglong: m_data.sint <<= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.sint <<= rhs.m_data.ulonglong; break;
}
break;
case e_uint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.uint <<= rhs.m_data.sint; break;
case e_uint: m_data.uint <<= rhs.m_data.uint; break;
case e_slong: m_data.uint <<= rhs.m_data.slong; break;
case e_ulong: m_data.uint <<= rhs.m_data.ulong; break;
case e_slonglong: m_data.uint <<= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.uint <<= rhs.m_data.ulonglong; break;
}
break;
case e_slong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.slong <<= rhs.m_data.sint; break;
case e_uint: m_data.slong <<= rhs.m_data.uint; break;
case e_slong: m_data.slong <<= rhs.m_data.slong; break;
case e_ulong: m_data.slong <<= rhs.m_data.ulong; break;
case e_slonglong: m_data.slong <<= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.slong <<= rhs.m_data.ulonglong; break;
}
break;
case e_ulong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulong <<= rhs.m_data.sint; break;
case e_uint: m_data.ulong <<= rhs.m_data.uint; break;
case e_slong: m_data.ulong <<= rhs.m_data.slong; break;
case e_ulong: m_data.ulong <<= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulong <<= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulong <<= rhs.m_data.ulonglong; break;
}
break;
case e_slonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.slonglong <<= rhs.m_data.sint; break;
case e_uint: m_data.slonglong <<= rhs.m_data.uint; break;
case e_slong: m_data.slonglong <<= rhs.m_data.slong; break;
case e_ulong: m_data.slonglong <<= rhs.m_data.ulong; break;
case e_slonglong: m_data.slonglong <<= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.slonglong <<= rhs.m_data.ulonglong; break;
}
break;
case e_ulonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulonglong <<= rhs.m_data.sint; break;
case e_uint: m_data.ulonglong <<= rhs.m_data.uint; break;
case e_slong: m_data.ulonglong <<= rhs.m_data.slong; break;
case e_ulong: m_data.ulonglong <<= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulonglong <<= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulonglong <<= rhs.m_data.ulonglong; break;
}
break;
}
return *this;
}
bool
Scalar::ShiftRightLogical(const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.uint >>= rhs.m_data.sint; break;
case e_uint: m_data.uint >>= rhs.m_data.uint; break;
case e_slong: m_data.uint >>= rhs.m_data.slong; break;
case e_ulong: m_data.uint >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.uint >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.uint >>= rhs.m_data.ulonglong; break;
}
break;
case e_slong:
case e_ulong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulong >>= rhs.m_data.sint; break;
case e_uint: m_data.ulong >>= rhs.m_data.uint; break;
case e_slong: m_data.ulong >>= rhs.m_data.slong; break;
case e_ulong: m_data.ulong >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulong >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulong >>= rhs.m_data.ulonglong; break;
}
break;
case e_slonglong:
case e_ulonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulonglong >>= rhs.m_data.sint; break;
case e_uint: m_data.ulonglong >>= rhs.m_data.uint; break;
case e_slong: m_data.ulonglong >>= rhs.m_data.slong; break;
case e_ulong: m_data.ulonglong >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulonglong >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulonglong >>= rhs.m_data.ulonglong; break;
}
break;
}
return m_type != e_void;
}
Scalar&
Scalar::operator>>= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.sint >>= rhs.m_data.sint; break;
case e_uint: m_data.sint >>= rhs.m_data.uint; break;
case e_slong: m_data.sint >>= rhs.m_data.slong; break;
case e_ulong: m_data.sint >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.sint >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.sint >>= rhs.m_data.ulonglong; break;
}
break;
case e_uint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.uint >>= rhs.m_data.sint; break;
case e_uint: m_data.uint >>= rhs.m_data.uint; break;
case e_slong: m_data.uint >>= rhs.m_data.slong; break;
case e_ulong: m_data.uint >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.uint >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.uint >>= rhs.m_data.ulonglong; break;
}
break;
case e_slong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.slong >>= rhs.m_data.sint; break;
case e_uint: m_data.slong >>= rhs.m_data.uint; break;
case e_slong: m_data.slong >>= rhs.m_data.slong; break;
case e_ulong: m_data.slong >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.slong >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.slong >>= rhs.m_data.ulonglong; break;
}
break;
case e_ulong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulong >>= rhs.m_data.sint; break;
case e_uint: m_data.ulong >>= rhs.m_data.uint; break;
case e_slong: m_data.ulong >>= rhs.m_data.slong; break;
case e_ulong: m_data.ulong >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulong >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulong >>= rhs.m_data.ulonglong; break;
}
break;
case e_slonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.slonglong >>= rhs.m_data.sint; break;
case e_uint: m_data.slonglong >>= rhs.m_data.uint; break;
case e_slong: m_data.slonglong >>= rhs.m_data.slong; break;
case e_ulong: m_data.slonglong >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.slonglong >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.slonglong >>= rhs.m_data.ulonglong; break;
}
break;
case e_ulonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulonglong >>= rhs.m_data.sint; break;
case e_uint: m_data.ulonglong >>= rhs.m_data.uint; break;
case e_slong: m_data.ulonglong >>= rhs.m_data.slong; break;
case e_ulong: m_data.ulonglong >>= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulonglong >>= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulonglong >>= rhs.m_data.ulonglong; break;
}
break;
}
return *this;
}
Scalar&
Scalar::operator&= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.sint &= rhs.m_data.sint; break;
case e_uint: m_data.sint &= rhs.m_data.uint; break;
case e_slong: m_data.sint &= rhs.m_data.slong; break;
case e_ulong: m_data.sint &= rhs.m_data.ulong; break;
case e_slonglong: m_data.sint &= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.sint &= rhs.m_data.ulonglong; break;
}
break;
case e_uint:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.uint &= rhs.m_data.sint; break;
case e_uint: m_data.uint &= rhs.m_data.uint; break;
case e_slong: m_data.uint &= rhs.m_data.slong; break;
case e_ulong: m_data.uint &= rhs.m_data.ulong; break;
case e_slonglong: m_data.uint &= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.uint &= rhs.m_data.ulonglong; break;
}
break;
case e_slong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.slong &= rhs.m_data.sint; break;
case e_uint: m_data.slong &= rhs.m_data.uint; break;
case e_slong: m_data.slong &= rhs.m_data.slong; break;
case e_ulong: m_data.slong &= rhs.m_data.ulong; break;
case e_slonglong: m_data.slong &= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.slong &= rhs.m_data.ulonglong; break;
}
break;
case e_ulong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulong &= rhs.m_data.sint; break;
case e_uint: m_data.ulong &= rhs.m_data.uint; break;
case e_slong: m_data.ulong &= rhs.m_data.slong; break;
case e_ulong: m_data.ulong &= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulong &= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulong &= rhs.m_data.ulonglong; break;
}
break;
case e_slonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.slonglong &= rhs.m_data.sint; break;
case e_uint: m_data.slonglong &= rhs.m_data.uint; break;
case e_slong: m_data.slonglong &= rhs.m_data.slong; break;
case e_ulong: m_data.slonglong &= rhs.m_data.ulong; break;
case e_slonglong: m_data.slonglong &= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.slonglong &= rhs.m_data.ulonglong; break;
}
break;
case e_ulonglong:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint: m_data.ulonglong &= rhs.m_data.sint; break;
case e_uint: m_data.ulonglong &= rhs.m_data.uint; break;
case e_slong: m_data.ulonglong &= rhs.m_data.slong; break;
case e_ulong: m_data.ulonglong &= rhs.m_data.ulong; break;
case e_slonglong: m_data.ulonglong &= rhs.m_data.slonglong; break;
case e_ulonglong: m_data.ulonglong &= rhs.m_data.ulonglong; break;
}
break;
}
return *this;
}
bool
Scalar::AbsoluteValue()
{
switch (m_type)
{
case e_void:
break;
case e_sint:
if (m_data.sint < 0)
m_data.sint = -m_data.sint;
return true;
case e_slong:
if (m_data.slong < 0)
m_data.slong = -m_data.slong;
return true;
case e_slonglong:
if (m_data.slonglong < 0)
m_data.slonglong = -m_data.slonglong;
return true;
case e_uint:
case e_ulong:
case e_ulonglong: return true;
case e_float: m_data.flt = fabsf(m_data.flt); return true;
case e_double: m_data.dbl = fabs(m_data.dbl); return true;
case e_long_double: m_data.ldbl = fabsl(m_data.ldbl); return true;
}
return false;
}
bool
Scalar::UnaryNegate()
{
switch (m_type)
{
case e_void: break;
case e_sint: m_data.sint = -m_data.sint; return true;
case e_uint: m_data.uint = -m_data.uint; return true;
case e_slong: m_data.slong = -m_data.slong; return true;
case e_ulong: m_data.ulong = -m_data.ulong; return true;
case e_slonglong: m_data.slonglong = -m_data.slonglong; return true;
case e_ulonglong: m_data.ulonglong = -m_data.ulonglong; return true;
case e_float: m_data.flt = -m_data.flt; return true;
case e_double: m_data.dbl = -m_data.dbl; return true;
case e_long_double: m_data.ldbl = -m_data.ldbl; return true;
}
return false;
}
bool
Scalar::OnesComplement()
{
switch (m_type)
{
case e_sint: m_data.sint = ~m_data.sint; return true;
case e_uint: m_data.uint = ~m_data.uint; return true;
case e_slong: m_data.slong = ~m_data.slong; return true;
case e_ulong: m_data.ulong = ~m_data.ulong; return true;
case e_slonglong: m_data.slonglong = ~m_data.slonglong; return true;
case e_ulonglong: m_data.ulonglong = ~m_data.ulonglong; return true;
case e_void:
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
const Scalar
lldb_private::operator+ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint: result.m_data.sint = a->m_data.sint + b->m_data.sint; break;
case Scalar::e_uint: result.m_data.uint = a->m_data.uint + b->m_data.uint; break;
case Scalar::e_slong: result.m_data.slong = a->m_data.slong + b->m_data.slong; break;
case Scalar::e_ulong: result.m_data.ulong = a->m_data.ulong + b->m_data.ulong; break;
case Scalar::e_slonglong: result.m_data.slonglong = a->m_data.slonglong + b->m_data.slonglong; break;
case Scalar::e_ulonglong: result.m_data.ulonglong = a->m_data.ulonglong + b->m_data.ulonglong; break;
case Scalar::e_float: result.m_data.flt = a->m_data.flt + b->m_data.flt; break;
case Scalar::e_double: result.m_data.dbl = a->m_data.dbl + b->m_data.dbl; break;
case Scalar::e_long_double: result.m_data.ldbl = a->m_data.ldbl + b->m_data.ldbl; break;
}
}
return result;
}
const Scalar
lldb_private::operator- (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint: result.m_data.sint = a->m_data.sint - b->m_data.sint; break;
case Scalar::e_uint: result.m_data.uint = a->m_data.uint - b->m_data.uint; break;
case Scalar::e_slong: result.m_data.slong = a->m_data.slong - b->m_data.slong; break;
case Scalar::e_ulong: result.m_data.ulong = a->m_data.ulong - b->m_data.ulong; break;
case Scalar::e_slonglong: result.m_data.slonglong = a->m_data.slonglong - b->m_data.slonglong; break;
case Scalar::e_ulonglong: result.m_data.ulonglong = a->m_data.ulonglong - b->m_data.ulonglong; break;
case Scalar::e_float: result.m_data.flt = a->m_data.flt - b->m_data.flt; break;
case Scalar::e_double: result.m_data.dbl = a->m_data.dbl - b->m_data.dbl; break;
case Scalar::e_long_double: result.m_data.ldbl = a->m_data.ldbl - b->m_data.ldbl; break;
}
}
return result;
}
const Scalar
lldb_private::operator/ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint: if (b->m_data.sint != 0) { result.m_data.sint = a->m_data.sint/ b->m_data.sint; return result; } break;
case Scalar::e_uint: if (b->m_data.uint != 0) { result.m_data.uint = a->m_data.uint / b->m_data.uint; return result; } break;
case Scalar::e_slong: if (b->m_data.slong != 0) { result.m_data.slong = a->m_data.slong / b->m_data.slong; return result; } break;
case Scalar::e_ulong: if (b->m_data.ulong != 0) { result.m_data.ulong = a->m_data.ulong / b->m_data.ulong; return result; } break;
case Scalar::e_slonglong: if (b->m_data.slonglong != 0) { result.m_data.slonglong = a->m_data.slonglong / b->m_data.slonglong; return result; } break;
case Scalar::e_ulonglong: if (b->m_data.ulonglong != 0) { result.m_data.ulonglong = a->m_data.ulonglong / b->m_data.ulonglong; return result; } break;
case Scalar::e_float: if (b->m_data.flt != 0.0f) { result.m_data.flt = a->m_data.flt / b->m_data.flt; return result; } break;
case Scalar::e_double: if (b->m_data.dbl != 0.0) { result.m_data.dbl = a->m_data.dbl / b->m_data.dbl; return result; } break;
case Scalar::e_long_double: if (b->m_data.ldbl != 0.0) { result.m_data.ldbl = a->m_data.ldbl / b->m_data.ldbl; return result; } break;
}
}
// For division only, the only way it should make it here is if a promotion failed,
// or if we are trying to do a divide by zero.
result.m_type = Scalar::e_void;
return result;
}
const Scalar
lldb_private::operator* (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint: result.m_data.sint = a->m_data.sint * b->m_data.sint; break;
case Scalar::e_uint: result.m_data.uint = a->m_data.uint * b->m_data.uint; break;
case Scalar::e_slong: result.m_data.slong = a->m_data.slong * b->m_data.slong; break;
case Scalar::e_ulong: result.m_data.ulong = a->m_data.ulong * b->m_data.ulong; break;
case Scalar::e_slonglong: result.m_data.slonglong = a->m_data.slonglong * b->m_data.slonglong; break;
case Scalar::e_ulonglong: result.m_data.ulonglong = a->m_data.ulonglong * b->m_data.ulonglong; break;
case Scalar::e_float: result.m_data.flt = a->m_data.flt * b->m_data.flt; break;
case Scalar::e_double: result.m_data.dbl = a->m_data.dbl * b->m_data.dbl; break;
case Scalar::e_long_double: result.m_data.ldbl = a->m_data.ldbl * b->m_data.ldbl; break;
}
}
return result;
}
const Scalar
lldb_private::operator& (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint: result.m_data.sint = a->m_data.sint & b->m_data.sint; break;
case Scalar::e_uint: result.m_data.uint = a->m_data.uint & b->m_data.uint; break;
case Scalar::e_slong: result.m_data.slong = a->m_data.slong & b->m_data.slong; break;
case Scalar::e_ulong: result.m_data.ulong = a->m_data.ulong & b->m_data.ulong; break;
case Scalar::e_slonglong: result.m_data.slonglong = a->m_data.slonglong & b->m_data.slonglong; break;
case Scalar::e_ulonglong: result.m_data.ulonglong = a->m_data.ulonglong & b->m_data.ulonglong; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator| (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint: result.m_data.sint = a->m_data.sint | b->m_data.sint; break;
case Scalar::e_uint: result.m_data.uint = a->m_data.uint | b->m_data.uint; break;
case Scalar::e_slong: result.m_data.slong = a->m_data.slong | b->m_data.slong; break;
case Scalar::e_ulong: result.m_data.ulong = a->m_data.ulong | b->m_data.ulong; break;
case Scalar::e_slonglong: result.m_data.slonglong = a->m_data.slonglong | b->m_data.slonglong; break;
case Scalar::e_ulonglong: result.m_data.ulonglong = a->m_data.ulonglong | b->m_data.ulonglong; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator% (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
default: break;
case Scalar::e_sint: if (b->m_data.sint != 0) { result.m_data.sint = a->m_data.sint % b->m_data.sint; return result; } break;
case Scalar::e_uint: if (b->m_data.uint != 0) { result.m_data.uint = a->m_data.uint % b->m_data.uint; return result; } break;
case Scalar::e_slong: if (b->m_data.slong != 0) { result.m_data.slong = a->m_data.slong % b->m_data.slong; return result; } break;
case Scalar::e_ulong: if (b->m_data.ulong != 0) { result.m_data.ulong = a->m_data.ulong % b->m_data.ulong; return result; } break;
case Scalar::e_slonglong: if (b->m_data.slonglong != 0) { result.m_data.slonglong = a->m_data.slonglong % b->m_data.slonglong; return result; } break;
case Scalar::e_ulonglong: if (b->m_data.ulonglong != 0) { result.m_data.ulonglong = a->m_data.ulonglong % b->m_data.ulonglong; return result; } break;
}
}
result.m_type = Scalar::e_void;
return result;
}
const Scalar
lldb_private::operator^ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint: result.m_data.sint = a->m_data.sint ^ b->m_data.sint; break;
case Scalar::e_uint: result.m_data.uint = a->m_data.uint ^ b->m_data.uint; break;
case Scalar::e_slong: result.m_data.slong = a->m_data.slong ^ b->m_data.slong; break;
case Scalar::e_ulong: result.m_data.ulong = a->m_data.ulong ^ b->m_data.ulong; break;
case Scalar::e_slonglong: result.m_data.slonglong = a->m_data.slonglong ^ b->m_data.slonglong; break;
case Scalar::e_ulonglong: result.m_data.ulonglong = a->m_data.ulonglong ^ b->m_data.ulonglong; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator<< (const Scalar& lhs, const Scalar &rhs)
{
Scalar result = lhs;
result <<= rhs;
return result;
}
const Scalar
lldb_private::operator>> (const Scalar& lhs, const Scalar &rhs)
{
Scalar result = lhs;
result >>= rhs;
return result;
}
// Return the raw unsigned integer without any casting or conversion
unsigned int
Scalar::RawUInt () const
{
return m_data.uint;
}
// Return the raw unsigned long without any casting or conversion
unsigned long
Scalar::RawULong () const
{
return m_data.ulong;
}
// Return the raw unsigned long long without any casting or conversion
unsigned long long
Scalar::RawULongLong () const
{
return m_data.ulonglong;
}
Error
Scalar::SetValueFromCString (const char *value_str, Encoding encoding, size_t byte_size)
{
Error error;
if (value_str == NULL || value_str[0] == '\0')
{
error.SetErrorString ("Invalid c-string value string.");
return error;
}
bool success = false;
switch (encoding)
{
case eEncodingInvalid:
error.SetErrorString ("Invalid encoding.");
break;
case eEncodingUint:
if (byte_size <= sizeof (unsigned long long))
{
uint64_t uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat ("'%s' is not a valid unsigned integer string value", value_str);
else if (!UIntValueIsValidForSize (uval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte unsigned integer value", uval64, (uint64_t)byte_size);
else
{
m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize (byte_size);
switch (m_type)
{
case e_uint: m_data.uint = (uint_t)uval64; break;
case e_ulong: m_data.ulong = (ulong_t)uval64; break;
case e_ulonglong: m_data.ulonglong = (ulonglong_t)uval64; break;
default:
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
}
else
{
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingSint:
if (byte_size <= sizeof (long long))
{
uint64_t sval64 = StringConvert::ToSInt64(value_str, INT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat ("'%s' is not a valid signed integer string value", value_str);
else if (!SIntValueIsValidForSize (sval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte signed integer value", sval64, (uint64_t)byte_size);
else
{
m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize (byte_size);
switch (m_type)
{
case e_sint: m_data.sint = (sint_t)sval64; break;
case e_slong: m_data.slong = (slong_t)sval64; break;
case e_slonglong: m_data.slonglong = (slonglong_t)sval64; break;
default:
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
}
else
{
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingIEEE754:
if (byte_size == sizeof (float))
{
if (::sscanf (value_str, "%f", &m_data.flt) == 1)
m_type = e_float;
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else if (byte_size == sizeof (double))
{
if (::sscanf (value_str, "%lf", &m_data.dbl) == 1)
m_type = e_double;
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else if (byte_size == sizeof (long double))
{
if (::sscanf (value_str, "%Lf", &m_data.ldbl) == 1)
m_type = e_long_double;
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else
{
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingVector:
error.SetErrorString ("vector encoding unsupported.");
break;
}
if (error.Fail())
m_type = e_void;
return error;
}
Error
Scalar::SetValueFromData (DataExtractor &data, lldb::Encoding encoding, size_t byte_size)
{
Error error;
switch (encoding)
{
case lldb::eEncodingInvalid:
error.SetErrorString ("invalid encoding");
break;
case lldb::eEncodingVector:
error.SetErrorString ("vector encoding unsupported");
break;
case lldb::eEncodingUint:
{
lldb::offset_t offset;
switch (byte_size)
{
case 1: operator=((uint8_t)data.GetU8(&offset)); break;
case 2: operator=((uint16_t)data.GetU16(&offset)); break;
case 4: operator=((uint32_t)data.GetU32(&offset)); break;
case 8: operator=((uint64_t)data.GetU64(&offset)); break;
default:
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
break;
case lldb::eEncodingSint:
{
lldb::offset_t offset;
switch (byte_size)
{
case 1: operator=((int8_t)data.GetU8(&offset)); break;
case 2: operator=((int16_t)data.GetU16(&offset)); break;
case 4: operator=((int32_t)data.GetU32(&offset)); break;
case 8: operator=((int64_t)data.GetU64(&offset)); break;
default:
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
break;
case lldb::eEncodingIEEE754:
{
lldb::offset_t offset;
if (byte_size == sizeof (float))
operator=((float)data.GetFloat(&offset));
else if (byte_size == sizeof (double))
operator=((double)data.GetDouble(&offset));
else if (byte_size == sizeof (long double))
operator=((long double)data.GetLongDouble(&offset));
else
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size);
}
break;
}
return error;
}
bool
Scalar::SignExtend (uint32_t sign_bit_pos)
{
const uint32_t max_bit_pos = GetByteSize() * 8;
if (sign_bit_pos < max_bit_pos)
{
switch (m_type)
{
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return false;
case Scalar::e_sint:
case Scalar::e_uint:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos-1))
{
unsigned int sign_bit = 1u << sign_bit_pos;
if (m_data.uint & sign_bit)
{
const unsigned int mask = ~(sign_bit) + 1u;
m_data.uint |= mask;
}
return true;
}
break;
case Scalar::e_slong:
case Scalar::e_ulong:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos-1))
{
unsigned long sign_bit = 1ul << sign_bit_pos;
if (m_data.ulong & sign_bit)
{
const unsigned long mask = ~(sign_bit) + 1ul;
m_data.ulong |= mask;
}
return true;
}
break;
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos-1))
{
unsigned long long sign_bit = 1ull << sign_bit_pos;
if (m_data.ulonglong & sign_bit)
{
const unsigned long long mask = ~(sign_bit) + 1ull;
m_data.ulonglong |= mask;
}
return true;
}
break;
}
}
return false;
}
size_t
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
Scalar::GetAsMemoryData (void *dst,
size_t dst_len,
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
lldb::ByteOrder dst_byte_order,
Error &error) const
{
// Get a data extractor that points to the native scalar data
DataExtractor data;
if (!GetData(data))
{
error.SetErrorString ("invalid scalar value");
return 0;
}
const size_t src_len = data.GetByteSize();
// Prepare a memory buffer that contains some or all of the register value
const size_t bytes_copied = data.CopyByteOrderedData (0, // src offset
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorString ("failed to copy data");
return bytes_copied;
}
bool
Scalar::ExtractBitfield (uint32_t bit_size,
uint32_t bit_offset)
{
if (bit_size == 0)
return true;
uint32_t msbit = bit_offset + bit_size - 1;
uint32_t lsbit = bit_offset;
switch (m_type)
{
case Scalar::e_void:
break;
case e_float:
if (sizeof(m_data.flt) == sizeof(sint_t))
m_data.sint = (sint_t)SignedBits (m_data.sint, msbit, lsbit);
else if (sizeof(m_data.flt) == sizeof(ulong_t))
m_data.slong = (slong_t)SignedBits (m_data.slong, msbit, lsbit);
else if (sizeof(m_data.flt) == sizeof(ulonglong_t))
m_data.slonglong = (slonglong_t)SignedBits (m_data.slonglong, msbit, lsbit);
else
return false;
return true;
case e_double:
if (sizeof(m_data.dbl) == sizeof(sint_t))
m_data.sint = SignedBits (m_data.sint, msbit, lsbit);
else if (sizeof(m_data.dbl) == sizeof(ulong_t))
m_data.slong = SignedBits (m_data.slong, msbit, lsbit);
else if (sizeof(m_data.dbl) == sizeof(ulonglong_t))
m_data.slonglong = SignedBits (m_data.slonglong, msbit, lsbit);
else
return false;
return true;
case e_long_double:
if (sizeof(m_data.ldbl) == sizeof(sint_t))
m_data.sint = SignedBits (m_data.sint, msbit, lsbit);
else if (sizeof(m_data.ldbl) == sizeof(ulong_t))
m_data.slong = SignedBits (m_data.slong, msbit, lsbit);
else if (sizeof(m_data.ldbl) == sizeof(ulonglong_t))
m_data.slonglong = SignedBits (m_data.slonglong, msbit, lsbit);
else
return false;
return true;
case Scalar::e_sint:
m_data.sint = (sint_t)SignedBits (m_data.sint, msbit, lsbit);
return true;
case Scalar::e_uint:
m_data.uint = (uint_t)UnsignedBits (m_data.uint, msbit, lsbit);
return true;
case Scalar::e_slong:
m_data.slong = (slong_t)SignedBits (m_data.slong, msbit, lsbit);
return true;
case Scalar::e_ulong:
m_data.ulong = (ulong_t)UnsignedBits (m_data.ulong, msbit, lsbit);
return true;
case Scalar::e_slonglong:
m_data.slonglong = (slonglong_t)SignedBits (m_data.slonglong, msbit, lsbit);
return true;
case Scalar::e_ulonglong:
m_data.ulonglong = (ulonglong_t)UnsignedBits (m_data.ulonglong, msbit, lsbit);
return true;
}
return false;
}
bool
lldb_private::operator== (const Scalar& lhs, const Scalar& rhs)
{
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type == rhs.m_type;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint: return a->m_data.sint == b->m_data.sint;
case Scalar::e_uint: return a->m_data.uint == b->m_data.uint;
case Scalar::e_slong: return a->m_data.slong == b->m_data.slong;
case Scalar::e_ulong: return a->m_data.ulong == b->m_data.ulong;
case Scalar::e_slonglong: return a->m_data.slonglong == b->m_data.slonglong;
case Scalar::e_ulonglong: return a->m_data.ulonglong == b->m_data.ulonglong;
case Scalar::e_float: return a->m_data.flt == b->m_data.flt;
case Scalar::e_double: return a->m_data.dbl == b->m_data.dbl;
case Scalar::e_long_double: return a->m_data.ldbl == b->m_data.ldbl;
}
return false;
}
bool
lldb_private::operator!= (const Scalar& lhs, const Scalar& rhs)
{
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type != rhs.m_type;
Scalar temp_value; // A temp value that might get a copy of either promoted value
const Scalar* a;
const Scalar* b;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint: return a->m_data.sint != b->m_data.sint;
case Scalar::e_uint: return a->m_data.uint != b->m_data.uint;
case Scalar::e_slong: return a->m_data.slong != b->m_data.slong;
case Scalar::e_ulong: return a->m_data.ulong != b->m_data.ulong;
case Scalar::e_slonglong: return a->m_data.slonglong != b->m_data.slonglong;
case Scalar::e_ulonglong: return a->m_data.ulonglong != b->m_data.ulonglong;
case Scalar::e_float: return a->m_data.flt != b->m_data.flt;
case Scalar::e_double: return a->m_data.dbl != b->m_data.dbl;
case Scalar::e_long_double: return a->m_data.ldbl != b->m_data.ldbl;
}
return true;
}
bool
lldb_private::operator< (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint: return a->m_data.sint < b->m_data.sint;
case Scalar::e_uint: return a->m_data.uint < b->m_data.uint;
case Scalar::e_slong: return a->m_data.slong < b->m_data.slong;
case Scalar::e_ulong: return a->m_data.ulong < b->m_data.ulong;
case Scalar::e_slonglong: return a->m_data.slonglong < b->m_data.slonglong;
case Scalar::e_ulonglong: return a->m_data.ulonglong < b->m_data.ulonglong;
case Scalar::e_float: return a->m_data.flt < b->m_data.flt;
case Scalar::e_double: return a->m_data.dbl < b->m_data.dbl;
case Scalar::e_long_double: return a->m_data.ldbl < b->m_data.ldbl;
}
return false;
}
bool
lldb_private::operator<= (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint: return a->m_data.sint <= b->m_data.sint;
case Scalar::e_uint: return a->m_data.uint <= b->m_data.uint;
case Scalar::e_slong: return a->m_data.slong <= b->m_data.slong;
case Scalar::e_ulong: return a->m_data.ulong <= b->m_data.ulong;
case Scalar::e_slonglong: return a->m_data.slonglong <= b->m_data.slonglong;
case Scalar::e_ulonglong: return a->m_data.ulonglong <= b->m_data.ulonglong;
case Scalar::e_float: return a->m_data.flt <= b->m_data.flt;
case Scalar::e_double: return a->m_data.dbl <= b->m_data.dbl;
case Scalar::e_long_double: return a->m_data.ldbl <= b->m_data.ldbl;
}
return false;
}
bool
lldb_private::operator> (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint: return a->m_data.sint > b->m_data.sint;
case Scalar::e_uint: return a->m_data.uint > b->m_data.uint;
case Scalar::e_slong: return a->m_data.slong > b->m_data.slong;
case Scalar::e_ulong: return a->m_data.ulong > b->m_data.ulong;
case Scalar::e_slonglong: return a->m_data.slonglong > b->m_data.slonglong;
case Scalar::e_ulonglong: return a->m_data.ulonglong > b->m_data.ulonglong;
case Scalar::e_float: return a->m_data.flt > b->m_data.flt;
case Scalar::e_double: return a->m_data.dbl > b->m_data.dbl;
case Scalar::e_long_double: return a->m_data.ldbl > b->m_data.ldbl;
}
return false;
}
bool
lldb_private::operator>= (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint: return a->m_data.sint >= b->m_data.sint;
case Scalar::e_uint: return a->m_data.uint >= b->m_data.uint;
case Scalar::e_slong: return a->m_data.slong >= b->m_data.slong;
case Scalar::e_ulong: return a->m_data.ulong >= b->m_data.ulong;
case Scalar::e_slonglong: return a->m_data.slonglong >= b->m_data.slonglong;
case Scalar::e_ulonglong: return a->m_data.ulonglong >= b->m_data.ulonglong;
case Scalar::e_float: return a->m_data.flt >= b->m_data.flt;
case Scalar::e_double: return a->m_data.dbl >= b->m_data.dbl;
case Scalar::e_long_double: return a->m_data.ldbl >= b->m_data.ldbl;
}
return false;
}