llvm-project/llvm/lib/CodeGen/InlineSpiller.cpp

1392 lines
48 KiB
C++
Raw Normal View History

//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//
#include "Spiller.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
STATISTIC(NumSnippets, "Number of spilled snippets");
STATISTIC(NumSpills, "Number of spills inserted");
STATISTIC(NumSpillsRemoved, "Number of spills removed");
STATISTIC(NumReloads, "Number of reloads inserted");
STATISTIC(NumReloadsRemoved, "Number of reloads removed");
STATISTIC(NumFolded, "Number of folded stack accesses");
STATISTIC(NumFoldedLoads, "Number of folded loads");
STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
STATISTIC(NumHoists, "Number of hoisted spills");
static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
cl::desc("Disable inline spill hoisting"));
namespace {
class InlineSpiller : public Spiller {
MachineFunction &MF;
LiveIntervals &LIS;
LiveStacks &LSS;
AliasAnalysis *AA;
MachineDominatorTree &MDT;
MachineLoopInfo &Loops;
VirtRegMap &VRM;
MachineFrameInfo &MFI;
MachineRegisterInfo &MRI;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
const MachineBlockFrequencyInfo &MBFI;
// Variables that are valid during spill(), but used by multiple methods.
LiveRangeEdit *Edit;
LiveInterval *StackInt;
int StackSlot;
unsigned Original;
// All registers to spill to StackSlot, including the main register.
SmallVector<unsigned, 8> RegsToSpill;
// All COPY instructions to/from snippets.
// They are ignored since both operands refer to the same stack slot.
SmallPtrSet<MachineInstr*, 8> SnippetCopies;
// Values that failed to remat at some point.
SmallPtrSet<VNInfo*, 8> UsedValues;
public:
// Information about a value that was defined by a copy from a sibling
// register.
struct SibValueInfo {
// True when all reaching defs were reloads: No spill is necessary.
bool AllDefsAreReloads;
// True when value is defined by an original PHI not from splitting.
bool DefByOrigPHI;
// True when the COPY defining this value killed its source.
bool KillsSource;
// The preferred register to spill.
unsigned SpillReg;
// The value of SpillReg that should be spilled.
VNInfo *SpillVNI;
// The block where SpillVNI should be spilled. Currently, this must be the
// block containing SpillVNI->def.
MachineBasicBlock *SpillMBB;
// A defining instruction that is not a sibling copy or a reload, or NULL.
// This can be used as a template for rematerialization.
MachineInstr *DefMI;
// List of values that depend on this one. These values are actually the
// same, but live range splitting has placed them in different registers,
// or SSA update needed to insert PHI-defs to preserve SSA form. This is
// copies of the current value and phi-kills. Usually only phi-kills cause
// more than one dependent value.
TinyPtrVector<VNInfo*> Deps;
SibValueInfo(unsigned Reg, VNInfo *VNI)
: AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {}
// Returns true when a def has been found.
bool hasDef() const { return DefByOrigPHI || DefMI; }
};
private:
// Values in RegsToSpill defined by sibling copies.
typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
SibValueMap SibValues;
// Dead defs generated during spilling.
SmallVector<MachineInstr*, 8> DeadDefs;
~InlineSpiller() override {}
public:
InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
: MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
LSS(pass.getAnalysis<LiveStacks>()),
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
MDT(pass.getAnalysis<MachineDominatorTree>()),
Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
TII(*mf.getSubtarget().getInstrInfo()),
TRI(*mf.getSubtarget().getRegisterInfo()),
MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
void spill(LiveRangeEdit &) override;
private:
bool isSnippet(const LiveInterval &SnipLI);
void collectRegsToSpill();
bool isRegToSpill(unsigned Reg) {
return std::find(RegsToSpill.begin(),
RegsToSpill.end(), Reg) != RegsToSpill.end();
}
bool isSibling(unsigned Reg);
MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr);
void analyzeSiblingValues();
bool hoistSpill(LiveInterval &SpillLI, MachineInstr &CopyMI);
void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
void markValueUsed(LiveInterval*, VNInfo*);
bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
void reMaterializeAll();
bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
MachineInstr *LoadMI = nullptr);
void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
void spillAroundUses(unsigned Reg);
void spillAll();
};
}
namespace llvm {
Spiller::~Spiller() { }
void Spiller::anchor() { }
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm) {
return new InlineSpiller(pass, mf, vrm);
}
}
//===----------------------------------------------------------------------===//
// Snippets
//===----------------------------------------------------------------------===//
// When spilling a virtual register, we also spill any snippets it is connected
// to. The snippets are small live ranges that only have a single real use,
// leftovers from live range splitting. Spilling them enables memory operand
// folding or tightens the live range around the single use.
//
// This minimizes register pressure and maximizes the store-to-load distance for
// spill slots which can be important in tight loops.
/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
/// otherwise return 0.
static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
if (!MI->isFullCopy())
return 0;
if (MI->getOperand(0).getReg() == Reg)
return MI->getOperand(1).getReg();
if (MI->getOperand(1).getReg() == Reg)
return MI->getOperand(0).getReg();
return 0;
}
/// isSnippet - Identify if a live interval is a snippet that should be spilled.
/// It is assumed that SnipLI is a virtual register with the same original as
/// Edit->getReg().
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
unsigned Reg = Edit->getReg();
// A snippet is a tiny live range with only a single instruction using it
// besides copies to/from Reg or spills/fills. We accept:
//
// %snip = COPY %Reg / FILL fi#
// %snip = USE %snip
// %Reg = COPY %snip / SPILL %snip, fi#
//
if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
return false;
MachineInstr *UseMI = nullptr;
// Check that all uses satisfy our criteria.
for (MachineRegisterInfo::reg_instr_nodbg_iterator
RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
E = MRI.reg_instr_nodbg_end(); RI != E; ) {
MachineInstr *MI = &*(RI++);
// Allow copies to/from Reg.
if (isFullCopyOf(MI, Reg))
continue;
// Allow stack slot loads.
int FI;
if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
continue;
// Allow stack slot stores.
if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
continue;
// Allow a single additional instruction.
if (UseMI && MI != UseMI)
return false;
UseMI = MI;
}
return true;
}
/// collectRegsToSpill - Collect live range snippets that only have a single
/// real use.
void InlineSpiller::collectRegsToSpill() {
unsigned Reg = Edit->getReg();
// Main register always spills.
RegsToSpill.assign(1, Reg);
SnippetCopies.clear();
// Snippets all have the same original, so there can't be any for an original
// register.
if (Original == Reg)
return;
for (MachineRegisterInfo::reg_instr_iterator
RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
MachineInstr *MI = &*(RI++);
unsigned SnipReg = isFullCopyOf(MI, Reg);
if (!isSibling(SnipReg))
continue;
LiveInterval &SnipLI = LIS.getInterval(SnipReg);
if (!isSnippet(SnipLI))
continue;
SnippetCopies.insert(MI);
if (isRegToSpill(SnipReg))
continue;
RegsToSpill.push_back(SnipReg);
DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
++NumSnippets;
}
}
//===----------------------------------------------------------------------===//
// Sibling Values
//===----------------------------------------------------------------------===//
// After live range splitting, some values to be spilled may be defined by
// copies from sibling registers. We trace the sibling copies back to the
// original value if it still exists. We need it for rematerialization.
//
// Even when the value can't be rematerialized, we still want to determine if
// the value has already been spilled, or we may want to hoist the spill from a
// loop.
bool InlineSpiller::isSibling(unsigned Reg) {
return TargetRegisterInfo::isVirtualRegister(Reg) &&
VRM.getOriginal(Reg) == Original;
}
#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS,
const InlineSpiller::SibValueInfo &SVI) {
OS << "spill " << PrintReg(SVI.SpillReg) << ':'
<< SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
if (SVI.SpillMBB)
OS << " in BB#" << SVI.SpillMBB->getNumber();
if (SVI.AllDefsAreReloads)
OS << " all-reloads";
if (SVI.DefByOrigPHI)
OS << " orig-phi";
if (SVI.KillsSource)
OS << " kill";
OS << " deps[";
for (VNInfo *Dep : SVI.Deps)
OS << ' ' << Dep->id << '@' << Dep->def;
OS << " ]";
if (SVI.DefMI)
OS << " def: " << *SVI.DefMI;
else
OS << '\n';
return OS;
}
#endif
/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
/// known. Otherwise remember the dependency for later.
///
/// @param SVIIter SibValues entry to propagate.
/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
VNInfo *VNI) {
SibValueMap::value_type *SVI = &*SVIIter;
// When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
TinyPtrVector<VNInfo*> FirstDeps;
if (VNI) {
FirstDeps.push_back(VNI);
SVI->second.Deps.push_back(VNI);
}
// Has the value been completely determined yet? If not, defer propagation.
if (!SVI->second.hasDef())
return;
// Work list of values to propagate.
SmallSetVector<SibValueMap::value_type *, 8> WorkList;
WorkList.insert(SVI);
do {
SVI = WorkList.pop_back_val();
TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
VNI = nullptr;
SibValueInfo &SV = SVI->second;
if (!SV.SpillMBB)
SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
DEBUG(dbgs() << " prop to " << Deps->size() << ": "
<< SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
assert(SV.hasDef() && "Propagating undefined value");
// Should this value be propagated as a preferred spill candidate? We don't
// propagate values of registers that are about to spill.
bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
unsigned SpillDepth = ~0u;
for (VNInfo *Dep : *Deps) {
SibValueMap::iterator DepSVI = SibValues.find(Dep);
assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
SibValueInfo &DepSV = DepSVI->second;
if (!DepSV.SpillMBB)
DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
bool Changed = false;
// Propagate defining instruction.
if (!DepSV.hasDef()) {
Changed = true;
DepSV.DefMI = SV.DefMI;
DepSV.DefByOrigPHI = SV.DefByOrigPHI;
}
// Propagate AllDefsAreReloads. For PHI values, this computes an AND of
// all predecessors.
if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
Changed = true;
DepSV.AllDefsAreReloads = false;
}
// Propagate best spill value.
if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
if (SV.SpillMBB == DepSV.SpillMBB) {
// DepSV is in the same block. Hoist when dominated.
if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
// This is an alternative def earlier in the same MBB.
// Hoist the spill as far as possible in SpillMBB. This can ease
// register pressure:
//
// x = def
// y = use x
// s = copy x
//
// Hoisting the spill of s to immediately after the def removes the
// interference between x and y:
//
// x = def
// spill x
// y = use x<kill>
//
// This hoist only helps when the DepSV copy kills its source.
Changed = true;
DepSV.SpillReg = SV.SpillReg;
DepSV.SpillVNI = SV.SpillVNI;
DepSV.SpillMBB = SV.SpillMBB;
}
} else {
// DepSV is in a different block.
if (SpillDepth == ~0u)
SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
// Also hoist spills to blocks with smaller loop depth, but make sure
// that the new value dominates. Non-phi dependents are always
// dominated, phis need checking.
const BranchProbability MarginProb(4, 5); // 80%
// Hoist a spill to outer loop if there are multiple dependents (it
// can be beneficial if more than one dependents are hoisted) or
// if DepSV (the hoisting source) is hotter than SV (the hoisting
// destination) (we add a 80% margin to bias a little towards
// loop depth).
bool HoistCondition =
(MBFI.getBlockFreq(DepSV.SpillMBB) >=
(MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) ||
Deps->size() > 1;
if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
HoistCondition &&
(!DepSVI->first->isPHIDef() ||
MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
Changed = true;
DepSV.SpillReg = SV.SpillReg;
DepSV.SpillVNI = SV.SpillVNI;
DepSV.SpillMBB = SV.SpillMBB;
}
}
}
if (!Changed)
continue;
// Something changed in DepSVI. Propagate to dependents.
WorkList.insert(&*DepSVI);
DEBUG(dbgs() << " update " << DepSVI->first->id << '@'
<< DepSVI->first->def << " to:\t" << DepSV);
}
} while (!WorkList.empty());
}
/// traceSiblingValue - Trace a value that is about to be spilled back to the
/// real defining instructions by looking through sibling copies. Always stay
/// within the range of OrigVNI so the registers are known to carry the same
/// value.
///
/// Determine if the value is defined by all reloads, so spilling isn't
/// necessary - the value is already in the stack slot.
///
/// Return a defining instruction that may be a candidate for rematerialization.
///
MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
VNInfo *OrigVNI) {
// Check if a cached value already exists.
SibValueMap::iterator SVI;
bool Inserted;
std::tie(SVI, Inserted) =
SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
if (!Inserted) {
DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
<< UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
return SVI->second.DefMI;
}
DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
<< UseVNI->id << '@' << UseVNI->def << '\n');
// List of (Reg, VNI) that have been inserted into SibValues, but need to be
// processed.
SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
WorkList.push_back(std::make_pair(UseReg, UseVNI));
LiveInterval &OrigLI = LIS.getInterval(Original);
do {
unsigned Reg;
VNInfo *VNI;
std::tie(Reg, VNI) = WorkList.pop_back_val();
DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
<< ":\t");
// First check if this value has already been computed.
SVI = SibValues.find(VNI);
assert(SVI != SibValues.end() && "Missing SibValues entry");
// Trace through PHI-defs created by live range splitting.
if (VNI->isPHIDef()) {
// Stop at original PHIs. We don't know the value at the
// predecessors. Look up the VNInfo for the current definition
// in OrigLI, to properly determine whether or not this phi was
// added by splitting.
if (VNI->def == OrigLI.getVNInfoAt(VNI->def)->def) {
DEBUG(dbgs() << "orig phi value\n");
SVI->second.DefByOrigPHI = true;
SVI->second.AllDefsAreReloads = false;
propagateSiblingValue(SVI);
continue;
}
// This is a PHI inserted by live range splitting. We could trace the
// live-out value from predecessor blocks, but that search can be very
// expensive if there are many predecessors and many more PHIs as
// generated by tail-dup when it sees an indirectbr. Instead, look at
// all the non-PHI defs that have the same value as OrigVNI. They must
// jointly dominate VNI->def. This is not optimal since VNI may actually
// be jointly dominated by a smaller subset of defs, so there is a change
// we will miss a AllDefsAreReloads optimization.
// Separate all values dominated by OrigVNI into PHIs and non-PHIs.
SmallVector<VNInfo*, 8> PHIs, NonPHIs;
LiveInterval &LI = LIS.getInterval(Reg);
for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
VI != VE; ++VI) {
VNInfo *VNI2 = *VI;
if (VNI2->isUnused())
continue;
if (!OrigLI.containsOneValue() &&
OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
continue;
if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
PHIs.push_back(VNI2);
else
NonPHIs.push_back(VNI2);
}
DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
<< " phi-defs, and " << NonPHIs.size()
<< " non-phi/orig defs\n");
// Create entries for all the PHIs. Don't add them to the worklist, we
// are processing all of them in one go here.
for (VNInfo *PHI : PHIs)
SibValues.insert(std::make_pair(PHI, SibValueInfo(Reg, PHI)));
// Add every PHI as a dependent of all the non-PHIs.
for (VNInfo *NonPHI : NonPHIs) {
// Known value? Try an insertion.
std::tie(SVI, Inserted) =
SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
// Add all the PHIs as dependents of NonPHI.
SVI->second.Deps.insert(SVI->second.Deps.end(), PHIs.begin(),
PHIs.end());
// This is the first time we see NonPHI, add it to the worklist.
if (Inserted)
WorkList.push_back(std::make_pair(Reg, NonPHI));
else
// Propagate to all inserted PHIs, not just VNI.
propagateSiblingValue(SVI);
}
// Next work list item.
continue;
}
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Missing def");
// Trace through sibling copies.
if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
if (isSibling(SrcReg)) {
LiveInterval &SrcLI = LIS.getInterval(SrcReg);
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
assert(SrcQ.valueIn() && "Copy from non-existing value");
// Check if this COPY kills its source.
SVI->second.KillsSource = SrcQ.isKill();
VNInfo *SrcVNI = SrcQ.valueIn();
DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
<< SrcVNI->id << '@' << SrcVNI->def
<< " kill=" << unsigned(SVI->second.KillsSource) << '\n');
// Known sibling source value? Try an insertion.
std::tie(SVI, Inserted) = SibValues.insert(
std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI)));
// This is the first time we see Src, add it to the worklist.
if (Inserted)
WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
propagateSiblingValue(SVI, VNI);
// Next work list item.
continue;
}
}
// Track reachable reloads.
SVI->second.DefMI = MI;
SVI->second.SpillMBB = MI->getParent();
int FI;
if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
DEBUG(dbgs() << "reload\n");
propagateSiblingValue(SVI);
// Next work list item.
continue;
}
// Potential remat candidate.
DEBUG(dbgs() << "def " << *MI);
SVI->second.AllDefsAreReloads = false;
propagateSiblingValue(SVI);
} while (!WorkList.empty());
2012-09-01 20:11:41 +08:00
// Look up the value we were looking for. We already did this lookup at the
// top of the function, but SibValues may have been invalidated.
SVI = SibValues.find(UseVNI);
assert(SVI != SibValues.end() && "Didn't compute requested info");
DEBUG(dbgs() << " traced to:\t" << SVI->second);
return SVI->second.DefMI;
}
/// analyzeSiblingValues - Trace values defined by sibling copies back to
/// something that isn't a sibling copy.
///
/// Keep track of values that may be rematerializable.
void InlineSpiller::analyzeSiblingValues() {
SibValues.clear();
// No siblings at all?
if (Edit->getReg() == Original)
return;
LiveInterval &OrigLI = LIS.getInterval(Original);
for (unsigned Reg : RegsToSpill) {
LiveInterval &LI = LIS.getInterval(Reg);
for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
VE = LI.vni_end(); VI != VE; ++VI) {
VNInfo *VNI = *VI;
if (VNI->isUnused())
continue;
MachineInstr *DefMI = nullptr;
if (!VNI->isPHIDef()) {
DefMI = LIS.getInstructionFromIndex(VNI->def);
assert(DefMI && "No defining instruction");
}
// Check possible sibling copies.
if (VNI->isPHIDef() || DefMI->isCopy()) {
VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
assert(OrigVNI && "Def outside original live range");
if (OrigVNI->def != VNI->def)
DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
}
if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
<< VNI->def << " may remat from " << *DefMI);
}
}
}
}
/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
/// a spill at a better location.
bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr &CopyMI) {
SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
SibValueMap::iterator I = SibValues.find(VNI);
if (I == SibValues.end())
return false;
const SibValueInfo &SVI = I->second;
// Let the normal folding code deal with the boring case.
if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
return false;
// SpillReg may have been deleted by remat and DCE.
if (!LIS.hasInterval(SVI.SpillReg)) {
DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
SibValues.erase(I);
return false;
}
LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
if (!SibLI.containsValue(SVI.SpillVNI)) {
DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
SibValues.erase(I);
return false;
}
// Conservatively extend the stack slot range to the range of the original
// value. We may be able to do better with stack slot coloring by being more
// careful here.
assert(StackInt && "No stack slot assigned yet.");
LiveInterval &OrigLI = LIS.getInterval(Original);
VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
2011-03-20 07:02:47 +08:00
DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
<< *StackInt << '\n');
// Already spilled everywhere.
if (SVI.AllDefsAreReloads) {
DEBUG(dbgs() << "\tno spill needed: " << SVI);
++NumOmitReloadSpill;
return true;
}
// We are going to spill SVI.SpillVNI immediately after its def, so clear out
// any later spills of the same value.
eliminateRedundantSpills(SibLI, SVI.SpillVNI);
MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
MachineBasicBlock::iterator MII;
if (SVI.SpillVNI->isPHIDef())
MII = MBB->SkipPHIsAndLabels(MBB->begin());
else {
MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
assert(DefMI && "Defining instruction disappeared");
MII = DefMI;
++MII;
}
// Insert spill without kill flag immediately after def.
TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
MRI.getRegClass(SVI.SpillReg), &TRI);
--MII; // Point to store instruction.
LIS.InsertMachineInstrInMaps(*MII);
DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
++NumSpills;
++NumHoists;
return true;
}
/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
/// redundant spills of this value in SLI.reg and sibling copies.
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
assert(VNI && "Missing value");
SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
WorkList.push_back(std::make_pair(&SLI, VNI));
assert(StackInt && "No stack slot assigned yet.");
do {
LiveInterval *LI;
std::tie(LI, VNI) = WorkList.pop_back_val();
unsigned Reg = LI->reg;
DEBUG(dbgs() << "Checking redundant spills for "
<< VNI->id << '@' << VNI->def << " in " << *LI << '\n');
// Regs to spill are taken care of.
if (isRegToSpill(Reg))
continue;
// Add all of VNI's live range to StackInt.
StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
// Find all spills and copies of VNI.
for (MachineRegisterInfo::use_instr_nodbg_iterator
UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
UI != E; ) {
MachineInstr *MI = &*(UI++);
if (!MI->isCopy() && !MI->mayStore())
continue;
SlotIndex Idx = LIS.getInstructionIndex(*MI);
if (LI->getVNInfoAt(Idx) != VNI)
continue;
// Follow sibling copies down the dominator tree.
if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
if (isSibling(DstReg)) {
LiveInterval &DstLI = LIS.getInterval(DstReg);
VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
assert(DstVNI && "Missing defined value");
assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
WorkList.push_back(std::make_pair(&DstLI, DstVNI));
}
continue;
}
// Erase spills.
int FI;
if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
// eliminateDeadDefs won't normally remove stores, so switch opcode.
MI->setDesc(TII.get(TargetOpcode::KILL));
DeadDefs.push_back(MI);
++NumSpillsRemoved;
--NumSpills;
}
}
} while (!WorkList.empty());
}
//===----------------------------------------------------------------------===//
// Rematerialization
//===----------------------------------------------------------------------===//
/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
/// instruction cannot be eliminated. See through snippet copies
void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
WorkList.push_back(std::make_pair(LI, VNI));
do {
std::tie(LI, VNI) = WorkList.pop_back_val();
if (!UsedValues.insert(VNI).second)
continue;
if (VNI->isPHIDef()) {
MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
for (MachineBasicBlock *P : MBB->predecessors()) {
VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
if (PVNI)
WorkList.push_back(std::make_pair(LI, PVNI));
}
continue;
}
// Follow snippet copies.
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
if (!SnippetCopies.count(MI))
continue;
LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
assert(SnipVNI && "Snippet undefined before copy");
WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
} while (!WorkList.empty());
}
2011-02-23 07:01:49 +08:00
/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
// Analyze instruction
SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
MIBundleOperands::VirtRegInfo RI =
MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
if (!RI.Reads)
return false;
SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
if (!ParentVNI) {
DEBUG(dbgs() << "\tadding <undef> flags: ");
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
MO.setIsUndef();
}
DEBUG(dbgs() << UseIdx << '\t' << MI);
return true;
}
if (SnippetCopies.count(&MI))
return false;
// Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
LiveRangeEdit::Remat RM(ParentVNI);
SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
if (SibI != SibValues.end())
RM.OrigMI = SibI->second.DefMI;
if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
markValueUsed(&VirtReg, ParentVNI);
DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
return false;
}
// If the instruction also writes VirtReg.reg, it had better not require the
// same register for uses and defs.
if (RI.Tied) {
markValueUsed(&VirtReg, ParentVNI);
DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
return false;
}
// Before rematerializing into a register for a single instruction, try to
// fold a load into the instruction. That avoids allocating a new register.
if (RM.OrigMI->canFoldAsLoad() &&
foldMemoryOperand(Ops, RM.OrigMI)) {
Edit->markRematerialized(RM.ParentVNI);
++NumFoldedLoads;
return true;
}
// Alocate a new register for the remat.
unsigned NewVReg = Edit->createFrom(Original);
// Finally we can rematerialize OrigMI before MI.
SlotIndex DefIdx =
Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
(void)DefIdx;
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
<< *LIS.getInstructionFromIndex(DefIdx));
// Replace operands
for (const auto &OpPair : Ops) {
MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
MO.setReg(NewVReg);
MO.setIsKill();
}
}
DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
++NumRemats;
return true;
}
/// reMaterializeAll - Try to rematerialize as many uses as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
// analyzeSiblingValues has already tested all relevant defining instructions.
if (!Edit->anyRematerializable(AA))
return;
UsedValues.clear();
// Try to remat before all uses of snippets.
bool anyRemat = false;
for (unsigned Reg : RegsToSpill) {
LiveInterval &LI = LIS.getInterval(Reg);
for (MachineRegisterInfo::reg_bundle_iterator
RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
RegI != E; ) {
MachineInstr &MI = *RegI++;
// Debug values are not allowed to affect codegen.
if (MI.isDebugValue())
continue;
anyRemat |= reMaterializeFor(LI, MI);
}
}
if (!anyRemat)
return;
// Remove any values that were completely rematted.
for (unsigned Reg : RegsToSpill) {
LiveInterval &LI = LIS.getInterval(Reg);
for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
continue;
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
MI->addRegisterDead(Reg, &TRI);
if (!MI->allDefsAreDead())
continue;
DEBUG(dbgs() << "All defs dead: " << *MI);
DeadDefs.push_back(MI);
}
}
// Eliminate dead code after remat. Note that some snippet copies may be
// deleted here.
if (DeadDefs.empty())
return;
DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
// LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
// after rematerialization. To remove a VNI for a vreg from its LiveInterval,
// LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
// removed, PHI VNI are still left in the LiveInterval.
// So to get rid of unused reg, we need to check whether it has non-dbg
// reference instead of whether it has non-empty interval.
unsigned ResultPos = 0;
for (unsigned Reg : RegsToSpill) {
if (MRI.reg_nodbg_empty(Reg)) {
Edit->eraseVirtReg(Reg);
continue;
}
assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) &&
"Reg with empty interval has reference");
RegsToSpill[ResultPos++] = Reg;
}
RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
}
//===----------------------------------------------------------------------===//
// Spilling
//===----------------------------------------------------------------------===//
/// If MI is a load or store of StackSlot, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
int FI = 0;
unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
bool IsLoad = InstrReg;
if (!IsLoad)
InstrReg = TII.isStoreToStackSlot(MI, FI);
// We have a stack access. Is it the right register and slot?
if (InstrReg != Reg || FI != StackSlot)
return false;
DEBUG(dbgs() << "Coalescing stack access: " << *MI);
LIS.RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
if (IsLoad) {
++NumReloadsRemoved;
--NumReloads;
} else {
++NumSpillsRemoved;
--NumSpills;
}
return true;
}
#if !defined(NDEBUG)
// Dump the range of instructions from B to E with their slot indexes.
static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
MachineBasicBlock::iterator E,
LiveIntervals const &LIS,
const char *const header,
unsigned VReg =0) {
char NextLine = '\n';
char SlotIndent = '\t';
if (std::next(B) == E) {
NextLine = ' ';
SlotIndent = ' ';
}
dbgs() << '\t' << header << ": " << NextLine;
for (MachineBasicBlock::iterator I = B; I != E; ++I) {
SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
// If a register was passed in and this instruction has it as a
// destination that is marked as an early clobber, print the
// early-clobber slot index.
if (VReg) {
MachineOperand *MO = I->findRegisterDefOperand(VReg);
if (MO && MO->isEarlyClobber())
Idx = Idx.getRegSlot(true);
}
dbgs() << SlotIndent << Idx << '\t' << *I;
}
}
#endif
/// foldMemoryOperand - Try folding stack slot references in Ops into their
/// instructions.
///
/// @param Ops Operand indices from analyzeVirtReg().
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
/// @return True on success.
bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
MachineInstr *LoadMI) {
if (Ops.empty())
return false;
// Don't attempt folding in bundles.
MachineInstr *MI = Ops.front().first;
if (Ops.back().first != MI || MI->isBundled())
return false;
bool WasCopy = MI->isCopy();
unsigned ImpReg = 0;
[Statepoints 2/4] Statepoint infrastructure for garbage collection: MI & x86-64 Backend This is the second patch in a small series. This patch contains the MachineInstruction and x86-64 backend pieces required to lower Statepoints. It does not include the code to actually generate the STATEPOINT machine instruction and as a result, the entire patch is currently dead code. I will be submitting the SelectionDAG parts within the next 24-48 hours. Since those pieces are by far the most complicated, I wanted to minimize the size of that patch. That patch will include the tests which exercise the functionality in this patch. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683. The STATEPOINT psuedo node is generated after all gc values are explicitly spilled to stack slots. The purpose of this node is to wrap an actual call instruction while recording the spill locations of the meta arguments used for garbage collection and other purposes. The STATEPOINT is modeled as modifing all of those locations to prevent backend optimizations from forwarding the value from before the STATEPOINT to after the STATEPOINT. (Doing so would break relocation semantics for collectors which wish to relocate roots.) The implementation of STATEPOINT is closely modeled on PATCHPOINT. Eventually, much of the code in this patch will be removed. The long term plan is to merge the functionality provided by statepoints and patchpoints. Merging their implementations in the backend is likely to be a good starting point. Reviewed by: atrick, ributzka llvm-svn: 223085
2014-12-02 06:52:56 +08:00
bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
MI->getOpcode() == TargetOpcode::PATCHPOINT ||
MI->getOpcode() == TargetOpcode::STACKMAP);
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
// operands.
SmallVector<unsigned, 8> FoldOps;
for (const auto &OpPair : Ops) {
unsigned Idx = OpPair.second;
assert(MI == OpPair.first && "Instruction conflict during operand folding");
MachineOperand &MO = MI->getOperand(Idx);
if (MO.isImplicit()) {
ImpReg = MO.getReg();
continue;
}
// FIXME: Teach targets to deal with subregs.
if (!SpillSubRegs && MO.getSubReg())
return false;
// We cannot fold a load instruction into a def.
if (LoadMI && MO.isDef())
return false;
// Tied use operands should not be passed to foldMemoryOperand.
if (!MI->isRegTiedToDefOperand(Idx))
FoldOps.push_back(Idx);
}
MachineInstrSpan MIS(MI);
MachineInstr *FoldMI =
LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
: TII.foldMemoryOperand(MI, FoldOps, StackSlot);
if (!FoldMI)
return false;
// Remove LIS for any dead defs in the original MI not in FoldMI.
for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
if (!MO->isReg())
continue;
unsigned Reg = MO->getReg();
if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
MRI.isReserved(Reg)) {
continue;
}
// Skip non-Defs, including undef uses and internal reads.
if (MO->isUse())
continue;
MIBundleOperands::PhysRegInfo RI =
MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
if (RI.FullyDefined)
continue;
// FoldMI does not define this physreg. Remove the LI segment.
assert(MO->isDead() && "Cannot fold physreg def");
SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
LIS.removePhysRegDefAt(Reg, Idx);
}
LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
MI->eraseFromParent();
// Insert any new instructions other than FoldMI into the LIS maps.
assert(!MIS.empty() && "Unexpected empty span of instructions!");
for (MachineInstr &MI : MIS)
if (&MI != FoldMI)
LIS.InsertMachineInstrInMaps(MI);
// TII.foldMemoryOperand may have left some implicit operands on the
// instruction. Strip them.
if (ImpReg)
for (unsigned i = FoldMI->getNumOperands(); i; --i) {
MachineOperand &MO = FoldMI->getOperand(i - 1);
if (!MO.isReg() || !MO.isImplicit())
break;
if (MO.getReg() == ImpReg)
FoldMI->RemoveOperand(i - 1);
}
DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
"folded"));
if (!WasCopy)
++NumFolded;
else if (Ops.front().second == 0)
++NumSpills;
else
++NumReloads;
return true;
}
void InlineSpiller::insertReload(unsigned NewVReg,
SlotIndex Idx,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
MachineInstrSpan MIS(MI);
TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
MRI.getRegClass(NewVReg), &TRI);
LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
NewVReg));
++NumReloads;
}
/// insertSpill - Insert a spill of NewVReg after MI.
void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
MachineInstrSpan MIS(MI);
TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
MRI.getRegClass(NewVReg), &TRI);
LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
"spill"));
++NumSpills;
}
/// spillAroundUses - insert spill code around each use of Reg.
void InlineSpiller::spillAroundUses(unsigned Reg) {
DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
LiveInterval &OldLI = LIS.getInterval(Reg);
// Iterate over instructions using Reg.
for (MachineRegisterInfo::reg_bundle_iterator
RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
RegI != E; ) {
MachineInstr *MI = &*(RegI++);
// Debug values are not allowed to affect codegen.
if (MI->isDebugValue()) {
// Modify DBG_VALUE now that the value is in a spill slot.
bool IsIndirect = MI->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-02 02:55:02 +08:00
const MDNode *Var = MI->getDebugVariable();
const MDNode *Expr = MI->getDebugExpression();
DebugLoc DL = MI->getDebugLoc();
DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
MachineBasicBlock *MBB = MI->getParent();
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-02 02:55:02 +08:00
.addFrameIndex(StackSlot)
.addImm(Offset)
.addMetadata(Var)
.addMetadata(Expr);
continue;
}
// Ignore copies to/from snippets. We'll delete them.
if (SnippetCopies.count(MI))
continue;
// Stack slot accesses may coalesce away.
if (coalesceStackAccess(MI, Reg))
continue;
// Analyze instruction.
SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
MIBundleOperands::VirtRegInfo RI =
MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
// Find the slot index where this instruction reads and writes OldLI.
// This is usually the def slot, except for tied early clobbers.
SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
if (SlotIndex::isSameInstr(Idx, VNI->def))
Idx = VNI->def;
// Check for a sibling copy.
unsigned SibReg = isFullCopyOf(MI, Reg);
if (SibReg && isSibling(SibReg)) {
// This may actually be a copy between snippets.
if (isRegToSpill(SibReg)) {
DEBUG(dbgs() << "Found new snippet copy: " << *MI);
SnippetCopies.insert(MI);
continue;
}
if (RI.Writes) {
// Hoist the spill of a sib-reg copy.
if (hoistSpill(OldLI, *MI)) {
// This COPY is now dead, the value is already in the stack slot.
MI->getOperand(0).setIsDead();
DeadDefs.push_back(MI);
continue;
}
} else {
// This is a reload for a sib-reg copy. Drop spills downstream.
LiveInterval &SibLI = LIS.getInterval(SibReg);
eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
// The COPY will fold to a reload below.
}
}
// Attempt to fold memory ops.
if (foldMemoryOperand(Ops))
continue;
// Create a new virtual register for spill/fill.
// FIXME: Infer regclass from instruction alone.
unsigned NewVReg = Edit->createFrom(Reg);
if (RI.Reads)
insertReload(NewVReg, Idx, MI);
// Rewrite instruction operands.
bool hasLiveDef = false;
for (const auto &OpPair : Ops) {
MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
MO.setReg(NewVReg);
if (MO.isUse()) {
if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
MO.setIsKill();
} else {
if (!MO.isDead())
hasLiveDef = true;
}
}
DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
// FIXME: Use a second vreg if instruction has no tied ops.
if (RI.Writes)
if (hasLiveDef)
insertSpill(NewVReg, true, MI);
}
}
/// spillAll - Spill all registers remaining after rematerialization.
void InlineSpiller::spillAll() {
// Update LiveStacks now that we are committed to spilling.
if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
StackSlot = VRM.assignVirt2StackSlot(Original);
StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
} else
StackInt = &LSS.getInterval(StackSlot);
if (Original != Edit->getReg())
VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
for (unsigned Reg : RegsToSpill)
StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
StackInt->getValNumInfo(0));
DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
// Spill around uses of all RegsToSpill.
for (unsigned Reg : RegsToSpill)
spillAroundUses(Reg);
// Hoisted spills may cause dead code.
if (!DeadDefs.empty()) {
DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
}
// Finally delete the SnippetCopies.
for (unsigned Reg : RegsToSpill) {
for (MachineRegisterInfo::reg_instr_iterator
RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
RI != E; ) {
MachineInstr &MI = *(RI++);
assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
// FIXME: Do this with a LiveRangeEdit callback.
LIS.RemoveMachineInstrFromMaps(MI);
MI.eraseFromParent();
}
}
// Delete all spilled registers.
for (unsigned Reg : RegsToSpill)
Edit->eraseVirtReg(Reg);
}
void InlineSpiller::spill(LiveRangeEdit &edit) {
++NumSpilledRanges;
Edit = &edit;
assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
&& "Trying to spill a stack slot.");
// Share a stack slot among all descendants of Original.
Original = VRM.getOriginal(edit.getReg());
StackSlot = VRM.getStackSlot(Original);
StackInt = nullptr;
DEBUG(dbgs() << "Inline spilling "
<< TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
<< ':' << edit.getParent()
<< "\nFrom original " << PrintReg(Original) << '\n');
assert(edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.");
assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
collectRegsToSpill();
analyzeSiblingValues();
reMaterializeAll();
// Remat may handle everything.
if (!RegsToSpill.empty())
spillAll();
Edit->calculateRegClassAndHint(MF, Loops, MBFI);
}