forked from OSchip/llvm-project
301 lines
11 KiB
C++
301 lines
11 KiB
C++
|
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the interface between the inliner and a learned model.
|
||
|
// It delegates model evaluation to either the AOT compiled model (the
|
||
|
// 'release' mode) or a runtime-loaded model (the 'development' case).
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
#include <limits>
|
||
|
#include <unordered_map>
|
||
|
#include <unordered_set>
|
||
|
|
||
|
#include "llvm/ADT/SCCIterator.h"
|
||
|
#include "llvm/Analysis/CallGraph.h"
|
||
|
#include "llvm/Analysis/InlineCost.h"
|
||
|
#include "llvm/Analysis/InlineFeaturesAnalysis.h"
|
||
|
#include "llvm/Analysis/MLInlineAdvisor.h"
|
||
|
#include "llvm/Analysis/MLModelRunner.h"
|
||
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
|
#include "llvm/IR/InstIterator.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/PassManager.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Path.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "inline-ml"
|
||
|
|
||
|
static cl::opt<float> SizeIncreaseThreshold(
|
||
|
"ml-advisor-size-increase-threshold", cl::Hidden,
|
||
|
cl::desc("Maximum factor by which expected native size may increase before "
|
||
|
"blocking any further inlining."),
|
||
|
cl::init(2.0));
|
||
|
|
||
|
const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
|
||
|
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
|
||
|
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
|
||
|
#undef POPULATE_NAMES
|
||
|
};
|
||
|
|
||
|
const char *const llvm::DecisionName = "inlining_decision";
|
||
|
const char *const llvm::DefaultDecisionName = "inlining_default";
|
||
|
const char *const llvm::RewardName = "delta_size";
|
||
|
|
||
|
CallBase *getInlinableCS(Instruction &I) {
|
||
|
if (auto *CS = dyn_cast<CallBase>(&I))
|
||
|
if (Function *Callee = CS->getCalledFunction()) {
|
||
|
if (!Callee->isDeclaration()) {
|
||
|
return CS;
|
||
|
}
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
|
||
|
std::unique_ptr<MLModelRunner> Runner)
|
||
|
: InlineAdvisor(
|
||
|
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
|
||
|
M(M), ModelRunner(std::move(Runner)), CG(new CallGraph(M)),
|
||
|
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
|
||
|
assert(ModelRunner);
|
||
|
|
||
|
// Extract the 'call site height' feature - the position of a call site
|
||
|
// relative to the farthest statically reachable SCC node. We don't mutate
|
||
|
// this value while inlining happens. Empirically, this feature proved
|
||
|
// critical in behavioral cloning - i.e. training a model to mimic the manual
|
||
|
// heuristic's decisions - and, thus, equally important for training for
|
||
|
// improvement.
|
||
|
for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
|
||
|
const std::vector<CallGraphNode *> &CGNodes = *I;
|
||
|
unsigned Level = 0;
|
||
|
for (auto *CGNode : CGNodes) {
|
||
|
Function *F = CGNode->getFunction();
|
||
|
if (!F || F->isDeclaration())
|
||
|
continue;
|
||
|
for (auto &I : instructions(F)) {
|
||
|
if (auto *CS = getInlinableCS(I)) {
|
||
|
auto *Called = CS->getCalledFunction();
|
||
|
auto Pos = FunctionLevels.find(Called);
|
||
|
// In bottom up traversal, an inlinable callee is either in the
|
||
|
// same SCC, or to a function in a visited SCC. So not finding its
|
||
|
// level means we haven't visited it yet, meaning it's in this SCC.
|
||
|
if (Pos == FunctionLevels.end())
|
||
|
continue;
|
||
|
Level = std::max(Level, Pos->second + 1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (auto *CGNode : CGNodes) {
|
||
|
Function *F = CGNode->getFunction();
|
||
|
if (F && !F->isDeclaration())
|
||
|
FunctionLevels[F] = Level;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MLInlineAdvisor::onPassEntry() {
|
||
|
// Function passes executed between InlinerPass runs may have changed the
|
||
|
// module-wide features.
|
||
|
NodeCount = 0;
|
||
|
EdgeCount = 0;
|
||
|
for (auto &F : M)
|
||
|
if (!F.isDeclaration()) {
|
||
|
++NodeCount;
|
||
|
EdgeCount += getLocalCalls(F);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
|
||
|
return FAM.getResult<InlineFeaturesAnalysis>(F).DirectCallsToDefinedFunctions;
|
||
|
}
|
||
|
|
||
|
// Update the internal state of the advisor, and force invalidate feature
|
||
|
// analysis. Currently, we maintain minimal (and very simple) global state - the
|
||
|
// number of functions and the number of static calls. We also keep track of the
|
||
|
// total IR size in this module, to stop misbehaving policies at a certain bloat
|
||
|
// factor (SizeIncreaseThreshold)
|
||
|
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
|
||
|
bool CalleeWasDeleted) {
|
||
|
assert(!ForceStop);
|
||
|
Function *Caller = Advice.getCaller();
|
||
|
Function *Callee = Advice.getCallee();
|
||
|
|
||
|
// The caller features aren't valid anymore.
|
||
|
FAM.invalidate<InlineFeaturesAnalysis>(*Caller);
|
||
|
int64_t IRSizeAfter =
|
||
|
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
|
||
|
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
|
||
|
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
|
||
|
ForceStop = true;
|
||
|
|
||
|
// We can delta-update module-wide features. We know the inlining only changed
|
||
|
// the caller, and maybe the callee (by deleting the latter).
|
||
|
// Nodes are simple to update.
|
||
|
// For edges, we 'forget' the edges that the caller and callee used to have
|
||
|
// before inlining, and add back what they currently have together.
|
||
|
int64_t NewCallerAndCalleeEdges =
|
||
|
FAM.getResult<InlineFeaturesAnalysis>(*Caller)
|
||
|
.DirectCallsToDefinedFunctions;
|
||
|
|
||
|
if (CalleeWasDeleted)
|
||
|
--NodeCount;
|
||
|
else
|
||
|
NewCallerAndCalleeEdges += FAM.getResult<InlineFeaturesAnalysis>(*Callee)
|
||
|
.DirectCallsToDefinedFunctions;
|
||
|
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
|
||
|
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
|
||
|
}
|
||
|
|
||
|
int64_t MLInlineAdvisor::getModuleIRSize() const {
|
||
|
int64_t Ret = 0;
|
||
|
for (auto &F : CG->getModule())
|
||
|
if (!F.isDeclaration())
|
||
|
Ret += getIRSize(F);
|
||
|
return Ret;
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdvice(CallBase &CB) {
|
||
|
auto &Caller = *CB.getCaller();
|
||
|
auto &Callee = *CB.getCalledFunction();
|
||
|
|
||
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
||
|
return FAM.getResult<AssumptionAnalysis>(F);
|
||
|
};
|
||
|
auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
|
||
|
return FAM.getResult<TargetLibraryAnalysis>(F);
|
||
|
};
|
||
|
|
||
|
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
|
||
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
|
||
|
|
||
|
auto TrivialDecision =
|
||
|
llvm::getAttributeBasedInliningDecision(CB, &Callee, TIR, GetTLI);
|
||
|
|
||
|
// If this is a "never inline" case, there won't be any changes to internal
|
||
|
// state we need to track, so we can just return the base InlineAdvice, which
|
||
|
// will do nothing interesting.
|
||
|
// Same thing if this is a recursive case.
|
||
|
if ((TrivialDecision.hasValue() && !TrivialDecision->isSuccess()) ||
|
||
|
&Caller == &Callee)
|
||
|
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
|
||
|
|
||
|
bool Mandatory = TrivialDecision.hasValue() && TrivialDecision->isSuccess();
|
||
|
|
||
|
// If we need to stop, we won't want to track anymore any state changes, so
|
||
|
// we just return the base InlineAdvice, which acts as a noop.
|
||
|
if (ForceStop) {
|
||
|
ORE.emit([&] {
|
||
|
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
|
||
|
<< "Won't attempt inlining because module size grew too much.";
|
||
|
});
|
||
|
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
|
||
|
}
|
||
|
|
||
|
int CostEstimate = 0;
|
||
|
if (!Mandatory) {
|
||
|
auto IsCallSiteInlinable =
|
||
|
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
|
||
|
if (!IsCallSiteInlinable) {
|
||
|
// We can't inline this for correctness reasons, so return the base
|
||
|
// InlineAdvice, as we don't care about tracking any state changes (which
|
||
|
// won't happen).
|
||
|
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
|
||
|
}
|
||
|
CostEstimate = *IsCallSiteInlinable;
|
||
|
}
|
||
|
|
||
|
if (Mandatory)
|
||
|
return getMandatoryAdvice(CB, ORE);
|
||
|
|
||
|
auto NrCtantParams = 0;
|
||
|
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
|
||
|
NrCtantParams += (isa<Constant>(*I));
|
||
|
}
|
||
|
|
||
|
auto &CallerBefore = FAM.getResult<InlineFeaturesAnalysis>(Caller);
|
||
|
auto &CalleeBefore = FAM.getResult<InlineFeaturesAnalysis>(Callee);
|
||
|
|
||
|
ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
|
||
|
CalleeBefore.BasicBlockCount);
|
||
|
ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
|
||
|
FunctionLevels[&Caller]);
|
||
|
ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
|
||
|
ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
|
||
|
ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
|
||
|
ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
|
||
|
ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
|
||
|
ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
|
||
|
CallerBefore.BlocksReachedFromConditionalInstruction);
|
||
|
ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
|
||
|
CallerBefore.BasicBlockCount);
|
||
|
ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
|
||
|
CalleeBefore.BlocksReachedFromConditionalInstruction);
|
||
|
ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
|
||
|
return getAdviceFromModel(CB, ORE);
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<MLInlineAdvice>
|
||
|
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
|
||
|
OptimizationRemarkEmitter &ORE) {
|
||
|
return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<MLInlineAdvice>
|
||
|
MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
|
||
|
OptimizationRemarkEmitter &ORE) {
|
||
|
return std::make_unique<MLInlineAdvice>(this, CB, ORE, true);
|
||
|
}
|
||
|
|
||
|
void MLInlineAdvice::reportContextForRemark(
|
||
|
DiagnosticInfoOptimizationBase &OR) {
|
||
|
using namespace ore;
|
||
|
OR << NV("Callee", Callee->getName());
|
||
|
for (size_t I = 0; I < NumberOfFeatures; ++I)
|
||
|
OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
|
||
|
OR << NV("ShouldInline", isInliningRecommended());
|
||
|
}
|
||
|
|
||
|
void MLInlineAdvice::recordInliningImpl() {
|
||
|
ORE.emit([&]() {
|
||
|
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
|
||
|
reportContextForRemark(R);
|
||
|
return R;
|
||
|
});
|
||
|
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
|
||
|
}
|
||
|
|
||
|
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
|
||
|
ORE.emit([&]() {
|
||
|
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
|
||
|
Block);
|
||
|
reportContextForRemark(R);
|
||
|
return R;
|
||
|
});
|
||
|
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
|
||
|
}
|
||
|
|
||
|
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
|
||
|
const InlineResult &Result) {
|
||
|
ORE.emit([&]() {
|
||
|
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
|
||
|
DLoc, Block);
|
||
|
reportContextForRemark(R);
|
||
|
return R;
|
||
|
});
|
||
|
}
|
||
|
void MLInlineAdvice::recordUnattemptedInliningImpl() {
|
||
|
ORE.emit([&]() {
|
||
|
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
|
||
|
reportContextForRemark(R);
|
||
|
return R;
|
||
|
});
|
||
|
}
|