llvm-project/lldb/source/Core/Scalar.cpp

3133 lines
90 KiB
C++
Raw Normal View History

//===-- Scalar.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Scalar.h"
// C Includes
// C++ Includes
#include <cinttypes>
#include <cmath>
#include <cstdio>
// Other libraries and framework includes
// Project includes
#include "lldb/Interpreter/Args.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/StringConvert.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Promote to max type currently follows the ANSI C rule for type
// promotion in expressions.
//----------------------------------------------------------------------
static Scalar::Type
PromoteToMaxType
(
const Scalar& lhs, // The const left hand side object
const Scalar& rhs, // The const right hand side object
Scalar& temp_value, // A modifiable temp value than can be used to hold either the promoted lhs or rhs object
const Scalar* &promoted_lhs_ptr, // Pointer to the resulting possibly promoted value of lhs (at most one of lhs/rhs will get promoted)
const Scalar* &promoted_rhs_ptr // Pointer to the resulting possibly promoted value of rhs (at most one of lhs/rhs will get promoted)
)
{
Scalar result;
// Initialize the promoted values for both the right and left hand side values
// to be the objects themselves. If no promotion is needed (both right and left
// have the same type), then the temp_value will not get used.
promoted_lhs_ptr = &lhs;
promoted_rhs_ptr = &rhs;
// Extract the types of both the right and left hand side values
Scalar::Type lhs_type = lhs.GetType();
Scalar::Type rhs_type = rhs.GetType();
if (lhs_type > rhs_type)
{
// Right hand side need to be promoted
temp_value = rhs; // Copy right hand side into the temp value
if (temp_value.Promote(lhs_type)) // Promote it
promoted_rhs_ptr = &temp_value; // Update the pointer for the promoted right hand side
}
else if (lhs_type < rhs_type)
{
// Left hand side need to be promoted
temp_value = lhs; // Copy left hand side value into the temp value
if (temp_value.Promote(rhs_type)) // Promote it
promoted_lhs_ptr = &temp_value; // Update the pointer for the promoted left hand side
}
2014-07-02 05:22:11 +08:00
// Make sure our type promotion worked as expected
if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType())
return promoted_lhs_ptr->GetType(); // Return the resulting max type
// Return the void type (zero) if we fail to promote either of the values.
return Scalar::e_void;
}
Scalar::Scalar() :
m_type(e_void),
m_float((float)0)
{
}
Scalar::Scalar(const Scalar& rhs) :
m_type(rhs.m_type),
m_integer(rhs.m_integer),
m_float(rhs.m_float)
{
}
//Scalar::Scalar(const RegisterValue& reg) :
// m_type(e_void),
// m_data()
//{
// switch (reg.info.encoding)
// {
// case eEncodingUint: // unsigned integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_uint; m_data.uint = reg.value.uint8; break;
// case 2: m_type = e_uint; m_data.uint = reg.value.uint16; break;
// case 4: m_type = e_uint; m_data.uint = reg.value.uint32; break;
// case 8: m_type = e_ulonglong; m_data.ulonglong = reg.value.uint64; break;
// break;
// }
// break;
//
// case eEncodingSint: // signed integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_sint; m_data.sint = reg.value.sint8; break;
// case 2: m_type = e_sint; m_data.sint = reg.value.sint16; break;
// case 4: m_type = e_sint; m_data.sint = reg.value.sint32; break;
// case 8: m_type = e_slonglong; m_data.slonglong = reg.value.sint64; break;
// break;
// }
// break;
//
// case eEncodingIEEE754: // float
// switch (reg.info.byte_size)
// {
// case 4: m_type = e_float; m_data.flt = reg.value.float32; break;
// case 8: m_type = e_double; m_data.dbl = reg.value.float64; break;
// break;
// }
// break;
// case eEncodingVector: // vector registers
// break;
// }
//}
bool
Scalar::GetData (DataExtractor &data, size_t limit_byte_size) const
{
size_t byte_size = GetByteSize();
static float f_val;
static double d_val;
if (byte_size > 0)
{
if (limit_byte_size < byte_size)
{
if (endian::InlHostByteOrder() == eByteOrderLittle)
{
// On little endian systems if we want fewer bytes from the
// current type we just specify fewer bytes since the LSByte
// is first...
switch(m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
data.SetData((const uint8_t *)m_integer.getRawData(), limit_byte_size, endian::InlHostByteOrder());
return true;
case e_float:
f_val = m_float.convertToFloat();
data.SetData((uint8_t *)&f_val, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_double:
d_val = m_float.convertToDouble();
data.SetData((uint8_t *)&d_val, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_long_double:
static llvm::APInt ldbl_val = m_float.bitcastToAPInt();
data.SetData((const uint8_t *)ldbl_val.getRawData(), limit_byte_size, endian::InlHostByteOrder());
return true;
}
}
else if (endian::InlHostByteOrder() == eByteOrderBig)
{
// On big endian systems if we want fewer bytes from the
// current type have to advance our initial byte pointer and
// trim down the number of bytes since the MSByte is first
switch(m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
data.SetData((const uint8_t *)m_integer.getRawData() + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_float:
f_val = m_float.convertToFloat();
data.SetData((uint8_t *)&f_val + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_double:
d_val = m_float.convertToDouble();
data.SetData((uint8_t *)&d_val + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
case e_long_double:
static llvm::APInt ldbl_val = m_float.bitcastToAPInt();
data.SetData((const uint8_t *)ldbl_val.getRawData() + byte_size - limit_byte_size, limit_byte_size, endian::InlHostByteOrder());
return true;
}
}
}
else
{
// We want all of the data
switch(m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
data.SetData((const uint8_t *)m_integer.getRawData(), byte_size, endian::InlHostByteOrder());
return true;
case e_float:
f_val = m_float.convertToFloat();
data.SetData((uint8_t *)&f_val, byte_size, endian::InlHostByteOrder());
return true;
case e_double:
d_val = m_float.convertToDouble();
data.SetData((uint8_t *)&d_val, byte_size, endian::InlHostByteOrder());
return true;
case e_long_double:
static llvm::APInt ldbl_val = m_float.bitcastToAPInt();
data.SetData((const uint8_t *)ldbl_val.getRawData(), byte_size, endian::InlHostByteOrder());
return true;
}
}
return true;
}
data.Clear();
return false;
}
Make Scalar::GetBytes and RegisterValue::GetBytes const Scalar::GetBytes provides a non-const access to the underlying bytes of the scalar value, supposedly allowing for modification of those bytes. However, even with the current implementation, this is not really possible. For floating-point scalars, the pointer returned by GetBytes refers to a temporary copy; modifications to that copy will be simply ignored. For integer scalars, the pointer refers to internal memory of the APInt implementation, which isn't supposed to be directly modifyable; GetBytes simply casts aways the const-ness of the pointer ... With my upcoming patch to fix Scalar::GetBytes for big-endian systems, this problem is going to get worse, since there we need temporary copies even for some integer scalars. Therefore, this patch makes Scalar::GetBytes const, fixing all those problems. As a follow-on change, RegisterValues::GetBytes must be made const as well. This in turn means that the way of initializing a RegisterValue by doing a SetType followed by writing to GetBytes no longer works. Instead, I've changed SetValueFromData to do the equivalent of SetType itself, and then re-implemented SetFromMemoryData to work on top of SetValueFromData. There is still a need for RegisterValue::SetType, since some platform-specific code uses it to reinterpret the contents of an already filled RegisterValue. To make this usage work in all cases (even changing from a type implemented via Scalar to a type implemented as a byte buffer), SetType now simply copies the old contents out, and then reloads the RegisterValue from this data using the new type via SetValueFromData. This in turn means that there is no remaining caller of Scalar::SetType, so it can be removed. The only other follow-on change was in MIPS EmulateInstruction code, where some uses of RegisterValue::GetBytes could be made const trivially. Differential Revision: http://reviews.llvm.org/D18980 llvm-svn: 266310
2016-04-14 22:31:08 +08:00
const void *
Scalar::GetBytes() const
{
static float_t flt_val;
static double_t dbl_val;
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return reinterpret_cast<const void *>(m_integer.getRawData());
case e_float:
flt_val = m_float.convertToFloat();
Make Scalar::GetBytes and RegisterValue::GetBytes const Scalar::GetBytes provides a non-const access to the underlying bytes of the scalar value, supposedly allowing for modification of those bytes. However, even with the current implementation, this is not really possible. For floating-point scalars, the pointer returned by GetBytes refers to a temporary copy; modifications to that copy will be simply ignored. For integer scalars, the pointer refers to internal memory of the APInt implementation, which isn't supposed to be directly modifyable; GetBytes simply casts aways the const-ness of the pointer ... With my upcoming patch to fix Scalar::GetBytes for big-endian systems, this problem is going to get worse, since there we need temporary copies even for some integer scalars. Therefore, this patch makes Scalar::GetBytes const, fixing all those problems. As a follow-on change, RegisterValues::GetBytes must be made const as well. This in turn means that the way of initializing a RegisterValue by doing a SetType followed by writing to GetBytes no longer works. Instead, I've changed SetValueFromData to do the equivalent of SetType itself, and then re-implemented SetFromMemoryData to work on top of SetValueFromData. There is still a need for RegisterValue::SetType, since some platform-specific code uses it to reinterpret the contents of an already filled RegisterValue. To make this usage work in all cases (even changing from a type implemented via Scalar to a type implemented as a byte buffer), SetType now simply copies the old contents out, and then reloads the RegisterValue from this data using the new type via SetValueFromData. This in turn means that there is no remaining caller of Scalar::SetType, so it can be removed. The only other follow-on change was in MIPS EmulateInstruction code, where some uses of RegisterValue::GetBytes could be made const trivially. Differential Revision: http://reviews.llvm.org/D18980 llvm-svn: 266310
2016-04-14 22:31:08 +08:00
return reinterpret_cast<const void *>(&flt_val);
case e_double:
dbl_val = m_float.convertToDouble();
Make Scalar::GetBytes and RegisterValue::GetBytes const Scalar::GetBytes provides a non-const access to the underlying bytes of the scalar value, supposedly allowing for modification of those bytes. However, even with the current implementation, this is not really possible. For floating-point scalars, the pointer returned by GetBytes refers to a temporary copy; modifications to that copy will be simply ignored. For integer scalars, the pointer refers to internal memory of the APInt implementation, which isn't supposed to be directly modifyable; GetBytes simply casts aways the const-ness of the pointer ... With my upcoming patch to fix Scalar::GetBytes for big-endian systems, this problem is going to get worse, since there we need temporary copies even for some integer scalars. Therefore, this patch makes Scalar::GetBytes const, fixing all those problems. As a follow-on change, RegisterValues::GetBytes must be made const as well. This in turn means that the way of initializing a RegisterValue by doing a SetType followed by writing to GetBytes no longer works. Instead, I've changed SetValueFromData to do the equivalent of SetType itself, and then re-implemented SetFromMemoryData to work on top of SetValueFromData. There is still a need for RegisterValue::SetType, since some platform-specific code uses it to reinterpret the contents of an already filled RegisterValue. To make this usage work in all cases (even changing from a type implemented via Scalar to a type implemented as a byte buffer), SetType now simply copies the old contents out, and then reloads the RegisterValue from this data using the new type via SetValueFromData. This in turn means that there is no remaining caller of Scalar::SetType, so it can be removed. The only other follow-on change was in MIPS EmulateInstruction code, where some uses of RegisterValue::GetBytes could be made const trivially. Differential Revision: http://reviews.llvm.org/D18980 llvm-svn: 266310
2016-04-14 22:31:08 +08:00
return reinterpret_cast<const void *>(&dbl_val);
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return reinterpret_cast<const void *>(ldbl_val.getRawData());
}
return nullptr;
}
size_t
Scalar::GetByteSize() const
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (m_integer.getBitWidth() / 8);
case e_float: return sizeof(float_t);
case e_double: return sizeof(double_t);
case e_long_double: return sizeof(long_double_t);
}
return 0;
}
bool
Scalar::IsZero() const
{
llvm::APInt zero_int = llvm::APInt::getNullValue(m_integer.getBitWidth() / 8);
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return llvm::APInt::isSameValue(zero_int, m_integer);
case e_float:
case e_double:
case e_long_double:
return m_float.isZero();
}
return false;
}
void
Scalar::GetValue (Stream *s, bool show_type) const
{
const uint64_t *src;
if (show_type)
s->Printf("(%s) ", GetTypeAsCString());
switch (m_type)
{
case e_void:
break;
case e_sint: s->Printf("%i", *(const sint_t *) m_integer.getRawData()); break;
case e_uint: s->Printf("0x%8.8x", *(const uint_t *) m_integer.getRawData()); break;
case e_slong: s->Printf("%li", *(const slong_t *) m_integer.getRawData()); break;
case e_ulong: s->Printf("0x%8.8lx", *(const ulong_t *) m_integer.getRawData()); break;
case e_slonglong: s->Printf("%lli", *(const slonglong_t *) m_integer.getRawData()); break;
case e_ulonglong: s->Printf("0x%16.16llx", *(const ulonglong_t *) m_integer.getRawData()); break;
case e_sint128:
case e_sint256:
s->Printf("%s",m_integer.toString(10,true).c_str());
break;
case e_uint128:
src = m_integer.getRawData();
s->Printf("0x%16.16llx%16.16llx", *(const ulonglong_t *)src, *(const ulonglong_t *)(src + 1));
break;
case e_uint256:
s->Printf("%s",m_integer.toString(16,false).c_str());
break;
case e_float: s->Printf("%f", m_float.convertToFloat()); break;
case e_double: s->Printf("%g", m_float.convertToDouble()); break;
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
s->Printf("%Lg", *(const long_double_t *)ldbl_val.getRawData());
break;
}
}
const char *
Scalar::GetTypeAsCString() const
{
switch (m_type)
{
case e_void: return "void";
case e_sint: return "int";
case e_uint: return "unsigned int";
case e_slong: return "long";
case e_ulong: return "unsigned long";
case e_slonglong: return "long long";
case e_ulonglong: return "unsigned long long";
case e_sint128: return "int128_t";
case e_uint128: return "unsigned int128_t";
case e_sint256: return "int256_t";
case e_uint256: return "unsigned int256_t";
case e_float: return "float";
case e_double: return "double";
case e_long_double: return "long double";
}
return "<invalid Scalar type>";
}
Scalar&
Scalar::operator=(const Scalar& rhs)
{
if (this != &rhs)
{
m_type = rhs.m_type;
m_integer = llvm::APInt(rhs.m_integer);
m_float = rhs.m_float;
}
return *this;
}
Scalar&
Scalar::operator= (const int v)
{
m_type = e_sint;
m_integer = llvm::APInt(sizeof(int) * 8, v, true);
return *this;
}
Scalar&
Scalar::operator= (unsigned int v)
{
m_type = e_uint;
m_integer = llvm::APInt(sizeof(int) * 8, v);
return *this;
}
Scalar&
Scalar::operator= (long v)
{
m_type = e_slong;
m_integer = llvm::APInt(sizeof(long) * 8, v, true);
return *this;
}
Scalar&
Scalar::operator= (unsigned long v)
{
m_type = e_ulong;
m_integer = llvm::APInt(sizeof(long) * 8, v);
return *this;
}
Scalar&
Scalar::operator= (long long v)
{
m_type = e_slonglong;
m_integer = llvm::APInt(sizeof(long) * 8, v, true);
return *this;
}
Scalar&
Scalar::operator= (unsigned long long v)
{
m_type = e_ulonglong;
m_integer = llvm::APInt(sizeof(long long) * 8, v);
return *this;
}
Scalar&
Scalar::operator= (float v)
{
m_type = e_float;
m_float = llvm::APFloat(v);
return *this;
}
Scalar&
Scalar::operator= (double v)
{
m_type = e_double;
m_float = llvm::APFloat(v);
return *this;
}
Scalar&
Scalar::operator= (long double v)
{
m_type = e_long_double;
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x));
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x));
return *this;
}
Scalar&
Scalar::operator= (llvm::APInt rhs)
{
m_integer = llvm::APInt(rhs);
switch(m_integer.getBitWidth())
{
case 8:
case 16:
case 32:
if(m_integer.isSignedIntN(sizeof(sint_t) * 8))
m_type = e_sint;
else
m_type = e_uint;
break;
case 64:
if(m_integer.isSignedIntN(sizeof(slonglong_t) * 8))
m_type = e_slonglong;
else
m_type = e_ulonglong;
break;
case 128:
if(m_integer.isSignedIntN(BITWIDTH_INT128))
m_type = e_sint128;
else
m_type = e_uint128;
break;
case 256:
if(m_integer.isSignedIntN(BITWIDTH_INT256))
m_type = e_sint256;
else
m_type = e_uint256;
break;
}
return *this;
}
Scalar::~Scalar() = default;
bool
Scalar::Promote(Scalar::Type type)
{
bool success = false;
switch (m_type)
{
case e_void:
break;
case e_sint:
switch (type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint:
m_integer = llvm::APInt(sizeof(uint_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_slong:
m_integer = llvm::APInt(sizeof(slong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
case e_ulong:
m_integer = llvm::APInt(sizeof(ulong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_slonglong:
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_uint:
switch (type)
{
case e_void:
case e_sint: break;
case e_uint: success = true; break;
case e_slong:
m_integer = llvm::APInt(sizeof(slong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
case e_ulong:
m_integer = llvm::APInt(sizeof(ulong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_slonglong:
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_slong:
switch (type)
{
case e_void:
case e_sint:
case e_uint: break;
case e_slong: success = true; break;
case e_ulong:
m_integer = llvm::APInt(sizeof(ulong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_slonglong:
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_ulong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong: break;
case e_ulong: success = true; break;
case e_slonglong:
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), true);
success = true;
break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_slonglong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong: break;
case e_slonglong: success = true; break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, *(const uint64_t *)m_integer.getRawData(), false);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_ulonglong:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong: break;
case e_ulonglong: success = true; break;
case e_sint128:
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_sint128:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong: break;
case e_sint128: success = true; break;
case e_uint128:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_uint128:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128: break;
case e_uint128: success = true; break;
case e_sint256:
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, ((const type256 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_sint256:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128: break;
case e_sint256: success = true; break;
case e_uint256:
m_integer = llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((const type128 *)m_integer.getRawData()));
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_uint256:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256: break;
case e_uint256: success = true; break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_float:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: break;
case e_float: success = true; break;
case e_double:
m_float = llvm::APFloat((float_t)m_float.convertToFloat());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_double:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_float: break;
case e_double: success = true; break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_long_double:
switch (type)
{
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_float:
case e_double: break;
case e_long_double: success = true; break;
}
break;
}
if (success)
m_type = type;
return success;
}
const char *
Scalar::GetValueTypeAsCString (Scalar::Type type)
{
switch (type)
{
case e_void: return "void";
case e_sint: return "int";
case e_uint: return "unsigned int";
case e_slong: return "long";
case e_ulong: return "unsigned long";
case e_slonglong: return "long long";
case e_ulonglong: return "unsigned long long";
case e_float: return "float";
case e_double: return "double";
case e_long_double: return "long double";
case e_sint128: return "int128_t";
case e_uint128: return "uint128_t";
case e_sint256: return "int256_t";
case e_uint256: return "uint256_t";
}
return "???";
}
Scalar::Type
Scalar::GetValueTypeForSignedIntegerWithByteSize (size_t byte_size)
{
if (byte_size <= sizeof(sint_t))
return e_sint;
if (byte_size <= sizeof(slong_t))
return e_slong;
if (byte_size <= sizeof(slonglong_t))
return e_slonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForUnsignedIntegerWithByteSize (size_t byte_size)
{
if (byte_size <= sizeof(uint_t))
return e_uint;
if (byte_size <= sizeof(ulong_t))
return e_ulong;
if (byte_size <= sizeof(ulonglong_t))
return e_ulonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForFloatWithByteSize (size_t byte_size)
{
if (byte_size == sizeof(float_t))
return e_float;
if (byte_size == sizeof(double_t))
return e_double;
if (byte_size == sizeof(long_double_t))
return e_long_double;
return e_void;
}
bool
Scalar::Cast(Scalar::Type type)
{
bool success = false;
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (type)
{
case e_void: break;
case e_sint:
m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_uint:
m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_slong:
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_ulong:
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_sint128:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_uint128:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_uint256:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_float:
switch (type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer = m_float.bitcastToAPInt(); success = true; break;
case e_float: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_double: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_double:
switch (type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer = m_float.bitcastToAPInt(); success = true; break;
case e_float: m_float = llvm::APFloat(m_float.convertToDouble()); success = true; break;
case e_double: m_float = llvm::APFloat(m_float.convertToDouble()); success = true; break;
case e_long_double:
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_long_double:
switch (type)
{
case e_void: break;
case e_sint:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_uint:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_slong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_ulong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_sint128:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_uint128:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_uint256:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_double: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break;
case e_long_double: success = true; break;
}
break;
}
if (success)
m_type = type;
return success;
}
bool
Scalar::MakeSigned ()
{
bool success = false;
switch (m_type)
{
case e_void: break;
case e_sint: success = true; break;
case e_uint: m_type = e_sint; success = true; break;
case e_slong: success = true; break;
case e_ulong: m_type = e_slong; success = true; break;
case e_slonglong: success = true; break;
case e_ulonglong: m_type = e_slonglong; success = true; break;
case e_sint128: success = true; break;
case e_uint128: m_type = e_sint; success = true; break;
case e_sint256: success = true; break;
case e_uint256: m_type = e_sint; success = true; break;
case e_float: success = true; break;
case e_double: success = true; break;
case e_long_double: success = true; break;
}
return success;
}
char
Scalar::SChar(char fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const schar_t *)(m_integer.sextOrTrunc(sizeof(schar_t) * 8)).getRawData();
case e_float:
return (schar_t)m_float.convertToFloat();
case e_double:
return (schar_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (schar_t)*ldbl_val.getRawData();
}
return fail_value;
}
unsigned char
Scalar::UChar(unsigned char fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const uchar_t *)m_integer.getRawData();
case e_float:
return (uchar_t)m_float.convertToFloat();
case e_double:
return (uchar_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (uchar_t)*ldbl_val.getRawData();
}
return fail_value;
}
short
Scalar::SShort(short fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const sshort_t *)(m_integer.sextOrTrunc(sizeof(sshort_t) * 8)).getRawData();
case e_float:
return (sshort_t)m_float.convertToFloat();
case e_double:
return (sshort_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const sshort_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned short
Scalar::UShort(unsigned short fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const ushort_t *)m_integer.getRawData();
case e_float:
return (ushort_t)m_float.convertToFloat();
case e_double:
return (ushort_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const ushort_t *)ldbl_val.getRawData();;
}
return fail_value;
}
int
Scalar::SInt(int fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const sint_t *)(m_integer.sextOrTrunc(sizeof(sint_t) * 8)).getRawData();
case e_float:
return (sint_t)m_float.convertToFloat();
case e_double:
return (sint_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const sint_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned int
Scalar::UInt(unsigned int fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const uint_t *)m_integer.getRawData();
case e_float:
return (uint_t)m_float.convertToFloat();
case e_double:
return (uint_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const uint_t *)ldbl_val.getRawData();
}
return fail_value;
}
long
Scalar::SLong(long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const slong_t *)(m_integer.sextOrTrunc(sizeof(slong_t) * 8)).getRawData();
case e_float:
return (slong_t)m_float.convertToFloat();
case e_double:
return (slong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const slong_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned long
Scalar::ULong(unsigned long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const ulong_t *)m_integer.getRawData();
case e_float:
return (ulong_t)m_float.convertToFloat();
case e_double:
return (ulong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const ulong_t *)ldbl_val.getRawData();
}
return fail_value;
}
uint64_t
Scalar::GetRawBits64(uint64_t fail_value) const
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *m_integer.getRawData();
case e_float:
return (uint64_t)m_float.convertToFloat();
case e_double:
return (uint64_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *ldbl_val.getRawData();
}
return fail_value;
}
long long
Scalar::SLongLong(long long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const slonglong_t *)(m_integer.sextOrTrunc(sizeof(slonglong_t) * 8)).getRawData();
case e_float:
return (slonglong_t)m_float.convertToFloat();
case e_double:
return (slonglong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const slonglong_t *)ldbl_val.getRawData();
}
return fail_value;
}
unsigned long long
Scalar::ULongLong(unsigned long long fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return *(const ulonglong_t *)m_integer.getRawData();
case e_float:
return (ulonglong_t)m_float.convertToFloat();
case e_double:
return (ulonglong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return *(const ulonglong_t *)ldbl_val.getRawData();
}
return fail_value;
}
llvm::APInt
Scalar::SInt128(llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt
Scalar::UInt128(const llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt
Scalar::SInt256(llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt
Scalar::UInt256(const llvm::APInt& fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
float
Scalar::Float(float fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer.bitsToFloat();
case e_float:
return m_float.convertToFloat();
case e_double:
return (float_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
double
Scalar::Double(double fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer.bitsToDouble();
case e_float:
return (double_t)m_float.convertToFloat();
case e_double:
return m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
long double
Scalar::LongDouble(long double fail_value) const
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (long_double_t)m_integer.bitsToDouble();
case e_float:
return (long_double_t)m_float.convertToFloat();
case e_double:
return (long_double_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (long_double_t)ldbl_val.bitsToDouble();
}
return fail_value;
}
Scalar&
Scalar::operator+= (const Scalar& rhs)
{
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = a->m_integer + b->m_integer;
break;
case e_float:
case e_double:
case e_long_double:
m_float = a->m_float + b->m_float;
break;
}
}
return *this;
}
Scalar&
Scalar::operator<<= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer <<= *rhs.m_integer.getRawData();
break;
}
break;
}
return *this;
}
bool
Scalar::ShiftRightLogical(const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_integer.lshr(*(const uint_t *) rhs.m_integer.getRawData()); break;
}
break;
}
return m_type != e_void;
}
Scalar&
Scalar::operator>>= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_integer.ashr(*(const uint_t *)rhs.m_integer.getRawData());
break;
}
break;
}
return *this;
}
Scalar&
Scalar::operator&= (const Scalar& rhs)
{
switch (m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type)
{
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer &= rhs.m_integer;
break;
}
break;
}
return *this;
}
bool
Scalar::AbsoluteValue()
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
if (m_integer.isNegative())
m_integer = -m_integer;
return true;
case e_uint:
case e_ulong:
case e_ulonglong: return true;
case e_uint128:
case e_uint256:
case e_float:
case e_double:
case e_long_double:
m_float.clearSign();
return true;
}
return false;
}
bool
Scalar::UnaryNegate()
{
switch (m_type)
{
case e_void: break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = -m_integer; return true;
case e_float:
case e_double:
case e_long_double:
m_float.changeSign(); return true;
}
return false;
}
bool
Scalar::OnesComplement()
{
switch (m_type)
{
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = ~m_integer; return true;
case e_void:
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
const Scalar
lldb_private::operator+ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer + b->m_integer; break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float + b->m_float; break;
}
}
return result;
}
const Scalar
lldb_private::operator- (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer - b->m_integer; break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float - b->m_float; break;
}
}
return result;
}
const Scalar
lldb_private::operator/ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_uint:
case Scalar::e_slong:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_ulong:
case Scalar::e_slonglong:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_ulonglong:
case Scalar::e_sint128:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
if (b->m_integer != 0)
{
result.m_integer = *a->m_integer.getRawData() / *b->m_integer.getRawData();
return result;
}
break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
if (b->m_float.isZero())
{
result.m_float = a->m_float / b->m_float;
return result;
}
break;
}
}
// For division only, the only way it should make it here is if a promotion failed,
// or if we are trying to do a divide by zero.
result.m_type = Scalar::e_void;
return result;
}
const Scalar
lldb_private::operator* (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer * b->m_integer; break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float * b->m_float; break;
}
}
return result;
}
const Scalar
lldb_private::operator& (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer & b->m_integer; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator| (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer | b->m_integer; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator% (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
default: break;
case Scalar::e_void: break;
case Scalar::e_sint:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_uint:
case Scalar::e_slong:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_ulong:
case Scalar::e_slonglong:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_ulonglong:
case Scalar::e_sint128:
Fix usage of APInt.getRawData for big-endian systems The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
2016-04-14 22:32:01 +08:00
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
if (b->m_integer != 0)
{
result.m_integer = *a->m_integer.getRawData() % *b->m_integer.getRawData();
return result;
}
break;
}
}
result.m_type = Scalar::e_void;
return result;
}
const Scalar
lldb_private::operator^ (const Scalar& lhs, const Scalar& rhs)
{
Scalar result;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void)
{
switch (result.m_type)
{
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer ^ b->m_integer; break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar
lldb_private::operator<< (const Scalar& lhs, const Scalar &rhs)
{
Scalar result = lhs;
result <<= rhs;
return result;
}
const Scalar
lldb_private::operator>> (const Scalar& lhs, const Scalar &rhs)
{
Scalar result = lhs;
result >>= rhs;
return result;
}
// Return the raw unsigned integer without any casting or conversion
unsigned int
Scalar::RawUInt () const
{
return *(const uint_t *) m_integer.getRawData();
}
// Return the raw unsigned long without any casting or conversion
unsigned long
Scalar::RawULong () const
{
return *(const ulong_t *) m_integer.getRawData();
}
// Return the raw unsigned long long without any casting or conversion
unsigned long long
Scalar::RawULongLong () const
{
return *(const ulonglong_t *) m_integer.getRawData();
}
Error
Scalar::SetValueFromCString (const char *value_str, Encoding encoding, size_t byte_size)
{
Error error;
if (value_str == nullptr || value_str[0] == '\0')
{
error.SetErrorString ("Invalid c-string value string.");
return error;
}
bool success = false;
switch (encoding)
{
case eEncodingInvalid:
error.SetErrorString ("Invalid encoding.");
break;
case eEncodingUint:
if (byte_size <= sizeof (unsigned long long))
{
uint64_t uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat ("'%s' is not a valid unsigned integer string value", value_str);
else if (!UIntValueIsValidForSize (uval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte unsigned integer value", uval64, (uint64_t)byte_size);
else
{
m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize (byte_size);
switch (m_type)
{
case e_uint: m_integer = llvm::APInt(sizeof(uint_t) * 8, uval64, false); break;
case e_ulong: m_integer = llvm::APInt(sizeof(ulong_t) * 8, uval64, false); break;
case e_ulonglong: m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, uval64, false); break;
default:
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
}
else
{
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingSint:
if (byte_size <= sizeof (long long))
{
uint64_t sval64 = StringConvert::ToSInt64(value_str, INT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat ("'%s' is not a valid signed integer string value", value_str);
else if (!SIntValueIsValidForSize (sval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte signed integer value", sval64, (uint64_t)byte_size);
else
{
m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize (byte_size);
switch (m_type)
{
case e_sint: m_integer = llvm::APInt(sizeof(sint_t) * 8, sval64, true); break;
case e_slong: m_integer = llvm::APInt(sizeof(slong_t) * 8, sval64, true); break;
case e_slonglong: m_integer = llvm::APInt(sizeof(slonglong_t) * 8, sval64, true); break;
default:
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
}
else
{
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingIEEE754:
static float f_val;
static double d_val;
static long double l_val;
if (byte_size == sizeof (float))
{
if (::sscanf (value_str, "%f", &f_val) == 1)
{
m_float = llvm::APFloat(f_val);
m_type = e_float;
}
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else if (byte_size == sizeof (double))
{
if (::sscanf (value_str, "%lf", &d_val) == 1)
{
m_float = llvm::APFloat(d_val);
m_type = e_double;
}
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else if (byte_size == sizeof (long double))
{
if (::sscanf (value_str, "%Lf", &l_val) == 1)
{
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&l_val)->x));
m_type = e_long_double;
}
else
error.SetErrorStringWithFormat ("'%s' is not a valid float string value", value_str);
}
else
{
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size);
return error;
}
break;
case eEncodingVector:
error.SetErrorString ("vector encoding unsupported.");
break;
}
if (error.Fail())
m_type = e_void;
return error;
}
Error
Scalar::SetValueFromData (DataExtractor &data, lldb::Encoding encoding, size_t byte_size)
{
Error error;
type128 int128;
type256 int256;
switch (encoding)
{
case lldb::eEncodingInvalid:
error.SetErrorString ("invalid encoding");
break;
case lldb::eEncodingVector:
error.SetErrorString ("vector encoding unsupported");
break;
case lldb::eEncodingUint:
{
lldb::offset_t offset = 0;
switch (byte_size)
{
case 1: operator=((uint8_t)data.GetU8(&offset)); break;
case 2: operator=((uint16_t)data.GetU16(&offset)); break;
case 4: operator=((uint32_t)data.GetU32(&offset)); break;
case 8: operator=((uint64_t)data.GetU64(&offset)); break;
case 16:
if (data.GetByteOrder() == eByteOrderBig)
{
int128.x[1] = (uint64_t)data.GetU64 (&offset);
int128.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int128.x[0] = (uint64_t)data.GetU64 (&offset);
int128.x[1] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
case 32:
if (data.GetByteOrder() == eByteOrderBig)
{
int256.x[3] = (uint64_t)data.GetU64 (&offset);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int256.x[0] = (uint64_t)data.GetU64 (&offset);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[3] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
default:
error.SetErrorStringWithFormat("unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
break;
case lldb::eEncodingSint:
{
lldb::offset_t offset = 0;
switch (byte_size)
{
case 1: operator=((int8_t)data.GetU8(&offset)); break;
case 2: operator=((int16_t)data.GetU16(&offset)); break;
case 4: operator=((int32_t)data.GetU32(&offset)); break;
case 8: operator=((int64_t)data.GetU64(&offset)); break;
case 16:
if (data.GetByteOrder() == eByteOrderBig)
{
int128.x[1] = (uint64_t)data.GetU64 (&offset);
int128.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int128.x[0] = (uint64_t)data.GetU64 (&offset);
int128.x[1] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
case 32:
if (data.GetByteOrder() == eByteOrderBig)
{
int256.x[3] = (uint64_t)data.GetU64 (&offset);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[0] = (uint64_t)data.GetU64 (&offset + 1);
}
else
{
int256.x[0] = (uint64_t)data.GetU64 (&offset);
int256.x[1] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[2] = (uint64_t)data.GetU64 (&offset + 1);
int256.x[3] = (uint64_t)data.GetU64 (&offset + 1);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
default:
error.SetErrorStringWithFormat("unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size);
break;
}
}
break;
case lldb::eEncodingIEEE754:
{
lldb::offset_t offset = 0;
if (byte_size == sizeof (float))
operator=((float)data.GetFloat(&offset));
else if (byte_size == sizeof (double))
operator=((double)data.GetDouble(&offset));
else if (byte_size == sizeof (long double))
operator=((long double)data.GetLongDouble(&offset));
else
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size);
}
break;
}
return error;
}
bool
Scalar::SignExtend (uint32_t sign_bit_pos)
{
const uint32_t max_bit_pos = GetByteSize() * 8;
if (sign_bit_pos < max_bit_pos)
{
switch (m_type)
{
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return false;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos-1))
{
llvm::APInt sign_bit = llvm::APInt::getSignBit(sign_bit_pos + 1);
llvm::APInt bitwize_and = m_integer & sign_bit;
if (bitwize_and.getBoolValue())
{
const llvm::APInt mask = ~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
m_integer |= mask;
}
return true;
}
break;
}
}
return false;
}
size_t
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
Scalar::GetAsMemoryData (void *dst,
size_t dst_len,
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
lldb::ByteOrder dst_byte_order,
Error &error) const
{
// Get a data extractor that points to the native scalar data
DataExtractor data;
if (!GetData(data))
{
error.SetErrorString ("invalid scalar value");
return 0;
}
const size_t src_len = data.GetByteSize();
// Prepare a memory buffer that contains some or all of the register value
const size_t bytes_copied = data.CopyByteOrderedData (0, // src offset
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorString ("failed to copy data");
return bytes_copied;
}
bool
Scalar::ExtractBitfield (uint32_t bit_size,
uint32_t bit_offset)
{
if (bit_size == 0)
return true;
uint32_t msbit = bit_offset + bit_size - 1;
uint32_t lsbit = bit_offset;
uint64_t result;
switch (m_type)
{
case Scalar::e_void:
break;
case e_float:
result = SignedBits ((uint64_t )m_float.convertToFloat(), msbit, lsbit);
m_float = llvm::APFloat((float_t)result);
return true;
case e_double:
result = SignedBits ((uint64_t )m_float.convertToDouble(), msbit, lsbit);
m_float = llvm::APFloat((double_t)result);
return true;
case e_long_double:
m_integer = m_float.bitcastToAPInt();
result = SignedBits (*m_integer.getRawData(), msbit, lsbit);
if(m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&result)->x));
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&result)->x));
return true;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
m_integer = SignedBits (*m_integer.getRawData(), msbit, lsbit);
return true;
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
m_integer = UnsignedBits (*m_integer.getRawData(), msbit, lsbit);
return true;
}
return false;
}
bool
lldb_private::operator== (const Scalar& lhs, const Scalar& rhs)
{
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type == rhs.m_type;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
return a->m_integer == b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool
lldb_private::operator!= (const Scalar& lhs, const Scalar& rhs)
{
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type != rhs.m_type;
Scalar temp_value; // A temp value that might get a copy of either promoted value
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
return a->m_integer != b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result != llvm::APFloat::cmpEqual)
return true;
}
return true;
}
bool
lldb_private::operator< (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.slt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ult(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpLessThan)
return true;
}
return false;
}
bool
lldb_private::operator<= (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sle(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ule(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpLessThan || result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool
lldb_private::operator> (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sgt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ugt(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpGreaterThan)
return true;
}
return false;
}
bool
lldb_private::operator>= (const Scalar& lhs, const Scalar& rhs)
{
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar* a;
const Scalar* b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b))
{
case Scalar::e_void: break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sge(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.uge(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if(result == llvm::APFloat::cmpGreaterThan || result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool
Scalar::ClearBit (uint32_t bit)
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer.clearBit(bit); return true;
case e_float:
case e_double:
case e_long_double: break;
}
return false;
}
bool
Scalar::SetBit (uint32_t bit)
{
switch (m_type)
{
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256: m_integer.setBit(bit); return true;
case e_float:
case e_double:
case e_long_double: break;
}
return false;
}