llvm-project/llvm/lib/Target/PTX/PTXInstrInfo.td

1027 lines
46 KiB
TableGen
Raw Normal View History

//===- PTXInstrInfo.td - PTX Instruction defs -----------------*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the PTX instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "PTXInstrFormats.td"
//===----------------------------------------------------------------------===//
// Code Generation Predicates
//===----------------------------------------------------------------------===//
// Shader Model Support
def FDivNeedsRoundingMode : Predicate<"getSubtarget().fdivNeedsRoundingMode()">;
def FDivNoRoundingMode : Predicate<"!getSubtarget().fdivNeedsRoundingMode()">;
def FMadNeedsRoundingMode : Predicate<"getSubtarget().fmadNeedsRoundingMode()">;
def FMadNoRoundingMode : Predicate<"!getSubtarget().fmadNeedsRoundingMode()">;
// PTX Version Support
def SupportsPTX21 : Predicate<"getSubtarget().supportsPTX21()">;
def DoesNotSupportPTX21 : Predicate<"!getSubtarget().supportsPTX21()">;
def SupportsPTX22 : Predicate<"getSubtarget().supportsPTX22()">;
def DoesNotSupportPTX22 : Predicate<"!getSubtarget().supportsPTX22()">;
def SupportsPTX23 : Predicate<"getSubtarget().supportsPTX23()">;
def DoesNotSupportPTX23 : Predicate<"!getSubtarget().supportsPTX23()">;
// Fused-Multiply Add
def SupportsFMA : Predicate<"getSubtarget().supportsFMA()">;
def DoesNotSupportFMA : Predicate<"!getSubtarget().supportsFMA()">;
// def SDT_PTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
// def SDT_PTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// def PTXcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PTXCallSeqStart,
// [SDNPHasChain, SDNPOutGlue]>;
// def PTXcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PTXCallSeqEnd,
// [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def PTXcall : SDNode<"PTXISD::CALL", SDTNone,
[SDNPHasChain, SDNPVariadic, SDNPOptInGlue, SDNPOutGlue]>;
// Branch & call targets have OtherVT type.
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
//===----------------------------------------------------------------------===//
// PTX Specific Node Definitions
//===----------------------------------------------------------------------===//
// PTX allow generic 3-reg shifts like shl r0, r1, r2
def PTXshl : SDNode<"ISD::SHL", SDTIntBinOp>;
def PTXsrl : SDNode<"ISD::SRL", SDTIntBinOp>;
def PTXsra : SDNode<"ISD::SRA", SDTIntBinOp>;
def PTXexit
: SDNode<"PTXISD::EXIT", SDTNone, [SDNPHasChain]>;
def PTXret
: SDNode<"PTXISD::RET", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def PTXcopyaddress
: SDNode<"PTXISD::COPY_ADDRESS", SDTypeProfile<1, 1, []>, []>;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
// For floating-point instructions, we cannot just embed the pattern into the
// instruction definition since we need to muck around with the rounding mode,
// and I do not know how to insert constants into instructions directly from
// pattern matches.
//===- Floating-Point Instructions - 2 Operand Form -----------------------===//
multiclass PTX_FLOAT_2OP<string opcstr> {
def rr32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, RegF32:$a),
!strconcat(opcstr, "$r.f32\t$d, $a"), []>;
def ri32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, f32imm:$a),
!strconcat(opcstr, "$r.f32\t$d, $a"), []>;
def rr64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, RegF64:$a),
!strconcat(opcstr, "$r.f64\t$d, $a"), []>;
def ri64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, f64imm:$a),
!strconcat(opcstr, "$r.f64\t$d, $a"), []>;
}
//===- Floating-Point Instructions - 3 Operand Form -----------------------===//
multiclass PTX_FLOAT_3OP<string opcstr> {
def rr32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, RegF32:$a, RegF32:$b),
!strconcat(opcstr, "$r.f32\t$d, $a, $b"), []>;
def ri32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, RegF32:$a, f32imm:$b),
!strconcat(opcstr, "$r.f32\t$d, $a, $b"), []>;
def rr64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, RegF64:$a, RegF64:$b),
!strconcat(opcstr, "$r.f64\t$d, $a, $b"), []>;
def ri64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, RegF64:$a, f64imm:$b),
!strconcat(opcstr, "$r.f64\t$d, $a, $b"), []>;
}
//===- Floating-Point Instructions - 4 Operand Form -----------------------===//
multiclass PTX_FLOAT_4OP<string opcstr> {
def rrr32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, RegF32:$a, RegF32:$b, RegF32:$c),
!strconcat(opcstr, "$r.f32\t$d, $a, $b, $c"), []>;
def rri32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, RegF32:$a, RegF32:$b, f32imm:$c),
!strconcat(opcstr, "$r.f32\t$d, $a, $b, $c"), []>;
def rii32 : InstPTX<(outs RegF32:$d),
(ins RndMode:$r, RegF32:$a, f32imm:$b, f32imm:$c),
!strconcat(opcstr, "$r.f32\t$d, $a, $b, $c"), []>;
def rrr64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, RegF64:$a, RegF64:$b, RegF64:$c),
!strconcat(opcstr, "$r.f64\t$d, $a, $b, $c"), []>;
def rri64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, RegF64:$a, RegF64:$b, f64imm:$c),
!strconcat(opcstr, "$r.f64\t$d, $a, $b, $c"), []>;
def rii64 : InstPTX<(outs RegF64:$d),
(ins RndMode:$r, RegF64:$a, f64imm:$b, f64imm:$c),
!strconcat(opcstr, "$r.f64\t$d, $a, $b, $c"), []>;
}
//===- Integer Instructions - 3 Operand Form ------------------------------===//
multiclass PTX_INT3<string opcstr, SDNode opnode> {
def rr16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, RegI16:$b),
!strconcat(opcstr, ".u16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>;
def ri16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, i16imm:$b),
!strconcat(opcstr, ".u16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>;
def rr32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, RegI32:$b),
!strconcat(opcstr, ".u32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>;
def ri32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, i32imm:$b),
!strconcat(opcstr, ".u32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>;
def rr64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, RegI64:$b),
!strconcat(opcstr, ".u64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>;
def ri64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, i64imm:$b),
!strconcat(opcstr, ".u64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>;
}
//===- Integer Instructions - 3 Operand Form (Signed) ---------------------===//
multiclass PTX_INT3_SIGNED<string opcstr, SDNode opnode> {
def rr16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, RegI16:$b),
!strconcat(opcstr, ".s16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>;
def ri16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, i16imm:$b),
!strconcat(opcstr, ".s16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>;
def rr32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, RegI32:$b),
!strconcat(opcstr, ".s32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>;
def ri32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, i32imm:$b),
!strconcat(opcstr, ".s32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>;
def rr64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, RegI64:$b),
!strconcat(opcstr, ".s64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>;
def ri64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, i64imm:$b),
!strconcat(opcstr, ".s64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>;
}
//===- Bitwise Logic Instructions - 3 Operand Form ------------------------===//
multiclass PTX_LOGIC<string opcstr, SDNode opnode> {
def ripreds : InstPTX<(outs RegPred:$d),
(ins RegPred:$a, i1imm:$b),
!strconcat(opcstr, ".pred\t$d, $a, $b"),
[(set RegPred:$d, (opnode RegPred:$a, imm:$b))]>;
def rrpreds : InstPTX<(outs RegPred:$d),
(ins RegPred:$a, RegPred:$b),
!strconcat(opcstr, ".pred\t$d, $a, $b"),
[(set RegPred:$d, (opnode RegPred:$a, RegPred:$b))]>;
def rr16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, RegI16:$b),
!strconcat(opcstr, ".b16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>;
def ri16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, i16imm:$b),
!strconcat(opcstr, ".b16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>;
def rr32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, RegI32:$b),
!strconcat(opcstr, ".b32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>;
def ri32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, i32imm:$b),
!strconcat(opcstr, ".b32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>;
def rr64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, RegI64:$b),
!strconcat(opcstr, ".b64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>;
def ri64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, i64imm:$b),
!strconcat(opcstr, ".b64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>;
}
//===- Integer Shift Instructions - 3 Operand Form ------------------------===//
multiclass PTX_INT3ntnc<string opcstr, SDNode opnode> {
def rr16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, RegI16:$b),
!strconcat(opcstr, "16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>;
def rr32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, RegI32:$b),
!strconcat(opcstr, "32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>;
def rr64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, RegI64:$b),
!strconcat(opcstr, "64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>;
def ri16 : InstPTX<(outs RegI16:$d),
(ins RegI16:$a, i16imm:$b),
!strconcat(opcstr, "16\t$d, $a, $b"),
[(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>;
def ri32 : InstPTX<(outs RegI32:$d),
(ins RegI32:$a, i32imm:$b),
!strconcat(opcstr, "32\t$d, $a, $b"),
[(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>;
def ri64 : InstPTX<(outs RegI64:$d),
(ins RegI64:$a, i64imm:$b),
!strconcat(opcstr, "64\t$d, $a, $b"),
[(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>;
def ir16 : InstPTX<(outs RegI16:$d),
(ins i16imm:$a, RegI16:$b),
!strconcat(opcstr, "16\t$d, $a, $b"),
[(set RegI16:$d, (opnode imm:$a, RegI16:$b))]>;
def ir32 : InstPTX<(outs RegI32:$d),
(ins i32imm:$a, RegI32:$b),
!strconcat(opcstr, "32\t$d, $a, $b"),
[(set RegI32:$d, (opnode imm:$a, RegI32:$b))]>;
def ir64 : InstPTX<(outs RegI64:$d),
(ins i64imm:$a, RegI64:$b),
!strconcat(opcstr, "64\t$d, $a, $b"),
[(set RegI64:$d, (opnode imm:$a, RegI64:$b))]>;
}
//===- Set Predicate Instructions (Int) - 3/4 Operand Forms ---------------===//
multiclass PTX_SETP_I<RegisterClass RC, string regclsname, Operand immcls,
CondCode cmp, string cmpstr> {
// TODO support 5-operand format: p|q, a, b, c
def rr
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b),
!strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"),
[(set RegPred:$p, (setcc RC:$a, RC:$b, cmp))]>;
def ri
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b),
!strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"),
[(set RegPred:$p, (setcc RC:$a, imm:$b, cmp))]>;
def rr_and_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".and.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (and (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>;
def ri_and_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".and.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (and (setcc RC:$a, imm:$b, cmp),
RegPred:$c))]>;
def rr_or_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".or.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (or (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>;
def ri_or_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".or.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (or (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>;
def rr_xor_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".xor.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (xor (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>;
def ri_xor_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".xor.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (xor (setcc RC:$a, imm:$b, cmp),
RegPred:$c))]>;
def rr_and_not_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".and.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (and (setcc RC:$a, RC:$b, cmp),
(not RegPred:$c)))]>;
def ri_and_not_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".and.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (and (setcc RC:$a, imm:$b, cmp),
(not RegPred:$c)))]>;
def rr_or_not_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".or.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (or (setcc RC:$a, RC:$b, cmp),
(not RegPred:$c)))]>;
def ri_or_not_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".or.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (or (setcc RC:$a, imm:$b, cmp),
(not RegPred:$c)))]>;
def rr_xor_not_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".xor.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (xor (setcc RC:$a, RC:$b, cmp),
(not RegPred:$c)))]>;
def ri_xor_not_r
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".xor.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (xor (setcc RC:$a, imm:$b, cmp),
(not RegPred:$c)))]>;
}
//===- Set Predicate Instructions (FP) - 3/4 Operand Form -----------------===//
multiclass PTX_SETP_FP<RegisterClass RC, string regclsname, Operand immcls,
CondCode ucmp, CondCode ocmp, string cmpstr> {
// TODO support 5-operand format: p|q, a, b, c
def rr_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b),
!strconcat("setp.", cmpstr, "u.", regclsname, "\t$p, $a, $b"),
[(set RegPred:$p, (setcc RC:$a, RC:$b, ucmp))]>;
def rr_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b),
!strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"),
[(set RegPred:$p, (setcc RC:$a, RC:$b, ocmp))]>;
def ri_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b),
!strconcat("setp.", cmpstr, "u.", regclsname, "\t$p, $a, $b"),
[(set RegPred:$p, (setcc RC:$a, fpimm:$b, ucmp))]>;
def ri_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b),
!strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"),
[(set RegPred:$p, (setcc RC:$a, fpimm:$b, ocmp))]>;
def rr_and_r_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, "u.and.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (and (setcc RC:$a, RC:$b, ucmp),
RegPred:$c))]>;
def rr_and_r_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".and.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (and (setcc RC:$a, RC:$b, ocmp),
RegPred:$c))]>;
def rr_or_r_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, "u.or.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (or (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>;
def rr_or_r_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".or.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (or (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>;
def rr_xor_r_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, "u.xor.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ucmp),
RegPred:$c))]>;
def rr_xor_r_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".xor.", regclsname,
"\t$p, $a, $b, $c"),
[(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ocmp),
RegPred:$c))]>;
def rr_and_not_r_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, "u.and.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (and (setcc RC:$a, RC:$b, ucmp),
(not RegPred:$c)))]>;
def rr_and_not_r_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".and.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (and (setcc RC:$a, RC:$b, ocmp),
(not RegPred:$c)))]>;
def rr_or_not_r_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, "u.or.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (or (setcc RC:$a, RC:$b, ucmp),
(not RegPred:$c)))]>;
def rr_or_not_r_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".or.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (or (setcc RC:$a, RC:$b, ocmp),
(not RegPred:$c)))]>;
def rr_xor_not_r_u
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, "u.xor.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ucmp),
(not RegPred:$c)))]>;
def rr_xor_not_r_o
: InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c),
!strconcat("setp.", cmpstr, ".xor.", regclsname,
"\t$p, $a, $b, !$c"),
[(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ocmp),
(not RegPred:$c)))]>;
}
//===- Select Predicate Instructions - 4 Operand Form ---------------------===//
multiclass PTX_SELP<RegisterClass RC, string regclsname, Operand immcls,
SDNode immnode> {
def rr
: InstPTX<(outs RC:$r), (ins RegPred:$a, RC:$b, RC:$c),
!strconcat("selp.", regclsname, "\t$r, $b, $c, $a"),
[(set RC:$r, (select RegPred:$a, RC:$b, RC:$c))]>;
def ri
: InstPTX<(outs RC:$r), (ins RegPred:$a, RC:$b, immcls:$c),
!strconcat("selp.", regclsname, "\t$r, $b, $c, $a"),
[(set RC:$r, (select RegPred:$a, RC:$b, immnode:$c))]>;
def ii
: InstPTX<(outs RC:$r), (ins RegPred:$a, immcls:$b, immcls:$c),
!strconcat("selp.", regclsname, "\t$r, $b, $c, $a"),
[(set RC:$r, (select RegPred:$a, immnode:$b, immnode:$c))]>;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
///===- Integer Arithmetic Instructions -----------------------------------===//
defm ADD : PTX_INT3<"add", add>;
defm SUB : PTX_INT3<"sub", sub>;
defm MUL : PTX_INT3<"mul.lo", mul>; // FIXME: Allow 32x32 -> 64 multiplies
defm DIV : PTX_INT3<"div", udiv>;
defm SDIV : PTX_INT3_SIGNED<"div", sdiv>;
defm REM : PTX_INT3<"rem", urem>;
///===- Floating-Point Arithmetic Instructions ----------------------------===//
// FNEG
defm FNEG : PTX_FLOAT_2OP<"neg">;
// Standard Binary Operations
defm FADD : PTX_FLOAT_3OP<"add">;
defm FSUB : PTX_FLOAT_3OP<"sub">;
defm FMUL : PTX_FLOAT_3OP<"mul">;
defm FDIV : PTX_FLOAT_3OP<"div">;
// Multi-operation hybrid instructions
defm FMAD : PTX_FLOAT_4OP<"mad">, Requires<[SupportsFMA]>;
///===- Floating-Point Intrinsic Instructions -----------------------------===//
// SQRT
def FSQRTrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a),
"sqrt$r.f32\t$d, $a", []>;
def FSQRTri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a),
"sqrt$r.f32\t$d, $a", []>;
def FSQRTrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a),
"sqrt$r.f64\t$d, $a", []>;
def FSQRTri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a),
"sqrt$r.f64\t$d, $a", []>;
// SIN
def FSINrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a),
"sin$r.f32\t$d, $a", []>;
def FSINri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a),
"sin$r.f32\t$d, $a", []>;
def FSINrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a),
"sin$r.f64\t$d, $a", []>;
def FSINri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a),
"sin$r.f64\t$d, $a", []>;
// COS
def FCOSrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a),
"cos$r.f32\t$d, $a", []>;
def FCOSri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a),
"cos$r.f32\t$d, $a", []>;
def FCOSrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a),
"cos$r.f64\t$d, $a", []>;
def FCOSri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a),
"cos$r.f64\t$d, $a", []>;
///===- Comparison and Selection Instructions -----------------------------===//
// .setp
// Compare u16
defm SETPEQu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETEQ, "eq">;
defm SETPNEu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETNE, "ne">;
defm SETPLTu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETULT, "lt">;
defm SETPLEu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETULE, "le">;
defm SETPGTu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETUGT, "gt">;
defm SETPGEu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETUGE, "ge">;
defm SETPLTs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETLT, "lt">;
defm SETPLEs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETLE, "le">;
defm SETPGTs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETGT, "gt">;
defm SETPGEs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETGE, "ge">;
// Compare u32
defm SETPEQu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETEQ, "eq">;
defm SETPNEu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETNE, "ne">;
defm SETPLTu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETULT, "lt">;
defm SETPLEu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETULE, "le">;
defm SETPGTu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETUGT, "gt">;
defm SETPGEu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETUGE, "ge">;
defm SETPLTs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETLT, "lt">;
defm SETPLEs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETLE, "le">;
defm SETPGTs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETGT, "gt">;
defm SETPGEs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETGE, "ge">;
// Compare u64
defm SETPEQu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETEQ, "eq">;
defm SETPNEu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETNE, "ne">;
defm SETPLTu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETULT, "lt">;
defm SETPLEu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETULE, "le">;
defm SETPGTu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETUGT, "gt">;
defm SETPGEu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETUGE, "ge">;
defm SETPLTs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETLT, "lt">;
defm SETPLEs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETLE, "le">;
defm SETPGTs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETGT, "gt">;
defm SETPGEs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETGE, "ge">;
// Compare f32
defm SETPEQf32 : PTX_SETP_FP<RegF32, "f32", f32imm, SETUEQ, SETOEQ, "eq">;
defm SETPNEf32 : PTX_SETP_FP<RegF32, "f32", f32imm, SETUNE, SETONE, "ne">;
defm SETPLTf32 : PTX_SETP_FP<RegF32, "f32", f32imm, SETULT, SETOLT, "lt">;
defm SETPLEf32 : PTX_SETP_FP<RegF32, "f32", f32imm, SETULE, SETOLE, "le">;
defm SETPGTf32 : PTX_SETP_FP<RegF32, "f32", f32imm, SETUGT, SETOGT, "gt">;
defm SETPGEf32 : PTX_SETP_FP<RegF32, "f32", f32imm, SETUGE, SETOGE, "ge">;
// Compare f64
defm SETPEQf64 : PTX_SETP_FP<RegF64, "f64", f64imm, SETUEQ, SETOEQ, "eq">;
defm SETPNEf64 : PTX_SETP_FP<RegF64, "f64", f64imm, SETUNE, SETONE, "ne">;
defm SETPLTf64 : PTX_SETP_FP<RegF64, "f64", f64imm, SETULT, SETOLT, "lt">;
defm SETPLEf64 : PTX_SETP_FP<RegF64, "f64", f64imm, SETULE, SETOLE, "le">;
defm SETPGTf64 : PTX_SETP_FP<RegF64, "f64", f64imm, SETUGT, SETOGT, "gt">;
defm SETPGEf64 : PTX_SETP_FP<RegF64, "f64", f64imm, SETUGE, SETOGE, "ge">;
// .selp
defm SELPi16 : PTX_SELP<RegI16, "u16", i16imm, imm>;
defm SELPi32 : PTX_SELP<RegI32, "u32", i32imm, imm>;
defm SELPi64 : PTX_SELP<RegI64, "u64", i64imm, imm>;
defm SELPf32 : PTX_SELP<RegF32, "f32", f32imm, fpimm>;
defm SELPf64 : PTX_SELP<RegF64, "f64", f64imm, fpimm>;
///===- Logic and Shift Instructions --------------------------------------===//
defm SHL : PTX_INT3ntnc<"shl.b", PTXshl>;
defm SRL : PTX_INT3ntnc<"shr.u", PTXsrl>;
defm SRA : PTX_INT3ntnc<"shr.s", PTXsra>;
defm AND : PTX_LOGIC<"and", and>;
defm OR : PTX_LOGIC<"or", or>;
defm XOR : PTX_LOGIC<"xor", xor>;
///===- Data Movement and Conversion Instructions -------------------------===//
// any_extend
// Implement the anyext instruction in terms of the PTX cvt instructions.
//def : Pat<(i32 (anyext RegI16:$a)), (CVT_u32_u16 RegI16:$a)>;
//def : Pat<(i64 (anyext RegI16:$a)), (CVT_u64_u16 RegI16:$a)>;
//def : Pat<(i64 (anyext RegI32:$a)), (CVT_u64_u32 RegI32:$a)>;
// bitconvert
// These instructions implement the bit-wise conversion between integer and
// floating-point types.
def MOVi32f32
: InstPTX<(outs RegI32:$d), (ins RegF32:$a), "mov.b32\t$d, $a", []>;
def MOVf32i32
: InstPTX<(outs RegF32:$d), (ins RegI32:$a), "mov.b32\t$d, $a", []>;
def MOVi64f64
: InstPTX<(outs RegI64:$d), (ins RegF64:$a), "mov.b64\t$d, $a", []>;
def MOVf64i64
: InstPTX<(outs RegF64:$d), (ins RegI64:$a), "mov.b64\t$d, $a", []>;
let neverHasSideEffects = 1 in {
def MOVPREDrr
: InstPTX<(outs RegPred:$d), (ins RegPred:$a), "mov.pred\t$d, $a", []>;
def MOVU16rr
: InstPTX<(outs RegI16:$d), (ins RegI16:$a), "mov.u16\t$d, $a", []>;
def MOVU32rr
: InstPTX<(outs RegI32:$d), (ins RegI32:$a), "mov.u32\t$d, $a", []>;
def MOVU64rr
: InstPTX<(outs RegI64:$d), (ins RegI64:$a), "mov.u64\t$d, $a", []>;
def MOVF32rr
: InstPTX<(outs RegF32:$d), (ins RegF32:$a), "mov.f32\t$d, $a", []>;
def MOVF64rr
: InstPTX<(outs RegF64:$d), (ins RegF64:$a), "mov.f64\t$d, $a", []>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOVPREDri
: InstPTX<(outs RegPred:$d), (ins i1imm:$a), "mov.pred\t$d, $a",
[(set RegPred:$d, imm:$a)]>;
def MOVU16ri
: InstPTX<(outs RegI16:$d), (ins i16imm:$a), "mov.u16\t$d, $a",
[(set RegI16:$d, imm:$a)]>;
def MOVU32ri
: InstPTX<(outs RegI32:$d), (ins i32imm:$a), "mov.u32\t$d, $a",
[(set RegI32:$d, imm:$a)]>;
def MOVU64ri
: InstPTX<(outs RegI64:$d), (ins i64imm:$a), "mov.u64\t$d, $a",
[(set RegI64:$d, imm:$a)]>;
def MOVF32ri
: InstPTX<(outs RegF32:$d), (ins f32imm:$a), "mov.f32\t$d, $a",
[(set RegF32:$d, fpimm:$a)]>;
def MOVF64ri
: InstPTX<(outs RegF64:$d), (ins f64imm:$a), "mov.f64\t$d, $a",
[(set RegF64:$d, fpimm:$a)]>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOVaddr32
: InstPTX<(outs RegI32:$d), (ins i32imm:$a), "mov.u32\t$d, $a",
[(set RegI32:$d, (PTXcopyaddress tglobaladdr:$a))]>;
def MOVaddr64
: InstPTX<(outs RegI64:$d), (ins i64imm:$a), "mov.u64\t$d, $a",
[(set RegI64:$d, (PTXcopyaddress tglobaladdr:$a))]>;
def MOVframe32
: InstPTX<(outs RegI32:$d), (ins i32imm:$a), "cvta.local.u32\t$d, $a",
[(set RegI32:$d, (PTXcopyaddress frameindex:$a))]>;
def MOVframe64
: InstPTX<(outs RegI64:$d), (ins i64imm:$a), "cvta.local.u64\t$d, $a",
[(set RegI64:$d, (PTXcopyaddress frameindex:$a))]>;
}
// PTX cvt instructions
// Note all of these may actually be used, we just define all possible patterns
// here (that make sense).
// FIXME: Can we collapse this somehow into a multiclass def?
// To i16
def CVTu16u32
: InstPTX<(outs RegI16:$d), (ins RegI32:$a), "cvt.u16.u32\t$d, $a", []>;
def CVTu16u64
: InstPTX<(outs RegI16:$d), (ins RegI64:$a), "cvt.u16.u64\t$d, $a", []>;
def CVTu16f32
: InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF32:$a),
"cvt$r.u16.f32\t$d, $a", []>;
def CVTs16f32
: InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF32:$a),
"cvt$r.s16.f32\t$d, $a", []>;
def CVTu16f64
: InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.u16.f64\t$d, $a", []>;
def CVTs16f64
: InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.s16.f64\t$d, $a", []>;
// To i32
def CVTu32u16
: InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.u32.u16\t$d, $a", []>;
def CVTs32s16
: InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.s32.s16\t$d, $a", []>;
def CVTu32u64
: InstPTX<(outs RegI32:$d), (ins RegI64:$a), "cvt.u32.u64\t$d, $a", []>;
def CVTu32f32
: InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF32:$a),
"cvt$r.u32.f32\t$d, $a", []>;
def CVTs32f32
: InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF32:$a),
"cvt$r.s32.f32\t$d, $a", []>;
def CVTu32f64
: InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.u32.f64\t$d, $a", []>;
def CVTs32f64
: InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.s32.f64\t$d, $a", []>;
// To i64
def CVTu64u16
: InstPTX<(outs RegI64:$d), (ins RegI16:$a), "cvt.u64.u16\t$d, $a", []>;
def CVTs64s16
: InstPTX<(outs RegI64:$d), (ins RegI16:$a), "cvt.s64.s16\t$d, $a", []>;
def CVTu64u32
: InstPTX<(outs RegI64:$d), (ins RegI32:$a), "cvt.u64.u32\t$d, $a", []>;
def CVTs64s32
: InstPTX<(outs RegI64:$d), (ins RegI32:$a), "cvt.s64.s32\t$d, $a", []>;
def CVTu64f32
: InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF32:$a),
"cvt$r.u64.f32\t$d, $a", []>;
def CVTs64f32
: InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF32:$a),
"cvt$r.s64.f32\t$d, $a", []>;
def CVTu64f64
: InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.u64.f64\t$d, $a", []>;
def CVTs64f64
: InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.s64.f64\t$d, $a", []>;
// To f32
def CVTf32u16
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI16:$a),
"cvt$r.f32.u16\t$d, $a", []>;
def CVTf32s16
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI16:$a),
"cvt$r.f32.s16\t$d, $a", []>;
def CVTf32u32
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI32:$a),
"cvt$r.f32.u32\t$d, $a", []>;
def CVTf32s32
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI32:$a),
"cvt$r.f32.s32\t$d, $a", []>;
def CVTf32u64
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI64:$a),
"cvt$r.f32.u64\t$d, $a", []>;
def CVTf32s64
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI64:$a),
"cvt$r.f32.s64\t$d, $a", []>;
def CVTf32f64
: InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF64:$a),
"cvt$r.f32.f64\t$d, $a", []>;
// To f64
def CVTf64u16
: InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI16:$a),
"cvt$r.f64.u16\t$d, $a", []>;
def CVTf64s16
: InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI16:$a),
"cvt$r.f64.s16\t$d, $a", []>;
def CVTf64u32
: InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI32:$a),
"cvt$r.f64.u32\t$d, $a", []>;
def CVTf64s32
: InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI32:$a),
"cvt$r.f64.s32\t$d, $a", []>;
def CVTf64u64
: InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI64:$a),
"cvt$r.f64.u64\t$d, $a", []>;
def CVTf64s64
: InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI64:$a),
"cvt$r.f64.s64\t$d, $a", []>;
def CVTf64f32
: InstPTX<(outs RegF64:$d), (ins RegF32:$a), "cvt.f64.f32\t$d, $a", []>;
///===- Control Flow Instructions -----------------------------------------===//
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
def BRAd
: InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [(br bb:$d)]>;
}
let isBranch = 1, isTerminator = 1 in {
// FIXME: The pattern part is blank because I cannot (or do not yet know
// how to) use the first operand of PredicateOperand (a RegPred register) here
def BRAdp
: InstPTX<(outs), (ins brtarget:$d), "bra\t$d",
[/*(brcond pred:$_p, bb:$d)*/]>;
}
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def EXIT : InstPTX<(outs), (ins), "exit", [(PTXexit)]>;
def RET : InstPTX<(outs), (ins), "ret", [(PTXret)]>;
}
let hasSideEffects = 1 in {
def CALL : InstPTX<(outs), (ins), "call", [(PTXcall)]>;
}
///===- Parameter Passing Pseudo-Instructions -----------------------------===//
def READPARAMPRED : InstPTX<(outs RegPred:$a), (ins i32imm:$b),
"mov.pred\t$a, %arg$b", []>;
def READPARAMI16 : InstPTX<(outs RegI16:$a), (ins i32imm:$b),
"mov.b16\t$a, %arg$b", []>;
def READPARAMI32 : InstPTX<(outs RegI32:$a), (ins i32imm:$b),
"mov.b32\t$a, %arg$b", []>;
def READPARAMI64 : InstPTX<(outs RegI64:$a), (ins i32imm:$b),
"mov.b64\t$a, %arg$b", []>;
def READPARAMF32 : InstPTX<(outs RegF32:$a), (ins i32imm:$b),
"mov.f32\t$a, %arg$b", []>;
def READPARAMF64 : InstPTX<(outs RegF64:$a), (ins i32imm:$b),
"mov.f64\t$a, %arg$b", []>;
def WRITEPARAMPRED : InstPTX<(outs), (ins RegPred:$a), "//w", []>;
def WRITEPARAMI16 : InstPTX<(outs), (ins RegI16:$a), "//w", []>;
def WRITEPARAMI32 : InstPTX<(outs), (ins RegI32:$a), "//w", []>;
def WRITEPARAMI64 : InstPTX<(outs), (ins RegI64:$a), "//w", []>;
def WRITEPARAMF32 : InstPTX<(outs), (ins RegF32:$a), "//w", []>;
def WRITEPARAMF64 : InstPTX<(outs), (ins RegF64:$a), "//w", []>;
//===----------------------------------------------------------------------===//
// Instruction Selection Patterns
//===----------------------------------------------------------------------===//
// FADD
def : Pat<(f32 (fadd RegF32:$a, RegF32:$b)),
(FADDrr32 RndDefault, RegF32:$a, RegF32:$b)>;
def : Pat<(f32 (fadd RegF32:$a, fpimm:$b)),
(FADDri32 RndDefault, RegF32:$a, fpimm:$b)>;
def : Pat<(f64 (fadd RegF64:$a, RegF64:$b)),
(FADDrr64 RndDefault, RegF64:$a, RegF64:$b)>;
def : Pat<(f64 (fadd RegF64:$a, fpimm:$b)),
(FADDri64 RndDefault, RegF64:$a, fpimm:$b)>;
// FSUB
def : Pat<(f32 (fsub RegF32:$a, RegF32:$b)),
(FSUBrr32 RndDefault, RegF32:$a, RegF32:$b)>;
def : Pat<(f32 (fsub RegF32:$a, fpimm:$b)),
(FSUBri32 RndDefault, RegF32:$a, fpimm:$b)>;
def : Pat<(f64 (fsub RegF64:$a, RegF64:$b)),
(FSUBrr64 RndDefault, RegF64:$a, RegF64:$b)>;
def : Pat<(f64 (fsub RegF64:$a, fpimm:$b)),
(FSUBri64 RndDefault, RegF64:$a, fpimm:$b)>;
// FMUL
def : Pat<(f32 (fmul RegF32:$a, RegF32:$b)),
(FMULrr32 RndDefault, RegF32:$a, RegF32:$b)>;
def : Pat<(f32 (fmul RegF32:$a, fpimm:$b)),
(FMULri32 RndDefault, RegF32:$a, fpimm:$b)>;
def : Pat<(f64 (fmul RegF64:$a, RegF64:$b)),
(FMULrr64 RndDefault, RegF64:$a, RegF64:$b)>;
def : Pat<(f64 (fmul RegF64:$a, fpimm:$b)),
(FMULri64 RndDefault, RegF64:$a, fpimm:$b)>;
// FDIV
def : Pat<(f32 (fdiv RegF32:$a, RegF32:$b)),
(FDIVrr32 RndDefault, RegF32:$a, RegF32:$b)>;
def : Pat<(f32 (fdiv RegF32:$a, fpimm:$b)),
(FDIVri32 RndDefault, RegF32:$a, fpimm:$b)>;
def : Pat<(f64 (fdiv RegF64:$a, RegF64:$b)),
(FDIVrr64 RndDefault, RegF64:$a, RegF64:$b)>;
def : Pat<(f64 (fdiv RegF64:$a, fpimm:$b)),
(FDIVri64 RndDefault, RegF64:$a, fpimm:$b)>;
// FMUL+FADD
def : Pat<(f32 (fadd (fmul RegF32:$a, RegF32:$b), RegF32:$c)),
(FMADrrr32 RndDefault, RegF32:$a, RegF32:$b, RegF32:$c)>,
Requires<[SupportsFMA]>;
def : Pat<(f32 (fadd (fmul RegF32:$a, RegF32:$b), fpimm:$c)),
(FMADrri32 RndDefault, RegF32:$a, RegF32:$b, fpimm:$c)>,
Requires<[SupportsFMA]>;
def : Pat<(f32 (fadd (fmul RegF32:$a, fpimm:$b), fpimm:$c)),
(FMADrrr32 RndDefault, RegF32:$a, fpimm:$b, fpimm:$c)>,
Requires<[SupportsFMA]>;
def : Pat<(f32 (fadd (fmul RegF32:$a, RegF32:$b), fpimm:$c)),
(FMADrri32 RndDefault, RegF32:$a, RegF32:$b, fpimm:$c)>,
Requires<[SupportsFMA]>;
def : Pat<(f64 (fadd (fmul RegF64:$a, RegF64:$b), RegF64:$c)),
(FMADrrr64 RndDefault, RegF64:$a, RegF64:$b, RegF64:$c)>,
Requires<[SupportsFMA]>;
def : Pat<(f64 (fadd (fmul RegF64:$a, RegF64:$b), fpimm:$c)),
(FMADrri64 RndDefault, RegF64:$a, RegF64:$b, fpimm:$c)>,
Requires<[SupportsFMA]>;
def : Pat<(f64 (fadd (fmul RegF64:$a, fpimm:$b), fpimm:$c)),
(FMADrri64 RndDefault, RegF64:$a, fpimm:$b, fpimm:$c)>,
Requires<[SupportsFMA]>;
// FNEG
def : Pat<(f32 (fneg RegF32:$a)), (FNEGrr32 RndDefault, RegF32:$a)>;
def : Pat<(f32 (fneg fpimm:$a)), (FNEGri32 RndDefault, fpimm:$a)>;
def : Pat<(f64 (fneg RegF64:$a)), (FNEGrr64 RndDefault, RegF64:$a)>;
def : Pat<(f64 (fneg fpimm:$a)), (FNEGri64 RndDefault, fpimm:$a)>;
// FSQRT
def : Pat<(f32 (fsqrt RegF32:$a)), (FSQRTrr32 RndDefault, RegF32:$a)>;
def : Pat<(f32 (fsqrt fpimm:$a)), (FSQRTri32 RndDefault, fpimm:$a)>;
def : Pat<(f64 (fsqrt RegF64:$a)), (FSQRTrr64 RndDefault, RegF64:$a)>;
def : Pat<(f64 (fsqrt fpimm:$a)), (FSQRTri64 RndDefault, fpimm:$a)>;
// FSIN
def : Pat<(f32 (fsin RegF32:$a)), (FSINrr32 RndDefault, RegF32:$a)>;
def : Pat<(f32 (fsin fpimm:$a)), (FSINri32 RndDefault, fpimm:$a)>;
def : Pat<(f64 (fsin RegF64:$a)), (FSINrr64 RndDefault, RegF64:$a)>;
def : Pat<(f64 (fsin fpimm:$a)), (FSINri64 RndDefault, fpimm:$a)>;
// FCOS
def : Pat<(f32 (fcos RegF32:$a)), (FCOSrr32 RndDefault, RegF32:$a)>;
def : Pat<(f32 (fcos fpimm:$a)), (FCOSri32 RndDefault, fpimm:$a)>;
def : Pat<(f64 (fcos RegF64:$a)), (FCOSrr64 RndDefault, RegF64:$a)>;
def : Pat<(f64 (fcos fpimm:$a)), (FCOSri64 RndDefault, fpimm:$a)>;
// Type conversion notes:
// - PTX does not directly support converting a predicate to a value, so we
// use a select instruction to select either 0 or 1 (integer or fp) based
// on the truth value of the predicate.
// - PTX does not directly support converting to a predicate type, so we fake it
// by performing a greater-than test between the value and zero. This follows
// the C convention that any non-zero value is equivalent to 'true'.
// Conversion to pred
def : Pat<(i1 (trunc RegI16:$a)), (SETPGTu16ri RegI16:$a, 0)>;
def : Pat<(i1 (trunc RegI32:$a)), (SETPGTu32ri RegI32:$a, 0)>;
def : Pat<(i1 (trunc RegI64:$a)), (SETPGTu64ri RegI64:$a, 0)>;
def : Pat<(i1 (fp_to_uint RegF32:$a)), (SETPGTu32ri (MOVi32f32 RegF32:$a), 0)>;
def : Pat<(i1 (fp_to_uint RegF64:$a)), (SETPGTu64ri (MOVi64f64 RegF64:$a), 0)>;
// Conversion to u16
def : Pat<(i16 (anyext RegPred:$a)), (SELPi16ii RegPred:$a, 1, 0)>;
def : Pat<(i16 (sext RegPred:$a)), (SELPi16ii RegPred:$a, 0xFFFF, 0)>;
def : Pat<(i16 (zext RegPred:$a)), (SELPi16ii RegPred:$a, 1, 0)>;
def : Pat<(i16 (trunc RegI32:$a)), (CVTu16u32 RegI32:$a)>;
def : Pat<(i16 (trunc RegI64:$a)), (CVTu16u64 RegI64:$a)>;
def : Pat<(i16 (fp_to_uint RegF32:$a)), (CVTu16f32 RndDefault, RegF32:$a)>;
def : Pat<(i16 (fp_to_sint RegF32:$a)), (CVTs16f32 RndDefault, RegF32:$a)>;
def : Pat<(i16 (fp_to_uint RegF64:$a)), (CVTu16f64 RndDefault, RegF64:$a)>;
def : Pat<(i16 (fp_to_sint RegF64:$a)), (CVTs16f64 RndDefault, RegF64:$a)>;
// Conversion to u32
def : Pat<(i32 (anyext RegPred:$a)), (SELPi32ii RegPred:$a, 1, 0)>;
def : Pat<(i32 (sext RegPred:$a)), (SELPi32ii RegPred:$a, 0xFFFFFFFF, 0)>;
def : Pat<(i32 (zext RegPred:$a)), (SELPi32ii RegPred:$a, 1, 0)>;
def : Pat<(i32 (anyext RegI16:$a)), (CVTu32u16 RegI16:$a)>;
def : Pat<(i32 (sext RegI16:$a)), (CVTs32s16 RegI16:$a)>;
def : Pat<(i32 (zext RegI16:$a)), (CVTu32u16 RegI16:$a)>;
def : Pat<(i32 (trunc RegI64:$a)), (CVTu32u64 RegI64:$a)>;
def : Pat<(i32 (fp_to_uint RegF32:$a)), (CVTu32f32 RndDefault, RegF32:$a)>;
def : Pat<(i32 (fp_to_sint RegF32:$a)), (CVTs32f32 RndDefault, RegF32:$a)>;
def : Pat<(i32 (fp_to_uint RegF64:$a)), (CVTu32f64 RndDefault, RegF64:$a)>;
def : Pat<(i32 (fp_to_sint RegF64:$a)), (CVTs32f64 RndDefault, RegF64:$a)>;
def : Pat<(i32 (bitconvert RegF32:$a)), (MOVi32f32 RegF32:$a)>;
// Conversion to u64
def : Pat<(i64 (anyext RegPred:$a)), (SELPi64ii RegPred:$a, 1, 0)>;
def : Pat<(i64 (sext RegPred:$a)), (SELPi64ii RegPred:$a,
0xFFFFFFFFFFFFFFFF, 0)>;
def : Pat<(i64 (zext RegPred:$a)), (SELPi64ii RegPred:$a, 1, 0)>;
def : Pat<(i64 (anyext RegI16:$a)), (CVTu64u16 RegI16:$a)>;
def : Pat<(i64 (sext RegI16:$a)), (CVTs64s16 RegI16:$a)>;
def : Pat<(i64 (zext RegI16:$a)), (CVTu64u16 RegI16:$a)>;
def : Pat<(i64 (anyext RegI32:$a)), (CVTu64u32 RegI32:$a)>;
def : Pat<(i64 (sext RegI32:$a)), (CVTs64s32 RegI32:$a)>;
def : Pat<(i64 (zext RegI32:$a)), (CVTu64u32 RegI32:$a)>;
def : Pat<(i64 (fp_to_uint RegF32:$a)), (CVTu64f32 RndDefault, RegF32:$a)>;
def : Pat<(i64 (fp_to_sint RegF32:$a)), (CVTs64f32 RndDefault, RegF32:$a)>;
def : Pat<(i64 (fp_to_uint RegF64:$a)), (CVTu64f64 RndDefault, RegF64:$a)>;
def : Pat<(i64 (fp_to_sint RegF64:$a)), (CVTs64f64 RndDefault, RegF64:$a)>;
def : Pat<(i64 (bitconvert RegF64:$a)), (MOVi64f64 RegF64:$a)>;
// Conversion to f32
def : Pat<(f32 (uint_to_fp RegPred:$a)), (SELPf32rr RegPred:$a,
(MOVf32i32 0x3F800000), (MOVf32i32 0))>;
def : Pat<(f32 (uint_to_fp RegI16:$a)), (CVTf32u16 RndDefault, RegI16:$a)>;
def : Pat<(f32 (sint_to_fp RegI16:$a)), (CVTf32s16 RndDefault, RegI16:$a)>;
def : Pat<(f32 (uint_to_fp RegI32:$a)), (CVTf32u32 RndDefault, RegI32:$a)>;
def : Pat<(f32 (sint_to_fp RegI32:$a)), (CVTf32s32 RndDefault, RegI32:$a)>;
def : Pat<(f32 (uint_to_fp RegI64:$a)), (CVTf32u64 RndDefault, RegI64:$a)>;
def : Pat<(f32 (sint_to_fp RegI64:$a)), (CVTf32s64 RndDefault, RegI64:$a)>;
def : Pat<(f32 (fround RegF64:$a)), (CVTf32f64 RndDefault, RegF64:$a)>;
def : Pat<(f32 (bitconvert RegI32:$a)), (MOVf32i32 RegI32:$a)>;
// Conversion to f64
def : Pat<(f64 (uint_to_fp RegPred:$a)), (SELPf64rr RegPred:$a,
(MOVf64i64 0x3F80000000000000), (MOVf64i64 0))>;
def : Pat<(f64 (uint_to_fp RegI16:$a)), (CVTf64u16 RndDefault, RegI16:$a)>;
def : Pat<(f64 (sint_to_fp RegI16:$a)), (CVTf64s16 RndDefault, RegI16:$a)>;
def : Pat<(f64 (uint_to_fp RegI32:$a)), (CVTf64u32 RndDefault, RegI32:$a)>;
def : Pat<(f64 (sint_to_fp RegI32:$a)), (CVTf64s32 RndDefault, RegI32:$a)>;
def : Pat<(f64 (uint_to_fp RegI64:$a)), (CVTf64u64 RndDefault, RegI64:$a)>;
def : Pat<(f64 (sint_to_fp RegI64:$a)), (CVTf64s64 RndDefault, RegI64:$a)>;
def : Pat<(f64 (fextend RegF32:$a)), (CVTf64f32 RegF32:$a)>;
def : Pat<(f64 (bitconvert RegI64:$a)), (MOVf64i64 RegI64:$a)>;
///===- Intrinsic Instructions --------------------------------------------===//
include "PTXIntrinsicInstrInfo.td"
///===- Load/Store Instructions -------------------------------------------===//
include "PTXInstrLoadStore.td"