2016-10-19 03:28:12 +08:00
|
|
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
|
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse4.1 | FileCheck %s --check-prefix=SSE
|
|
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx2 | FileCheck %s --check-prefix=AVX
|
|
|
|
|
|
|
|
; fold (srl 0, x) -> 0
|
|
|
|
define <4 x i32> @combine_vec_lshr_zero(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_zero:
|
|
|
|
; SSE: # BB#0:
|
2017-05-10 20:34:27 +08:00
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_zero:
|
|
|
|
; AVX: # BB#0:
|
2017-05-10 20:34:27 +08:00
|
|
|
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> zeroinitializer, %x
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl x, c >= size(x)) -> undef
|
|
|
|
define <4 x i32> @combine_vec_lshr_outofrange0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_outofrange0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_outofrange0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, <i32 33, i32 33, i32 33, i32 33>
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_outofrange1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_outofrange1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_outofrange1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, <i32 33, i32 34, i32 35, i32 36>
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl x, 0) -> x
|
|
|
|
define <4 x i32> @combine_vec_lshr_by_zero(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_by_zero:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_by_zero:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, zeroinitializer
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
; if (srl x, c) is known to be zero, return 0
|
|
|
|
define <4 x i32> @combine_vec_lshr_known_zero0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_known_zero0:
|
|
|
|
; SSE: # BB#0:
|
2016-10-24 07:13:31 +08:00
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_known_zero0:
|
|
|
|
; AVX: # BB#0:
|
2016-10-24 07:13:31 +08:00
|
|
|
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i32> %x, <i32 15, i32 15, i32 15, i32 15>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 4, i32 4, i32 4, i32 4>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_known_zero1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_known_zero1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: pand {{.*}}(%rip), %xmm0
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $11, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrld $9, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $10, %xmm1
|
|
|
|
; SSE-NEXT: psrld $8, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_known_zero1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpbroadcastd {{.*}}(%rip), %xmm1
|
|
|
|
; AVX-NEXT: vpand %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i32> %x, <i32 15, i32 15, i32 15, i32 15>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 8, i32 9, i32 10, i32 11>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (srl x, c1), c2) -> (srl x, (add c1, c2))
|
|
|
|
define <4 x i32> @combine_vec_lshr_lshr0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_lshr0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: psrld $6, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_lshr0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrld $6, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, <i32 2, i32 2, i32 2, i32 2>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 4, i32 4, i32 4, i32 4>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_lshr1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_lshr1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $2, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: psrld $3, %xmm0
|
|
|
|
; SSE-NEXT: psrld $1, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1],xmm2[2,3],xmm1[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: psrld $7, %xmm0
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrld $5, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: psrld $6, %xmm0
|
|
|
|
; SSE-NEXT: psrld $4, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1,2,3],xmm0[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1],xmm2[2,3],xmm1[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_lshr1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, <i32 0, i32 1, i32 2, i32 3>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 4, i32 5, i32 6, i32 7>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (srl x, c1), c2) -> 0
|
|
|
|
define <4 x i32> @combine_vec_lshr_lshr_zero0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_lshr_zero0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_lshr_zero0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, <i32 16, i32 16, i32 16, i32 16>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 20, i32 20, i32 20, i32 20>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_lshr_zero1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_lshr_zero1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $20, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrld $18, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $19, %xmm1
|
|
|
|
; SSE-NEXT: psrld $17, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $28, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrld $26, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $27, %xmm1
|
|
|
|
; SSE-NEXT: psrld $25, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_lshr_zero1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i32> %x, <i32 17, i32 18, i32 19, i32 20>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 25, i32 26, i32 27, i32 28>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (trunc (srl x, c1)), c2) -> (trunc (srl x, (add c1, c2)))
|
|
|
|
define <4 x i32> @combine_vec_lshr_trunc_lshr0(<4 x i64> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_trunc_lshr0:
|
|
|
|
; SSE: # BB#0:
|
2017-04-25 20:40:45 +08:00
|
|
|
; SSE-NEXT: psrlq $48, %xmm1
|
|
|
|
; SSE-NEXT: psrlq $48, %xmm0
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_trunc_lshr0:
|
|
|
|
; AVX: # BB#0:
|
2017-04-25 20:40:45 +08:00
|
|
|
; AVX-NEXT: vpsrlq $48, %ymm0, %ymm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm0 = ymm0[0,2,2,3,4,6,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm0 = ymm0[0,2,2,3]
|
2017-04-25 20:40:45 +08:00
|
|
|
; AVX-NEXT: # kill: %XMM0<def> %XMM0<kill> %YMM0<kill>
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i64> %x, <i64 32, i64 32, i64 32, i64 32>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = lshr <4 x i32> %2, <i32 16, i32 16, i32 16, i32 16>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_trunc_lshr1(<4 x i64> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_trunc_lshr1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $35, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $34, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: psrlq $33, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $32, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $19, %xmm1
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm2
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: psrld $17, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: psrld $18, %xmm1
|
|
|
|
; SSE-NEXT: psrld $16, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_trunc_lshr1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrlvq {{.*}}(%rip), %ymm0, %ymm0
|
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm0 = ymm0[0,2,2,3,4,6,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm0 = ymm0[0,2,2,3]
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i64> %x, <i64 32, i64 33, i64 34, i64 35>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = lshr <4 x i32> %2, <i32 16, i32 17, i32 18, i32 19>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (trunc (srl x, c1)), c2) -> 0
|
|
|
|
define <4 x i32> @combine_vec_lshr_trunc_lshr_zero0(<4 x i64> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_trunc_lshr_zero0:
|
|
|
|
; SSE: # BB#0:
|
2016-10-24 07:13:31 +08:00
|
|
|
; SSE-NEXT: xorps %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_trunc_lshr_zero0:
|
|
|
|
; AVX: # BB#0:
|
2016-10-24 07:13:31 +08:00
|
|
|
; AVX-NEXT: vxorps %xmm0, %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i64> %x, <i64 48, i64 48, i64 48, i64 48>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = lshr <4 x i32> %2, <i32 24, i32 24, i32 24, i32 24>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_trunc_lshr_zero1(<4 x i64> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_trunc_lshr_zero1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $51, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $50, %xmm1
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm1 = xmm1[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: psrlq $49, %xmm2
|
|
|
|
; SSE-NEXT: psrlq $48, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $27, %xmm1
|
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm2
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: psrld $25, %xmm2
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm2 = xmm2[0,1,2,3],xmm1[4,5,6,7]
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: movaps %xmm0, %xmm1
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: psrld $26, %xmm1
|
|
|
|
; SSE-NEXT: psrld $24, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm2[2,3],xmm0[4,5],xmm2[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_trunc_lshr_zero1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrlvq {{.*}}(%rip), %ymm0, %ymm0
|
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm0 = ymm0[0,2,2,3,4,6,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm0 = ymm0[0,2,2,3]
|
|
|
|
; AVX-NEXT: vpsrlvd {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = lshr <4 x i64> %x, <i64 48, i64 49, i64 50, i64 51>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = lshr <4 x i32> %2, <i32 24, i32 25, i32 26, i32 27>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (shl x, c), c) -> (and x, cst2)
|
|
|
|
define <4 x i32> @combine_vec_lshr_shl_mask0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_shl_mask0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: andps {{.*}}(%rip), %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_shl_mask0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vbroadcastss {{.*}}(%rip), %xmm1
|
|
|
|
; AVX-NEXT: vandps %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = shl <4 x i32> %x, <i32 2, i32 2, i32 2, i32 2>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 2, i32 2, i32 2, i32 2>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_shl_mask1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_shl_mask1:
|
|
|
|
; SSE: # BB#0:
|
2016-10-20 19:10:21 +08:00
|
|
|
; SSE-NEXT: andps {{.*}}(%rip), %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_shl_mask1:
|
|
|
|
; AVX: # BB#0:
|
2016-10-20 19:10:21 +08:00
|
|
|
; AVX-NEXT: vandps {{.*}}(%rip), %xmm0, %xmm0
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = shl <4 x i32> %x, <i32 2, i32 3, i32 4, i32 5>
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 2, i32 3, i32 4, i32 5>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (sra X, Y), 31) -> (srl X, 31)
|
|
|
|
define <4 x i32> @combine_vec_lshr_ashr_sign(<4 x i32> %x, <4 x i32> %y) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_ashr_sign:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: psrld $31, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_ashr_sign:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpsrld $31, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = ashr <4 x i32> %x, %y
|
|
|
|
%2 = lshr <4 x i32> %1, <i32 31, i32 31, i32 31, i32 31>
|
|
|
|
ret <4 x i32> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
; fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
|
|
|
|
define <4 x i32> @combine_vec_lshr_lzcnt_bit0(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_lzcnt_bit0:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: pand {{.*}}(%rip), %xmm0
|
|
|
|
; SSE-NEXT: psrld $4, %xmm0
|
|
|
|
; SSE-NEXT: pxor {{.*}}(%rip), %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_lzcnt_bit0:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpbroadcastd {{.*}}(%rip), %xmm1
|
|
|
|
; AVX-NEXT: vpand %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsrld $4, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpbroadcastd {{.*}}(%rip), %xmm1
|
|
|
|
; AVX-NEXT: vpxor %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i32> %x, <i32 16, i32 16, i32 16, i32 16>
|
|
|
|
%2 = call <4 x i32> @llvm.ctlz.v4i32(<4 x i32> %1, i1 0)
|
|
|
|
%3 = lshr <4 x i32> %2, <i32 5, i32 5, i32 5, i32 5>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @combine_vec_lshr_lzcnt_bit1(<4 x i32> %x) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_lzcnt_bit1:
|
|
|
|
; SSE: # BB#0:
|
|
|
|
; SSE-NEXT: pand {{.*}}(%rip), %xmm0
|
|
|
|
; SSE-NEXT: movdqa {{.*#+}} xmm2 = [15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: pand %xmm2, %xmm1
|
|
|
|
; SSE-NEXT: movdqa {{.*#+}} xmm3 = [4,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0]
|
|
|
|
; SSE-NEXT: movdqa %xmm3, %xmm4
|
|
|
|
; SSE-NEXT: pshufb %xmm1, %xmm4
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrlw $4, %xmm1
|
|
|
|
; SSE-NEXT: pand %xmm2, %xmm1
|
|
|
|
; SSE-NEXT: pxor %xmm2, %xmm2
|
|
|
|
; SSE-NEXT: pshufb %xmm1, %xmm3
|
|
|
|
; SSE-NEXT: pcmpeqb %xmm2, %xmm1
|
|
|
|
; SSE-NEXT: pand %xmm4, %xmm1
|
|
|
|
; SSE-NEXT: paddb %xmm3, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm3
|
|
|
|
; SSE-NEXT: pcmpeqb %xmm2, %xmm3
|
|
|
|
; SSE-NEXT: psrlw $8, %xmm3
|
|
|
|
; SSE-NEXT: pand %xmm1, %xmm3
|
|
|
|
; SSE-NEXT: psrlw $8, %xmm1
|
|
|
|
; SSE-NEXT: paddw %xmm3, %xmm1
|
|
|
|
; SSE-NEXT: pcmpeqw %xmm2, %xmm0
|
|
|
|
; SSE-NEXT: psrld $16, %xmm0
|
|
|
|
; SSE-NEXT: pand %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: psrld $16, %xmm1
|
|
|
|
; SSE-NEXT: paddd %xmm0, %xmm1
|
|
|
|
; SSE-NEXT: psrld $5, %xmm1
|
|
|
|
; SSE-NEXT: movdqa %xmm1, %xmm0
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_lzcnt_bit1:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpand {{.*}}(%rip), %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vmovdqa {{.*#+}} xmm1 = [15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
|
|
|
|
; AVX-NEXT: vpand %xmm1, %xmm0, %xmm2
|
|
|
|
; AVX-NEXT: vmovdqa {{.*#+}} xmm3 = [4,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0]
|
|
|
|
; AVX-NEXT: vpshufb %xmm2, %xmm3, %xmm2
|
|
|
|
; AVX-NEXT: vpsrlw $4, %xmm0, %xmm4
|
|
|
|
; AVX-NEXT: vpand %xmm1, %xmm4, %xmm1
|
|
|
|
; AVX-NEXT: vpxor %xmm4, %xmm4, %xmm4
|
|
|
|
; AVX-NEXT: vpcmpeqb %xmm4, %xmm1, %xmm5
|
|
|
|
; AVX-NEXT: vpand %xmm5, %xmm2, %xmm2
|
|
|
|
; AVX-NEXT: vpshufb %xmm1, %xmm3, %xmm1
|
|
|
|
; AVX-NEXT: vpaddb %xmm1, %xmm2, %xmm1
|
|
|
|
; AVX-NEXT: vpcmpeqb %xmm4, %xmm0, %xmm2
|
|
|
|
; AVX-NEXT: vpsrlw $8, %xmm2, %xmm2
|
|
|
|
; AVX-NEXT: vpand %xmm2, %xmm1, %xmm2
|
|
|
|
; AVX-NEXT: vpsrlw $8, %xmm1, %xmm1
|
|
|
|
; AVX-NEXT: vpaddw %xmm2, %xmm1, %xmm1
|
|
|
|
; AVX-NEXT: vpcmpeqw %xmm4, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpsrld $16, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vpand %xmm0, %xmm1, %xmm0
|
|
|
|
; AVX-NEXT: vpsrld $16, %xmm1, %xmm1
|
|
|
|
; AVX-NEXT: vpaddd %xmm0, %xmm1, %xmm0
|
|
|
|
; AVX-NEXT: vpsrld $5, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i32> %x, <i32 4, i32 32, i32 64, i32 128>
|
|
|
|
%2 = call <4 x i32> @llvm.ctlz.v4i32(<4 x i32> %1, i1 0)
|
|
|
|
%3 = lshr <4 x i32> %2, <i32 5, i32 5, i32 5, i32 5>
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|
|
|
|
declare <4 x i32> @llvm.ctlz.v4i32(<4 x i32>, i1)
|
|
|
|
|
|
|
|
; fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
|
|
|
|
define <4 x i32> @combine_vec_lshr_trunc_and(<4 x i32> %x, <4 x i64> %y) {
|
|
|
|
; SSE-LABEL: combine_vec_lshr_trunc_and:
|
|
|
|
; SSE: # BB#0:
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: shufps {{.*#+}} xmm1 = xmm1[0,2],xmm2[0,2]
|
|
|
|
; SSE-NEXT: andps {{.*}}(%rip), %xmm1
|
|
|
|
; SSE-NEXT: movaps %xmm1, %xmm2
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: psrldq {{.*#+}} xmm2 = xmm2[12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm3
|
|
|
|
; SSE-NEXT: psrld %xmm2, %xmm3
|
[x86] use a single shufps when it can save instructions
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
2016-12-16 02:03:38 +08:00
|
|
|
; SSE-NEXT: movaps %xmm1, %xmm2
|
2016-10-19 03:28:12 +08:00
|
|
|
; SSE-NEXT: psrlq $32, %xmm2
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm4
|
|
|
|
; SSE-NEXT: psrld %xmm2, %xmm4
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm4 = xmm4[0,1,2,3],xmm3[4,5,6,7]
|
|
|
|
; SSE-NEXT: pxor %xmm2, %xmm2
|
|
|
|
; SSE-NEXT: pmovzxdq {{.*#+}} xmm3 = xmm1[0],zero,xmm1[1],zero
|
|
|
|
; SSE-NEXT: punpckhdq {{.*#+}} xmm1 = xmm1[2],xmm2[2],xmm1[3],xmm2[3]
|
|
|
|
; SSE-NEXT: movdqa %xmm0, %xmm2
|
|
|
|
; SSE-NEXT: psrld %xmm1, %xmm2
|
|
|
|
; SSE-NEXT: psrld %xmm3, %xmm0
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm2[4,5,6,7]
|
|
|
|
; SSE-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm4[2,3],xmm0[4,5],xmm4[6,7]
|
|
|
|
; SSE-NEXT: retq
|
|
|
|
;
|
|
|
|
; AVX-LABEL: combine_vec_lshr_trunc_and:
|
|
|
|
; AVX: # BB#0:
|
|
|
|
; AVX-NEXT: vpshufd {{.*#+}} ymm1 = ymm1[0,2,2,3,4,6,6,7]
|
|
|
|
; AVX-NEXT: vpermq {{.*#+}} ymm1 = ymm1[0,2,2,3]
|
2016-10-19 16:57:37 +08:00
|
|
|
; AVX-NEXT: vpand {{.*}}(%rip), %xmm1, %xmm1
|
2016-10-19 03:28:12 +08:00
|
|
|
; AVX-NEXT: vpsrlvd %xmm1, %xmm0, %xmm0
|
|
|
|
; AVX-NEXT: vzeroupper
|
|
|
|
; AVX-NEXT: retq
|
|
|
|
%1 = and <4 x i64> %y, <i64 15, i64 255, i64 4095, i64 65535>
|
|
|
|
%2 = trunc <4 x i64> %1 to <4 x i32>
|
|
|
|
%3 = lshr <4 x i32> %x, %2
|
|
|
|
ret <4 x i32> %3
|
|
|
|
}
|