llvm-project/llvm/lib/Target/PowerPC/PPCInstrAltivec.td

1520 lines
73 KiB
TableGen
Raw Normal View History

//===-- PPCInstrAltivec.td - The PowerPC Altivec Extension -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Altivec extension to the PowerPC instruction set.
//
//===----------------------------------------------------------------------===//
[PPC64LE] Remove unnecessary swaps from lane-insensitive vector computations This patch adds a new SSA MI pass that runs on little-endian PPC64 code with VSX enabled. Loads and stores of 4x32 and 2x64 vectors without alignment constraints are accomplished for little-endian using lxvd2x/xxswapd and xxswapd/stxvd2x. The existence of the additional xxswapd instructions hurts performance in comparison with big-endian code, but they are necessary in the general case to support correct semantics. However, the general case does not apply to most vector code. Many vector instructions are lane-insensitive; they do not "care" which lanes the parallel computations are performed within, provided that the resulting data is stored into the correct locations. Thus this pass looks for computations that perform only lane-insensitive operations, and remove the unnecessary swaps from loads and stores in such computations. Future improvements will allow computations using certain lane-sensitive operations to also be optimized in this manner, by modifying the lane-sensitive operations to account for the permuted order of the lanes. However, this patch only adds the infrastructure to permit this; no lane-sensitive operations are optimized at this time. This code is heavily exercised by the various vectorizing applications in the projects/test-suite tree. For the time being, I have only added one simple test case to demonstrate what the pass is doing. Although it is quite simple, it provides coverage for much of the code, including the special case handling of copies and subreg-to-reg operations feeding the swaps. I plan to add additional tests in the future as I fill in more of the "special handling" code. Two existing tests were affected, because they expected the swaps to be present, but they are now removed. llvm-svn: 235910
2015-04-28 03:57:34 +08:00
// *********************************** NOTE ***********************************
// ** For POWER8 Little Endian, the VSX swap optimization relies on knowing **
// ** which VMX and VSX instructions are lane-sensitive and which are not. **
// ** A lane-sensitive instruction relies, implicitly or explicitly, on **
// ** whether lanes are numbered from left to right. An instruction like **
// ** VADDFP is not lane-sensitive, because each lane of the result vector **
// ** relies only on the corresponding lane of the source vectors. However, **
// ** an instruction like VMULESB is lane-sensitive, because "even" and **
// ** "odd" lanes are different for big-endian and little-endian numbering. **
// ** **
// ** When adding new VMX and VSX instructions, please consider whether they **
// ** are lane-sensitive. If so, they must be added to a switch statement **
// ** in PPCVSXSwapRemoval::gatherVectorInstructions(). **
// ****************************************************************************
//===----------------------------------------------------------------------===//
// Altivec transformation functions and pattern fragments.
//
// Since we canonicalize buildvectors to v16i8, all vnots "-1" operands will be
// of that type.
def vnot_ppc : PatFrag<(ops node:$in),
(xor node:$in, (bitconvert (v16i8 immAllOnesV)))>;
def vpkuhum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
}]>;
def vpkuwum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
}]>;
def vpkudum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
}]>;
def vpkuhum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
}]>;
def vpkuwum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
}]>;
def vpkudum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
}]>;
// These fragments are provided for little-endian, where the inputs must be
// swapped for correct semantics.
def vpkuhum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
}]>;
def vpkuwum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
}]>;
def vpkudum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
}]>;
def vmrglb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG);
}]>;
def vmrglh_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG);
}]>;
def vmrglw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG);
}]>;
def vmrghb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG);
}]>;
def vmrghh_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG);
}]>;
def vmrghw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG);
}]>;
def vmrglb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG);
}]>;
def vmrglh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG);
}]>;
def vmrglw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG);
}]>;
def vmrghb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG);
}]>;
def vmrghh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG);
}]>;
def vmrghw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG);
}]>;
// These fragments are provided for little-endian, where the inputs must be
// swapped for correct semantics.
def vmrglb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG);
}]>;
def vmrglh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG);
}]>;
def vmrglw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG);
}]>;
def vmrghb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG);
}]>;
def vmrghh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG);
}]>;
def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG);
}]>;
def vmrgew_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 0, *CurDAG);
}]>;
def vmrgow_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 0, *CurDAG);
}]>;
def vmrgew_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 1, *CurDAG);
}]>;
def vmrgow_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 1, *CurDAG);
}]>;
def vmrgew_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 2, *CurDAG);
}]>;
def vmrgow_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 2, *CurDAG);
}]>;
def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{
return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N));
}]>;
def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVSLDOIShuffleMask(N, 0, *CurDAG) != -1;
}], VSLDOI_get_imm>;
/// VSLDOI_unary* - These are used to match vsldoi(X,X), which is turned into
/// vector_shuffle(X,undef,mask) by the dag combiner.
def VSLDOI_unary_get_imm : SDNodeXForm<vector_shuffle, [{
return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG), SDLoc(N));
}]>;
def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVSLDOIShuffleMask(N, 1, *CurDAG) != -1;
}], VSLDOI_unary_get_imm>;
/// VSLDOI_swapped* - These fragments are provided for little-endian, where
/// the inputs must be swapped for correct semantics.
def VSLDOI_swapped_get_imm : SDNodeXForm<vector_shuffle, [{
return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG), SDLoc(N));
}]>;
def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isVSLDOIShuffleMask(N, 2, *CurDAG) != -1;
}], VSLDOI_get_imm>;
// VSPLT*_get_imm xform function: convert vector_shuffle mask to VSPLT* imm.
def VSPLTB_get_imm : SDNodeXForm<vector_shuffle, [{
return getI32Imm(PPC::getVSPLTImmediate(N, 1, *CurDAG), SDLoc(N));
}]>;
def vspltb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 1);
}], VSPLTB_get_imm>;
def VSPLTH_get_imm : SDNodeXForm<vector_shuffle, [{
return getI32Imm(PPC::getVSPLTImmediate(N, 2, *CurDAG), SDLoc(N));
}]>;
def vsplth_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 2);
}], VSPLTH_get_imm>;
def VSPLTW_get_imm : SDNodeXForm<vector_shuffle, [{
return getI32Imm(PPC::getVSPLTImmediate(N, 4, *CurDAG), SDLoc(N));
}]>;
def vspltw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 4);
}], VSPLTW_get_imm>;
// VSPLTISB_get_imm xform function: convert build_vector to VSPLTISB imm.
def VSPLTISB_get_imm : SDNodeXForm<build_vector, [{
return PPC::get_VSPLTI_elt(N, 1, *CurDAG);
}]>;
def vecspltisb : PatLeaf<(build_vector), [{
return PPC::get_VSPLTI_elt(N, 1, *CurDAG).getNode() != nullptr;
}], VSPLTISB_get_imm>;
// VSPLTISH_get_imm xform function: convert build_vector to VSPLTISH imm.
def VSPLTISH_get_imm : SDNodeXForm<build_vector, [{
return PPC::get_VSPLTI_elt(N, 2, *CurDAG);
}]>;
def vecspltish : PatLeaf<(build_vector), [{
return PPC::get_VSPLTI_elt(N, 2, *CurDAG).getNode() != nullptr;
}], VSPLTISH_get_imm>;
// VSPLTISW_get_imm xform function: convert build_vector to VSPLTISW imm.
def VSPLTISW_get_imm : SDNodeXForm<build_vector, [{
return PPC::get_VSPLTI_elt(N, 4, *CurDAG);
}]>;
def vecspltisw : PatLeaf<(build_vector), [{
return PPC::get_VSPLTI_elt(N, 4, *CurDAG).getNode() != nullptr;
}], VSPLTISW_get_imm>;
//===----------------------------------------------------------------------===//
// Helpers for defining instructions that directly correspond to intrinsics.
// VA1a_Int_Ty - A VAForm_1a intrinsic definition of specific type.
class VA1a_Int_Ty<bits<6> xo, string opc, Intrinsic IntID, ValueType Ty>
: VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
!strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
[(set Ty:$vD, (IntID Ty:$vA, Ty:$vB, Ty:$vC))]>;
// VA1a_Int_Ty2 - A VAForm_1a intrinsic definition where the type of the
// inputs doesn't match the type of the output.
class VA1a_Int_Ty2<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy,
ValueType InTy>
: VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
!strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
[(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB, InTy:$vC))]>;
// VA1a_Int_Ty3 - A VAForm_1a intrinsic definition where there are two
// input types and an output type.
class VA1a_Int_Ty3<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy,
ValueType In1Ty, ValueType In2Ty>
: VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
!strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
[(set OutTy:$vD,
(IntID In1Ty:$vA, In1Ty:$vB, In2Ty:$vC))]>;
// VX1_Int_Ty - A VXForm_1 intrinsic definition of specific type.
class VX1_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
: VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
!strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
[(set Ty:$vD, (IntID Ty:$vA, Ty:$vB))]>;
// VX1_Int_Ty2 - A VXForm_1 intrinsic definition where the type of the
// inputs doesn't match the type of the output.
class VX1_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
ValueType InTy>
: VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
!strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
[(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB))]>;
// VX1_Int_Ty3 - A VXForm_1 intrinsic definition where there are two
// input types and an output type.
class VX1_Int_Ty3<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
ValueType In1Ty, ValueType In2Ty>
: VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
!strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
[(set OutTy:$vD, (IntID In1Ty:$vA, In2Ty:$vB))]>;
// VX2_Int_SP - A VXForm_2 intrinsic definition of vector single-precision type.
class VX2_Int_SP<bits<11> xo, string opc, Intrinsic IntID>
: VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB),
!strconcat(opc, " $vD, $vB"), IIC_VecFP,
[(set v4f32:$vD, (IntID v4f32:$vB))]>;
// VX2_Int_Ty2 - A VXForm_2 intrinsic definition where the type of the
// inputs doesn't match the type of the output.
class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
ValueType InTy>
: VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB),
!strconcat(opc, " $vD, $vB"), IIC_VecFP,
[(set OutTy:$vD, (IntID InTy:$vB))]>;
class VXBX_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
: VXForm_BX<xo, (outs vrrc:$vD), (ins vrrc:$vA),
!strconcat(opc, " $vD, $vA"), IIC_VecFP,
[(set Ty:$vD, (IntID Ty:$vA))]>;
class VXCR_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
: VXForm_CR<xo, (outs vrrc:$vD), (ins vrrc:$vA, u1imm:$ST, u4imm:$SIX),
!strconcat(opc, " $vD, $vA, $ST, $SIX"), IIC_VecFP,
[(set Ty:$vD, (IntID Ty:$vA, imm:$ST, imm:$SIX))]>;
//===----------------------------------------------------------------------===//
// Instruction Definitions.
def HasAltivec : Predicate<"PPCSubTarget->hasAltivec()">;
let Predicates = [HasAltivec] in {
def DSS : DSS_Form<0, 822, (outs), (ins u5imm:$STRM),
"dss $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dss imm:$STRM)]>,
Deprecated<DeprecatedDST> {
let A = 0;
let B = 0;
}
def DSSALL : DSS_Form<1, 822, (outs), (ins),
"dssall", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dssall)]>,
Deprecated<DeprecatedDST> {
let STRM = 0;
let A = 0;
let B = 0;
}
def DST : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
"dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
def DSTT : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
"dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
def DSTST : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
"dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
def DSTSTT : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
"dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
let isCodeGenOnly = 1 in {
// The very same instructions as above, but formally matching 64bit registers.
def DST64 : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
"dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
def DSTT64 : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
"dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
def DSTST64 : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
"dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dstst i64:$rA, i32:$rB,
imm:$STRM)]>,
Deprecated<DeprecatedDST>;
def DSTSTT64 : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
"dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
[(int_ppc_altivec_dststt i64:$rA, i32:$rB,
imm:$STRM)]>,
Deprecated<DeprecatedDST>;
}
def MFVSCR : VXForm_4<1540, (outs vrrc:$vD), (ins),
"mfvscr $vD", IIC_LdStStore,
[(set v8i16:$vD, (int_ppc_altivec_mfvscr))]>;
def MTVSCR : VXForm_5<1604, (outs), (ins vrrc:$vB),
"mtvscr $vB", IIC_LdStLoad,
[(int_ppc_altivec_mtvscr v4i32:$vB)]>;
let PPC970_Unit = 2, mayLoad = 1, mayStore = 0 in { // Loads.
def LVEBX: XForm_1<31, 7, (outs vrrc:$vD), (ins memrr:$src),
"lvebx $vD, $src", IIC_LdStLoad,
[(set v16i8:$vD, (int_ppc_altivec_lvebx xoaddr:$src))]>;
def LVEHX: XForm_1<31, 39, (outs vrrc:$vD), (ins memrr:$src),
"lvehx $vD, $src", IIC_LdStLoad,
[(set v8i16:$vD, (int_ppc_altivec_lvehx xoaddr:$src))]>;
def LVEWX: XForm_1<31, 71, (outs vrrc:$vD), (ins memrr:$src),
"lvewx $vD, $src", IIC_LdStLoad,
[(set v4i32:$vD, (int_ppc_altivec_lvewx xoaddr:$src))]>;
def LVX : XForm_1<31, 103, (outs vrrc:$vD), (ins memrr:$src),
"lvx $vD, $src", IIC_LdStLoad,
[(set v4i32:$vD, (int_ppc_altivec_lvx xoaddr:$src))]>;
def LVXL : XForm_1<31, 359, (outs vrrc:$vD), (ins memrr:$src),
"lvxl $vD, $src", IIC_LdStLoad,
[(set v4i32:$vD, (int_ppc_altivec_lvxl xoaddr:$src))]>;
}
def LVSL : XForm_1<31, 6, (outs vrrc:$vD), (ins memrr:$src),
"lvsl $vD, $src", IIC_LdStLoad,
[(set v16i8:$vD, (int_ppc_altivec_lvsl xoaddr:$src))]>,
PPC970_Unit_LSU;
def LVSR : XForm_1<31, 38, (outs vrrc:$vD), (ins memrr:$src),
"lvsr $vD, $src", IIC_LdStLoad,
[(set v16i8:$vD, (int_ppc_altivec_lvsr xoaddr:$src))]>,
PPC970_Unit_LSU;
let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { // Stores.
def STVEBX: XForm_8<31, 135, (outs), (ins vrrc:$rS, memrr:$dst),
"stvebx $rS, $dst", IIC_LdStStore,
[(int_ppc_altivec_stvebx v16i8:$rS, xoaddr:$dst)]>;
def STVEHX: XForm_8<31, 167, (outs), (ins vrrc:$rS, memrr:$dst),
"stvehx $rS, $dst", IIC_LdStStore,
[(int_ppc_altivec_stvehx v8i16:$rS, xoaddr:$dst)]>;
def STVEWX: XForm_8<31, 199, (outs), (ins vrrc:$rS, memrr:$dst),
"stvewx $rS, $dst", IIC_LdStStore,
[(int_ppc_altivec_stvewx v4i32:$rS, xoaddr:$dst)]>;
def STVX : XForm_8<31, 231, (outs), (ins vrrc:$rS, memrr:$dst),
"stvx $rS, $dst", IIC_LdStStore,
[(int_ppc_altivec_stvx v4i32:$rS, xoaddr:$dst)]>;
def STVXL : XForm_8<31, 487, (outs), (ins vrrc:$rS, memrr:$dst),
"stvxl $rS, $dst", IIC_LdStStore,
[(int_ppc_altivec_stvxl v4i32:$rS, xoaddr:$dst)]>;
}
let PPC970_Unit = 5 in { // VALU Operations.
// VA-Form instructions. 3-input AltiVec ops.
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
let isCommutable = 1 in {
def VMADDFP : VAForm_1<46, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB),
"vmaddfp $vD, $vA, $vC, $vB", IIC_VecFP,
[(set v4f32:$vD,
(fma v4f32:$vA, v4f32:$vC, v4f32:$vB))]>;
// FIXME: The fma+fneg pattern won't match because fneg is not legal.
def VNMSUBFP: VAForm_1<47, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB),
"vnmsubfp $vD, $vA, $vC, $vB", IIC_VecFP,
[(set v4f32:$vD, (fneg (fma v4f32:$vA, v4f32:$vC,
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
(fneg v4f32:$vB))))]>;
2006-04-05 08:49:48 +08:00
def VMHADDSHS : VA1a_Int_Ty<32, "vmhaddshs", int_ppc_altivec_vmhaddshs, v8i16>;
def VMHRADDSHS : VA1a_Int_Ty<33, "vmhraddshs", int_ppc_altivec_vmhraddshs,
v8i16>;
def VMLADDUHM : VA1a_Int_Ty<34, "vmladduhm", int_ppc_altivec_vmladduhm, v8i16>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
} // isCommutable
def VPERM : VA1a_Int_Ty3<43, "vperm", int_ppc_altivec_vperm,
v4i32, v4i32, v16i8>;
def VSEL : VA1a_Int_Ty<42, "vsel", int_ppc_altivec_vsel, v4i32>;
// Shuffles.
def VSLDOI : VAForm_2<44, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u4imm:$SH),
"vsldoi $vD, $vA, $vB, $SH", IIC_VecFP,
[(set v16i8:$vD,
(PPCvecshl v16i8:$vA, v16i8:$vB, imm32SExt16:$SH))]>;
// VX-Form instructions. AltiVec arithmetic ops.
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
let isCommutable = 1 in {
def VADDFP : VXForm_1<10, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vaddfp $vD, $vA, $vB", IIC_VecFP,
[(set v4f32:$vD, (fadd v4f32:$vA, v4f32:$vB))]>;
def VADDUBM : VXForm_1<0, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vaddubm $vD, $vA, $vB", IIC_VecGeneral,
[(set v16i8:$vD, (add v16i8:$vA, v16i8:$vB))]>;
def VADDUHM : VXForm_1<64, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vadduhm $vD, $vA, $vB", IIC_VecGeneral,
[(set v8i16:$vD, (add v8i16:$vA, v8i16:$vB))]>;
def VADDUWM : VXForm_1<128, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vadduwm $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (add v4i32:$vA, v4i32:$vB))]>;
def VADDCUW : VX1_Int_Ty<384, "vaddcuw", int_ppc_altivec_vaddcuw, v4i32>;
def VADDSBS : VX1_Int_Ty<768, "vaddsbs", int_ppc_altivec_vaddsbs, v16i8>;
def VADDSHS : VX1_Int_Ty<832, "vaddshs", int_ppc_altivec_vaddshs, v8i16>;
def VADDSWS : VX1_Int_Ty<896, "vaddsws", int_ppc_altivec_vaddsws, v4i32>;
def VADDUBS : VX1_Int_Ty<512, "vaddubs", int_ppc_altivec_vaddubs, v16i8>;
def VADDUHS : VX1_Int_Ty<576, "vadduhs", int_ppc_altivec_vadduhs, v8i16>;
def VADDUWS : VX1_Int_Ty<640, "vadduws", int_ppc_altivec_vadduws, v4i32>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
} // isCommutable
let isCommutable = 1 in
def VAND : VXForm_1<1028, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vand $vD, $vA, $vB", IIC_VecFP,
[(set v4i32:$vD, (and v4i32:$vA, v4i32:$vB))]>;
def VANDC : VXForm_1<1092, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vandc $vD, $vA, $vB", IIC_VecFP,
[(set v4i32:$vD, (and v4i32:$vA,
(vnot_ppc v4i32:$vB)))]>;
def VCFSX : VXForm_1<842, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vcfsx $vD, $vB, $UIMM", IIC_VecFP,
[(set v4f32:$vD,
(int_ppc_altivec_vcfsx v4i32:$vB, imm:$UIMM))]>;
def VCFUX : VXForm_1<778, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vcfux $vD, $vB, $UIMM", IIC_VecFP,
[(set v4f32:$vD,
(int_ppc_altivec_vcfux v4i32:$vB, imm:$UIMM))]>;
def VCTSXS : VXForm_1<970, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vctsxs $vD, $vB, $UIMM", IIC_VecFP,
[(set v4i32:$vD,
(int_ppc_altivec_vctsxs v4f32:$vB, imm:$UIMM))]>;
def VCTUXS : VXForm_1<906, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vctuxs $vD, $vB, $UIMM", IIC_VecFP,
[(set v4i32:$vD,
(int_ppc_altivec_vctuxs v4f32:$vB, imm:$UIMM))]>;
// Defines with the UIM field set to 0 for floating-point
// to integer (fp_to_sint/fp_to_uint) conversions and integer
// to floating-point (sint_to_fp/uint_to_fp) conversions.
let isCodeGenOnly = 1, VA = 0 in {
def VCFSX_0 : VXForm_1<842, (outs vrrc:$vD), (ins vrrc:$vB),
"vcfsx $vD, $vB, 0", IIC_VecFP,
[(set v4f32:$vD,
(int_ppc_altivec_vcfsx v4i32:$vB, 0))]>;
def VCTUXS_0 : VXForm_1<906, (outs vrrc:$vD), (ins vrrc:$vB),
"vctuxs $vD, $vB, 0", IIC_VecFP,
[(set v4i32:$vD,
(int_ppc_altivec_vctuxs v4f32:$vB, 0))]>;
def VCFUX_0 : VXForm_1<778, (outs vrrc:$vD), (ins vrrc:$vB),
"vcfux $vD, $vB, 0", IIC_VecFP,
[(set v4f32:$vD,
(int_ppc_altivec_vcfux v4i32:$vB, 0))]>;
def VCTSXS_0 : VXForm_1<970, (outs vrrc:$vD), (ins vrrc:$vB),
"vctsxs $vD, $vB, 0", IIC_VecFP,
[(set v4i32:$vD,
(int_ppc_altivec_vctsxs v4f32:$vB, 0))]>;
}
def VEXPTEFP : VX2_Int_SP<394, "vexptefp", int_ppc_altivec_vexptefp>;
def VLOGEFP : VX2_Int_SP<458, "vlogefp", int_ppc_altivec_vlogefp>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
let isCommutable = 1 in {
def VAVGSB : VX1_Int_Ty<1282, "vavgsb", int_ppc_altivec_vavgsb, v16i8>;
def VAVGSH : VX1_Int_Ty<1346, "vavgsh", int_ppc_altivec_vavgsh, v8i16>;
def VAVGSW : VX1_Int_Ty<1410, "vavgsw", int_ppc_altivec_vavgsw, v4i32>;
def VAVGUB : VX1_Int_Ty<1026, "vavgub", int_ppc_altivec_vavgub, v16i8>;
def VAVGUH : VX1_Int_Ty<1090, "vavguh", int_ppc_altivec_vavguh, v8i16>;
def VAVGUW : VX1_Int_Ty<1154, "vavguw", int_ppc_altivec_vavguw, v4i32>;
def VMAXFP : VX1_Int_Ty<1034, "vmaxfp", int_ppc_altivec_vmaxfp, v4f32>;
def VMAXSB : VX1_Int_Ty< 258, "vmaxsb", int_ppc_altivec_vmaxsb, v16i8>;
def VMAXSH : VX1_Int_Ty< 322, "vmaxsh", int_ppc_altivec_vmaxsh, v8i16>;
def VMAXSW : VX1_Int_Ty< 386, "vmaxsw", int_ppc_altivec_vmaxsw, v4i32>;
def VMAXUB : VX1_Int_Ty< 2, "vmaxub", int_ppc_altivec_vmaxub, v16i8>;
def VMAXUH : VX1_Int_Ty< 66, "vmaxuh", int_ppc_altivec_vmaxuh, v8i16>;
def VMAXUW : VX1_Int_Ty< 130, "vmaxuw", int_ppc_altivec_vmaxuw, v4i32>;
def VMINFP : VX1_Int_Ty<1098, "vminfp", int_ppc_altivec_vminfp, v4f32>;
def VMINSB : VX1_Int_Ty< 770, "vminsb", int_ppc_altivec_vminsb, v16i8>;
def VMINSH : VX1_Int_Ty< 834, "vminsh", int_ppc_altivec_vminsh, v8i16>;
def VMINSW : VX1_Int_Ty< 898, "vminsw", int_ppc_altivec_vminsw, v4i32>;
def VMINUB : VX1_Int_Ty< 514, "vminub", int_ppc_altivec_vminub, v16i8>;
def VMINUH : VX1_Int_Ty< 578, "vminuh", int_ppc_altivec_vminuh, v8i16>;
def VMINUW : VX1_Int_Ty< 642, "vminuw", int_ppc_altivec_vminuw, v4i32>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
} // isCommutable
def VMRGHB : VXForm_1< 12, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrghb $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrghb_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMRGHH : VXForm_1< 76, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrghh $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrghh_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMRGHW : VXForm_1<140, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrghw $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrghw_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMRGLB : VXForm_1<268, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrglb $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrglb_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMRGLH : VXForm_1<332, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrglh $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrglh_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMRGLW : VXForm_1<396, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrglw $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrglw_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMSUMMBM : VA1a_Int_Ty3<37, "vmsummbm", int_ppc_altivec_vmsummbm,
v4i32, v16i8, v4i32>;
def VMSUMSHM : VA1a_Int_Ty3<40, "vmsumshm", int_ppc_altivec_vmsumshm,
v4i32, v8i16, v4i32>;
def VMSUMSHS : VA1a_Int_Ty3<41, "vmsumshs", int_ppc_altivec_vmsumshs,
v4i32, v8i16, v4i32>;
def VMSUMUBM : VA1a_Int_Ty3<36, "vmsumubm", int_ppc_altivec_vmsumubm,
v4i32, v16i8, v4i32>;
def VMSUMUHM : VA1a_Int_Ty3<38, "vmsumuhm", int_ppc_altivec_vmsumuhm,
v4i32, v8i16, v4i32>;
def VMSUMUHS : VA1a_Int_Ty3<39, "vmsumuhs", int_ppc_altivec_vmsumuhs,
v4i32, v8i16, v4i32>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
let isCommutable = 1 in {
def VMULESB : VX1_Int_Ty2<776, "vmulesb", int_ppc_altivec_vmulesb,
v8i16, v16i8>;
def VMULESH : VX1_Int_Ty2<840, "vmulesh", int_ppc_altivec_vmulesh,
v4i32, v8i16>;
def VMULEUB : VX1_Int_Ty2<520, "vmuleub", int_ppc_altivec_vmuleub,
v8i16, v16i8>;
def VMULEUH : VX1_Int_Ty2<584, "vmuleuh", int_ppc_altivec_vmuleuh,
v4i32, v8i16>;
def VMULOSB : VX1_Int_Ty2<264, "vmulosb", int_ppc_altivec_vmulosb,
v8i16, v16i8>;
def VMULOSH : VX1_Int_Ty2<328, "vmulosh", int_ppc_altivec_vmulosh,
v4i32, v8i16>;
def VMULOUB : VX1_Int_Ty2< 8, "vmuloub", int_ppc_altivec_vmuloub,
v8i16, v16i8>;
def VMULOUH : VX1_Int_Ty2< 72, "vmulouh", int_ppc_altivec_vmulouh,
v4i32, v8i16>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
} // isCommutable
def VREFP : VX2_Int_SP<266, "vrefp", int_ppc_altivec_vrefp>;
def VRFIM : VX2_Int_SP<714, "vrfim", int_ppc_altivec_vrfim>;
def VRFIN : VX2_Int_SP<522, "vrfin", int_ppc_altivec_vrfin>;
def VRFIP : VX2_Int_SP<650, "vrfip", int_ppc_altivec_vrfip>;
def VRFIZ : VX2_Int_SP<586, "vrfiz", int_ppc_altivec_vrfiz>;
def VRSQRTEFP : VX2_Int_SP<330, "vrsqrtefp", int_ppc_altivec_vrsqrtefp>;
def VSUBCUW : VX1_Int_Ty<1408, "vsubcuw", int_ppc_altivec_vsubcuw, v4i32>;
def VSUBFP : VXForm_1<74, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsubfp $vD, $vA, $vB", IIC_VecGeneral,
[(set v4f32:$vD, (fsub v4f32:$vA, v4f32:$vB))]>;
def VSUBUBM : VXForm_1<1024, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsububm $vD, $vA, $vB", IIC_VecGeneral,
[(set v16i8:$vD, (sub v16i8:$vA, v16i8:$vB))]>;
def VSUBUHM : VXForm_1<1088, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsubuhm $vD, $vA, $vB", IIC_VecGeneral,
[(set v8i16:$vD, (sub v8i16:$vA, v8i16:$vB))]>;
def VSUBUWM : VXForm_1<1152, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsubuwm $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (sub v4i32:$vA, v4i32:$vB))]>;
def VSUBSBS : VX1_Int_Ty<1792, "vsubsbs" , int_ppc_altivec_vsubsbs, v16i8>;
def VSUBSHS : VX1_Int_Ty<1856, "vsubshs" , int_ppc_altivec_vsubshs, v8i16>;
def VSUBSWS : VX1_Int_Ty<1920, "vsubsws" , int_ppc_altivec_vsubsws, v4i32>;
def VSUBUBS : VX1_Int_Ty<1536, "vsububs" , int_ppc_altivec_vsububs, v16i8>;
def VSUBUHS : VX1_Int_Ty<1600, "vsubuhs" , int_ppc_altivec_vsubuhs, v8i16>;
def VSUBUWS : VX1_Int_Ty<1664, "vsubuws" , int_ppc_altivec_vsubuws, v4i32>;
def VSUMSWS : VX1_Int_Ty<1928, "vsumsws" , int_ppc_altivec_vsumsws, v4i32>;
def VSUM2SWS: VX1_Int_Ty<1672, "vsum2sws", int_ppc_altivec_vsum2sws, v4i32>;
def VSUM4SBS: VX1_Int_Ty3<1800, "vsum4sbs", int_ppc_altivec_vsum4sbs,
v4i32, v16i8, v4i32>;
def VSUM4SHS: VX1_Int_Ty3<1608, "vsum4shs", int_ppc_altivec_vsum4shs,
v4i32, v8i16, v4i32>;
def VSUM4UBS: VX1_Int_Ty3<1544, "vsum4ubs", int_ppc_altivec_vsum4ubs,
v4i32, v16i8, v4i32>;
def VNOR : VXForm_1<1284, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vnor $vD, $vA, $vB", IIC_VecFP,
[(set v4i32:$vD, (vnot_ppc (or v4i32:$vA,
v4i32:$vB)))]>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
let isCommutable = 1 in {
def VOR : VXForm_1<1156, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vor $vD, $vA, $vB", IIC_VecFP,
[(set v4i32:$vD, (or v4i32:$vA, v4i32:$vB))]>;
def VXOR : VXForm_1<1220, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vxor $vD, $vA, $vB", IIC_VecFP,
[(set v4i32:$vD, (xor v4i32:$vA, v4i32:$vB))]>;
[PowerPC] Mark many instructions as commutative I'm under the impression that we used to infer the isCommutable flag from the instruction-associated pattern. Regardless, we don't seem to do this (at least by default) any more. I've gone through all of our instruction definitions, and marked as commutative all of those that should be trivial to commute (by exchanging the first two operands). There has been special code for the RL* instructions, and that's not changed. Before this change, we had the following commutative instructions: RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo XSADDDP XSMULDP XVADDDP XVADDSP XVMULDP XVMULSP After: ADD4 ADD4o ADD8 ADD8o ADDC ADDC8 ADDC8o ADDCo ADDE ADDE8 ADDE8o ADDEo AND AND8 AND8o ANDo CRAND CREQV CRNAND CRNOR CROR CRXOR EQV EQV8 EQV8o EQVo FADD FADDS FADDSo FADDo FMADD FMADDS FMADDSo FMADDo FMSUB FMSUBS FMSUBSo FMSUBo FMUL FMULS FMULSo FMULo FNMADD FNMADDS FNMADDSo FNMADDo FNMSUB FNMSUBS FNMSUBSo FNMSUBo MULHD MULHDU MULHDUo MULHDo MULHW MULHWU MULHWUo MULHWo MULLD MULLDo MULLW MULLWo NAND NAND8 NAND8o NANDo NOR NOR8 NOR8o NORo OR OR8 OR8o ORo RLDIMI RLDIMIo RLWIMI RLWIMI8 RLWIMI8o RLWIMIo VADDCUW VADDFP VADDSBS VADDSHS VADDSWS VADDUBM VADDUBS VADDUHM VADDUHS VADDUWM VADDUWS VAND VAVGSB VAVGSH VAVGSW VAVGUB VAVGUH VAVGUW VMADDFP VMAXFP VMAXSB VMAXSH VMAXSW VMAXUB VMAXUH VMAXUW VMHADDSHS VMHRADDSHS VMINFP VMINSB VMINSH VMINSW VMINUB VMINUH VMINUW VMLADDUHM VMULESB VMULESH VMULEUB VMULEUH VMULOSB VMULOSH VMULOUB VMULOUH VNMSUBFP VOR VXOR XOR XOR8 XOR8o XORo XSADDDP XSMADDADP XSMAXDP XSMINDP XSMSUBADP XSMULDP XSNMADDADP XSNMSUBADP XVADDDP XVADDSP XVMADDADP XVMADDASP XVMAXDP XVMAXSP XVMINDP XVMINSP XVMSUBADP XVMSUBASP XVMULDP XVMULSP XVNMADDADP XVNMADDASP XVNMSUBADP XVNMSUBASP XXLAND XXLNOR XXLOR XXLXOR This is a by-inspection change, and I'm not sure how to write a reliable test case. I would like advice on this, however. llvm-svn: 204609
2014-03-24 23:07:28 +08:00
} // isCommutable
def VRLB : VX1_Int_Ty< 4, "vrlb", int_ppc_altivec_vrlb, v16i8>;
def VRLH : VX1_Int_Ty< 68, "vrlh", int_ppc_altivec_vrlh, v8i16>;
def VRLW : VX1_Int_Ty< 132, "vrlw", int_ppc_altivec_vrlw, v4i32>;
2006-04-05 09:16:22 +08:00
def VSL : VX1_Int_Ty< 452, "vsl" , int_ppc_altivec_vsl, v4i32 >;
def VSLO : VX1_Int_Ty<1036, "vslo", int_ppc_altivec_vslo, v4i32>;
def VSLB : VX1_Int_Ty< 260, "vslb", int_ppc_altivec_vslb, v16i8>;
def VSLH : VX1_Int_Ty< 324, "vslh", int_ppc_altivec_vslh, v8i16>;
def VSLW : VX1_Int_Ty< 388, "vslw", int_ppc_altivec_vslw, v4i32>;
def VSPLTB : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vspltb $vD, $vB, $UIMM", IIC_VecPerm,
[(set v16i8:$vD,
(vspltb_shuffle:$UIMM v16i8:$vB, (undef)))]>;
def VSPLTH : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vsplth $vD, $vB, $UIMM", IIC_VecPerm,
[(set v16i8:$vD,
(vsplth_shuffle:$UIMM v16i8:$vB, (undef)))]>;
def VSPLTW : VXForm_1<652, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
"vspltw $vD, $vB, $UIMM", IIC_VecPerm,
[(set v16i8:$vD,
(vspltw_shuffle:$UIMM v16i8:$vB, (undef)))]>;
let isCodeGenOnly = 1 in {
def VSPLTBs : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vfrc:$vB),
"vspltb $vD, $vB, $UIMM", IIC_VecPerm, []>;
def VSPLTHs : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vfrc:$vB),
"vsplth $vD, $vB, $UIMM", IIC_VecPerm, []>;
}
def VSR : VX1_Int_Ty< 708, "vsr" , int_ppc_altivec_vsr, v4i32>;
def VSRO : VX1_Int_Ty<1100, "vsro" , int_ppc_altivec_vsro, v4i32>;
def VSRAB : VX1_Int_Ty< 772, "vsrab", int_ppc_altivec_vsrab, v16i8>;
def VSRAH : VX1_Int_Ty< 836, "vsrah", int_ppc_altivec_vsrah, v8i16>;
def VSRAW : VX1_Int_Ty< 900, "vsraw", int_ppc_altivec_vsraw, v4i32>;
def VSRB : VX1_Int_Ty< 516, "vsrb" , int_ppc_altivec_vsrb , v16i8>;
def VSRH : VX1_Int_Ty< 580, "vsrh" , int_ppc_altivec_vsrh , v8i16>;
def VSRW : VX1_Int_Ty< 644, "vsrw" , int_ppc_altivec_vsrw , v4i32>;
def VSPLTISB : VXForm_3<780, (outs vrrc:$vD), (ins s5imm:$SIMM),
"vspltisb $vD, $SIMM", IIC_VecPerm,
[(set v16i8:$vD, (v16i8 vecspltisb:$SIMM))]>;
def VSPLTISH : VXForm_3<844, (outs vrrc:$vD), (ins s5imm:$SIMM),
"vspltish $vD, $SIMM", IIC_VecPerm,
[(set v8i16:$vD, (v8i16 vecspltish:$SIMM))]>;
def VSPLTISW : VXForm_3<908, (outs vrrc:$vD), (ins s5imm:$SIMM),
"vspltisw $vD, $SIMM", IIC_VecPerm,
[(set v4i32:$vD, (v4i32 vecspltisw:$SIMM))]>;
// Vector Pack.
def VPKPX : VX1_Int_Ty2<782, "vpkpx", int_ppc_altivec_vpkpx,
v8i16, v4i32>;
def VPKSHSS : VX1_Int_Ty2<398, "vpkshss", int_ppc_altivec_vpkshss,
v16i8, v8i16>;
def VPKSHUS : VX1_Int_Ty2<270, "vpkshus", int_ppc_altivec_vpkshus,
v16i8, v8i16>;
def VPKSWSS : VX1_Int_Ty2<462, "vpkswss", int_ppc_altivec_vpkswss,
v8i16, v4i32>;
def VPKSWUS : VX1_Int_Ty2<334, "vpkswus", int_ppc_altivec_vpkswus,
v8i16, v4i32>;
def VPKUHUM : VXForm_1<14, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vpkuhum $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD,
(vpkuhum_shuffle v16i8:$vA, v16i8:$vB))]>;
def VPKUHUS : VX1_Int_Ty2<142, "vpkuhus", int_ppc_altivec_vpkuhus,
v16i8, v8i16>;
def VPKUWUM : VXForm_1<78, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vpkuwum $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD,
(vpkuwum_shuffle v16i8:$vA, v16i8:$vB))]>;
def VPKUWUS : VX1_Int_Ty2<206, "vpkuwus", int_ppc_altivec_vpkuwus,
v8i16, v4i32>;
// Vector Unpack.
def VUPKHPX : VX2_Int_Ty2<846, "vupkhpx", int_ppc_altivec_vupkhpx,
v4i32, v8i16>;
def VUPKHSB : VX2_Int_Ty2<526, "vupkhsb", int_ppc_altivec_vupkhsb,
v8i16, v16i8>;
def VUPKHSH : VX2_Int_Ty2<590, "vupkhsh", int_ppc_altivec_vupkhsh,
v4i32, v8i16>;
def VUPKLPX : VX2_Int_Ty2<974, "vupklpx", int_ppc_altivec_vupklpx,
v4i32, v8i16>;
def VUPKLSB : VX2_Int_Ty2<654, "vupklsb", int_ppc_altivec_vupklsb,
v8i16, v16i8>;
def VUPKLSH : VX2_Int_Ty2<718, "vupklsh", int_ppc_altivec_vupklsh,
v4i32, v8i16>;
// Altivec Comparisons.
class VCMP<bits<10> xo, string asmstr, ValueType Ty>
: VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr,
IIC_VecFPCompare,
[(set Ty:$vD, (Ty (PPCvcmp Ty:$vA, Ty:$vB, xo)))]>;
class VCMPo<bits<10> xo, string asmstr, ValueType Ty>
: VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr,
IIC_VecFPCompare,
[(set Ty:$vD, (Ty (PPCvcmp_o Ty:$vA, Ty:$vB, xo)))]> {
let Defs = [CR6];
let RC = 1;
}
// f32 element comparisons.0
def VCMPBFP : VCMP <966, "vcmpbfp $vD, $vA, $vB" , v4f32>;
def VCMPBFPo : VCMPo<966, "vcmpbfp. $vD, $vA, $vB" , v4f32>;
def VCMPEQFP : VCMP <198, "vcmpeqfp $vD, $vA, $vB" , v4f32>;
def VCMPEQFPo : VCMPo<198, "vcmpeqfp. $vD, $vA, $vB", v4f32>;
def VCMPGEFP : VCMP <454, "vcmpgefp $vD, $vA, $vB" , v4f32>;
def VCMPGEFPo : VCMPo<454, "vcmpgefp. $vD, $vA, $vB", v4f32>;
def VCMPGTFP : VCMP <710, "vcmpgtfp $vD, $vA, $vB" , v4f32>;
def VCMPGTFPo : VCMPo<710, "vcmpgtfp. $vD, $vA, $vB", v4f32>;
// i8 element comparisons.
def VCMPEQUB : VCMP < 6, "vcmpequb $vD, $vA, $vB" , v16i8>;
def VCMPEQUBo : VCMPo< 6, "vcmpequb. $vD, $vA, $vB", v16i8>;
def VCMPGTSB : VCMP <774, "vcmpgtsb $vD, $vA, $vB" , v16i8>;
def VCMPGTSBo : VCMPo<774, "vcmpgtsb. $vD, $vA, $vB", v16i8>;
def VCMPGTUB : VCMP <518, "vcmpgtub $vD, $vA, $vB" , v16i8>;
def VCMPGTUBo : VCMPo<518, "vcmpgtub. $vD, $vA, $vB", v16i8>;
// i16 element comparisons.
def VCMPEQUH : VCMP < 70, "vcmpequh $vD, $vA, $vB" , v8i16>;
def VCMPEQUHo : VCMPo< 70, "vcmpequh. $vD, $vA, $vB", v8i16>;
def VCMPGTSH : VCMP <838, "vcmpgtsh $vD, $vA, $vB" , v8i16>;
def VCMPGTSHo : VCMPo<838, "vcmpgtsh. $vD, $vA, $vB", v8i16>;
def VCMPGTUH : VCMP <582, "vcmpgtuh $vD, $vA, $vB" , v8i16>;
def VCMPGTUHo : VCMPo<582, "vcmpgtuh. $vD, $vA, $vB", v8i16>;
// i32 element comparisons.
def VCMPEQUW : VCMP <134, "vcmpequw $vD, $vA, $vB" , v4i32>;
def VCMPEQUWo : VCMPo<134, "vcmpequw. $vD, $vA, $vB", v4i32>;
def VCMPGTSW : VCMP <902, "vcmpgtsw $vD, $vA, $vB" , v4i32>;
def VCMPGTSWo : VCMPo<902, "vcmpgtsw. $vD, $vA, $vB", v4i32>;
def VCMPGTUW : VCMP <646, "vcmpgtuw $vD, $vA, $vB" , v4i32>;
def VCMPGTUWo : VCMPo<646, "vcmpgtuw. $vD, $vA, $vB", v4i32>;
let isCodeGenOnly = 1 in {
def V_SET0B : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
"vxor $vD, $vD, $vD", IIC_VecFP,
[(set v16i8:$vD, (v16i8 immAllZerosV))]>;
def V_SET0H : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
"vxor $vD, $vD, $vD", IIC_VecFP,
[(set v8i16:$vD, (v8i16 immAllZerosV))]>;
def V_SET0 : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
"vxor $vD, $vD, $vD", IIC_VecFP,
[(set v4i32:$vD, (v4i32 immAllZerosV))]>;
let IMM=-1 in {
def V_SETALLONESB : VXForm_3<908, (outs vrrc:$vD), (ins),
"vspltisw $vD, -1", IIC_VecFP,
[(set v16i8:$vD, (v16i8 immAllOnesV))]>;
def V_SETALLONESH : VXForm_3<908, (outs vrrc:$vD), (ins),
"vspltisw $vD, -1", IIC_VecFP,
[(set v8i16:$vD, (v8i16 immAllOnesV))]>;
def V_SETALLONES : VXForm_3<908, (outs vrrc:$vD), (ins),
"vspltisw $vD, -1", IIC_VecFP,
[(set v4i32:$vD, (v4i32 immAllOnesV))]>;
}
}
} // VALU Operations.
//===----------------------------------------------------------------------===//
// Additional Altivec Patterns
//
// Extended mnemonics
def : InstAlias<"vmr $vD, $vA", (VOR vrrc:$vD, vrrc:$vA, vrrc:$vA)>;
def : InstAlias<"vnot $vD, $vA", (VNOR vrrc:$vD, vrrc:$vA, vrrc:$vA)>;
// Loads.
def : Pat<(v4i32 (load xoaddr:$src)), (LVX xoaddr:$src)>;
// Stores.
def : Pat<(store v4i32:$rS, xoaddr:$dst),
(STVX $rS, xoaddr:$dst)>;
// Bit conversions.
def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VRRC:$src))), (v16i8 VRRC:$src)>;
def : Pat<(v16i8 (bitconvert (v1i128 VRRC:$src))), (v16i8 VRRC:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VRRC:$src))), (v8i16 VRRC:$src)>;
def : Pat<(v8i16 (bitconvert (v1i128 VRRC:$src))), (v8i16 VRRC:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VRRC:$src))), (v4i32 VRRC:$src)>;
def : Pat<(v4i32 (bitconvert (v1i128 VRRC:$src))), (v4i32 VRRC:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VRRC:$src))), (v4f32 VRRC:$src)>;
def : Pat<(v4f32 (bitconvert (v1i128 VRRC:$src))), (v4f32 VRRC:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VRRC:$src))), (v2i64 VRRC:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VRRC:$src))), (v2i64 VRRC:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VRRC:$src))), (v2i64 VRRC:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VRRC:$src))), (v2i64 VRRC:$src)>;
def : Pat<(v2i64 (bitconvert (v1i128 VRRC:$src))), (v2i64 VRRC:$src)>;
def : Pat<(v1i128 (bitconvert (v16i8 VRRC:$src))), (v1i128 VRRC:$src)>;
def : Pat<(v1i128 (bitconvert (v8i16 VRRC:$src))), (v1i128 VRRC:$src)>;
def : Pat<(v1i128 (bitconvert (v4i32 VRRC:$src))), (v1i128 VRRC:$src)>;
def : Pat<(v1i128 (bitconvert (v4f32 VRRC:$src))), (v1i128 VRRC:$src)>;
def : Pat<(v1i128 (bitconvert (v2i64 VRRC:$src))), (v1i128 VRRC:$src)>;
// Shuffles.
// Match vsldoi(x,x), vpkuwum(x,x), vpkuhum(x,x)
def:Pat<(vsldoi_unary_shuffle:$in v16i8:$vA, undef),
(VSLDOI $vA, $vA, (VSLDOI_unary_get_imm $in))>;
def:Pat<(vpkuwum_unary_shuffle v16i8:$vA, undef),
(VPKUWUM $vA, $vA)>;
def:Pat<(vpkuhum_unary_shuffle v16i8:$vA, undef),
(VPKUHUM $vA, $vA)>;
def:Pat<(vsldoi_shuffle:$SH v16i8:$vA, v16i8:$vB),
(VSLDOI v16i8:$vA, v16i8:$vB, (VSLDOI_get_imm $SH))>;
// Match vsldoi(y,x), vpkuwum(y,x), vpkuhum(y,x), i.e., swapped operands.
// These fragments are matched for little-endian, where the inputs must
// be swapped for correct semantics.
def:Pat<(vsldoi_swapped_shuffle:$in v16i8:$vA, v16i8:$vB),
(VSLDOI $vB, $vA, (VSLDOI_swapped_get_imm $in))>;
def:Pat<(vpkuwum_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VPKUWUM $vB, $vA)>;
def:Pat<(vpkuhum_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VPKUHUM $vB, $vA)>;
// Match vmrg*(x,x)
def:Pat<(vmrglb_unary_shuffle v16i8:$vA, undef),
(VMRGLB $vA, $vA)>;
def:Pat<(vmrglh_unary_shuffle v16i8:$vA, undef),
(VMRGLH $vA, $vA)>;
def:Pat<(vmrglw_unary_shuffle v16i8:$vA, undef),
(VMRGLW $vA, $vA)>;
def:Pat<(vmrghb_unary_shuffle v16i8:$vA, undef),
(VMRGHB $vA, $vA)>;
def:Pat<(vmrghh_unary_shuffle v16i8:$vA, undef),
(VMRGHH $vA, $vA)>;
def:Pat<(vmrghw_unary_shuffle v16i8:$vA, undef),
(VMRGHW $vA, $vA)>;
// Match vmrg*(y,x), i.e., swapped operands. These fragments
// are matched for little-endian, where the inputs must be
// swapped for correct semantics.
def:Pat<(vmrglb_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGLB $vB, $vA)>;
def:Pat<(vmrglh_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGLH $vB, $vA)>;
def:Pat<(vmrglw_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGLW $vB, $vA)>;
def:Pat<(vmrghb_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGHB $vB, $vA)>;
def:Pat<(vmrghh_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGHH $vB, $vA)>;
def:Pat<(vmrghw_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGHW $vB, $vA)>;
// Logical Operations
def : Pat<(vnot_ppc v4i32:$vA), (VNOR $vA, $vA)>;
def : Pat<(vnot_ppc (or v4i32:$A, v4i32:$B)),
(VNOR $A, $B)>;
def : Pat<(and v4i32:$A, (vnot_ppc v4i32:$B)),
(VANDC $A, $B)>;
def : Pat<(fmul v4f32:$vA, v4f32:$vB),
(VMADDFP $vA, $vB,
(v4i32 (VSLW (V_SETALLONES), (V_SETALLONES))))>;
// Fused multiply add and multiply sub for packed float. These are represented
// separately from the real instructions above, for operations that must have
// the additional precision, such as Newton-Rhapson (used by divide, sqrt)
def : Pat<(PPCvmaddfp v4f32:$A, v4f32:$B, v4f32:$C),
(VMADDFP $A, $B, $C)>;
def : Pat<(PPCvnmsubfp v4f32:$A, v4f32:$B, v4f32:$C),
(VNMSUBFP $A, $B, $C)>;
def : Pat<(int_ppc_altivec_vmaddfp v4f32:$A, v4f32:$B, v4f32:$C),
(VMADDFP $A, $B, $C)>;
def : Pat<(int_ppc_altivec_vnmsubfp v4f32:$A, v4f32:$B, v4f32:$C),
(VNMSUBFP $A, $B, $C)>;
def : Pat<(PPCvperm v16i8:$vA, v16i8:$vB, v16i8:$vC),
(VPERM $vA, $vB, $vC)>;
def : Pat<(PPCfre v4f32:$A), (VREFP $A)>;
def : Pat<(PPCfrsqrte v4f32:$A), (VRSQRTEFP $A)>;
// Vector shifts
def : Pat<(v16i8 (shl v16i8:$vA, v16i8:$vB)),
(v16i8 (VSLB $vA, $vB))>;
def : Pat<(v8i16 (shl v8i16:$vA, v8i16:$vB)),
(v8i16 (VSLH $vA, $vB))>;
def : Pat<(v4i32 (shl v4i32:$vA, v4i32:$vB)),
(v4i32 (VSLW $vA, $vB))>;
def : Pat<(v1i128 (shl v1i128:$vA, v1i128:$vB)),
(v1i128 (VSL (VSLO $vA, $vB), (VSPLTB 15, $vB)))>;
def : Pat<(v16i8 (PPCshl v16i8:$vA, v16i8:$vB)),
(v16i8 (VSLB $vA, $vB))>;
def : Pat<(v8i16 (PPCshl v8i16:$vA, v8i16:$vB)),
(v8i16 (VSLH $vA, $vB))>;
def : Pat<(v4i32 (PPCshl v4i32:$vA, v4i32:$vB)),
(v4i32 (VSLW $vA, $vB))>;
def : Pat<(v1i128 (PPCshl v1i128:$vA, v1i128:$vB)),
(v1i128 (VSL (VSLO $vA, $vB), (VSPLTB 15, $vB)))>;
def : Pat<(v16i8 (srl v16i8:$vA, v16i8:$vB)),
(v16i8 (VSRB $vA, $vB))>;
def : Pat<(v8i16 (srl v8i16:$vA, v8i16:$vB)),
(v8i16 (VSRH $vA, $vB))>;
def : Pat<(v4i32 (srl v4i32:$vA, v4i32:$vB)),
(v4i32 (VSRW $vA, $vB))>;
def : Pat<(v1i128 (srl v1i128:$vA, v1i128:$vB)),
(v1i128 (VSR (VSRO $vA, $vB), (VSPLTB 15, $vB)))>;
def : Pat<(v16i8 (PPCsrl v16i8:$vA, v16i8:$vB)),
(v16i8 (VSRB $vA, $vB))>;
def : Pat<(v8i16 (PPCsrl v8i16:$vA, v8i16:$vB)),
(v8i16 (VSRH $vA, $vB))>;
def : Pat<(v4i32 (PPCsrl v4i32:$vA, v4i32:$vB)),
(v4i32 (VSRW $vA, $vB))>;
def : Pat<(v1i128 (PPCsrl v1i128:$vA, v1i128:$vB)),
(v1i128 (VSR (VSRO $vA, $vB), (VSPLTB 15, $vB)))>;
def : Pat<(v16i8 (sra v16i8:$vA, v16i8:$vB)),
(v16i8 (VSRAB $vA, $vB))>;
def : Pat<(v8i16 (sra v8i16:$vA, v8i16:$vB)),
(v8i16 (VSRAH $vA, $vB))>;
def : Pat<(v4i32 (sra v4i32:$vA, v4i32:$vB)),
(v4i32 (VSRAW $vA, $vB))>;
def : Pat<(v16i8 (PPCsra v16i8:$vA, v16i8:$vB)),
(v16i8 (VSRAB $vA, $vB))>;
def : Pat<(v8i16 (PPCsra v8i16:$vA, v8i16:$vB)),
(v8i16 (VSRAH $vA, $vB))>;
def : Pat<(v4i32 (PPCsra v4i32:$vA, v4i32:$vB)),
(v4i32 (VSRAW $vA, $vB))>;
// Float to integer and integer to float conversions
def : Pat<(v4i32 (fp_to_sint v4f32:$vA)),
(VCTSXS_0 $vA)>;
def : Pat<(v4i32 (fp_to_uint v4f32:$vA)),
(VCTUXS_0 $vA)>;
def : Pat<(v4f32 (sint_to_fp v4i32:$vA)),
(VCFSX_0 $vA)>;
def : Pat<(v4f32 (uint_to_fp v4i32:$vA)),
(VCFUX_0 $vA)>;
// Floating-point rounding
def : Pat<(v4f32 (ffloor v4f32:$vA)),
(VRFIM $vA)>;
def : Pat<(v4f32 (fceil v4f32:$vA)),
(VRFIP $vA)>;
def : Pat<(v4f32 (ftrunc v4f32:$vA)),
(VRFIZ $vA)>;
def : Pat<(v4f32 (fnearbyint v4f32:$vA)),
(VRFIN $vA)>;
} // end HasAltivec
def HasP8Altivec : Predicate<"PPCSubTarget->hasP8Altivec()">;
def HasP8Crypto : Predicate<"PPCSubTarget->hasP8Crypto()">;
let Predicates = [HasP8Altivec] in {
let isCommutable = 1 in {
def VMULESW : VX1_Int_Ty2<904, "vmulesw", int_ppc_altivec_vmulesw,
v2i64, v4i32>;
def VMULEUW : VX1_Int_Ty2<648, "vmuleuw", int_ppc_altivec_vmuleuw,
v2i64, v4i32>;
def VMULOSW : VX1_Int_Ty2<392, "vmulosw", int_ppc_altivec_vmulosw,
v2i64, v4i32>;
def VMULOUW : VX1_Int_Ty2<136, "vmulouw", int_ppc_altivec_vmulouw,
v2i64, v4i32>;
def VMULUWM : VXForm_1<137, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmuluwm $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (mul v4i32:$vA, v4i32:$vB))]>;
def VMAXSD : VX1_Int_Ty<450, "vmaxsd", int_ppc_altivec_vmaxsd, v2i64>;
def VMAXUD : VX1_Int_Ty<194, "vmaxud", int_ppc_altivec_vmaxud, v2i64>;
def VMINSD : VX1_Int_Ty<962, "vminsd", int_ppc_altivec_vminsd, v2i64>;
def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>;
} // isCommutable
// Vector merge
def VMRGEW : VXForm_1<1932, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrgew $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrgew_shuffle v16i8:$vA, v16i8:$vB))]>;
def VMRGOW : VXForm_1<1676, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vmrgow $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD, (vmrgow_shuffle v16i8:$vA, v16i8:$vB))]>;
// Match vmrgew(x,x) and vmrgow(x,x)
def:Pat<(vmrgew_unary_shuffle v16i8:$vA, undef),
(VMRGEW $vA, $vA)>;
def:Pat<(vmrgow_unary_shuffle v16i8:$vA, undef),
(VMRGOW $vA, $vA)>;
// Match vmrgew(y,x) and vmrgow(y,x), i.e., swapped operands. These fragments
// are matched for little-endian, where the inputs must be swapped for correct
// semantics.w
def:Pat<(vmrgew_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGEW $vB, $vA)>;
def:Pat<(vmrgow_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VMRGOW $vB, $vA)>;
// Vector shifts
def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>;
def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsld $vD, $vA, $vB", IIC_VecGeneral, []>;
def VSRD : VXForm_1<1732, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsrd $vD, $vA, $vB", IIC_VecGeneral, []>;
def VSRAD : VXForm_1<964, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsrad $vD, $vA, $vB", IIC_VecGeneral, []>;
def : Pat<(v2i64 (shl v2i64:$vA, v2i64:$vB)),
(v2i64 (VSLD $vA, $vB))>;
def : Pat<(v2i64 (PPCshl v2i64:$vA, v2i64:$vB)),
(v2i64 (VSLD $vA, $vB))>;
def : Pat<(v2i64 (srl v2i64:$vA, v2i64:$vB)),
(v2i64 (VSRD $vA, $vB))>;
def : Pat<(v2i64 (PPCsrl v2i64:$vA, v2i64:$vB)),
(v2i64 (VSRD $vA, $vB))>;
def : Pat<(v2i64 (sra v2i64:$vA, v2i64:$vB)),
(v2i64 (VSRAD $vA, $vB))>;
def : Pat<(v2i64 (PPCsra v2i64:$vA, v2i64:$vB)),
(v2i64 (VSRAD $vA, $vB))>;
// Vector Integer Arithmetic Instructions
let isCommutable = 1 in {
def VADDUDM : VXForm_1<192, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vaddudm $vD, $vA, $vB", IIC_VecGeneral,
[(set v2i64:$vD, (add v2i64:$vA, v2i64:$vB))]>;
def VADDUQM : VXForm_1<256, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vadduqm $vD, $vA, $vB", IIC_VecGeneral,
[(set v1i128:$vD, (add v1i128:$vA, v1i128:$vB))]>;
} // isCommutable
// Vector Quadword Add
def VADDEUQM : VA1a_Int_Ty<60, "vaddeuqm", int_ppc_altivec_vaddeuqm, v1i128>;
def VADDCUQ : VX1_Int_Ty<320, "vaddcuq", int_ppc_altivec_vaddcuq, v1i128>;
def VADDECUQ : VA1a_Int_Ty<61, "vaddecuq", int_ppc_altivec_vaddecuq, v1i128>;
// Vector Doubleword Subtract
def VSUBUDM : VXForm_1<1216, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsubudm $vD, $vA, $vB", IIC_VecGeneral,
[(set v2i64:$vD, (sub v2i64:$vA, v2i64:$vB))]>;
// Vector Quadword Subtract
def VSUBUQM : VXForm_1<1280, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vsubuqm $vD, $vA, $vB", IIC_VecGeneral,
[(set v1i128:$vD, (sub v1i128:$vA, v1i128:$vB))]>;
def VSUBEUQM : VA1a_Int_Ty<62, "vsubeuqm", int_ppc_altivec_vsubeuqm, v1i128>;
def VSUBCUQ : VX1_Int_Ty<1344, "vsubcuq", int_ppc_altivec_vsubcuq, v1i128>;
def VSUBECUQ : VA1a_Int_Ty<63, "vsubecuq", int_ppc_altivec_vsubecuq, v1i128>;
// Count Leading Zeros
def VCLZB : VXForm_2<1794, (outs vrrc:$vD), (ins vrrc:$vB),
"vclzb $vD, $vB", IIC_VecGeneral,
[(set v16i8:$vD, (ctlz v16i8:$vB))]>;
def VCLZH : VXForm_2<1858, (outs vrrc:$vD), (ins vrrc:$vB),
"vclzh $vD, $vB", IIC_VecGeneral,
[(set v8i16:$vD, (ctlz v8i16:$vB))]>;
def VCLZW : VXForm_2<1922, (outs vrrc:$vD), (ins vrrc:$vB),
"vclzw $vD, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (ctlz v4i32:$vB))]>;
def VCLZD : VXForm_2<1986, (outs vrrc:$vD), (ins vrrc:$vB),
"vclzd $vD, $vB", IIC_VecGeneral,
[(set v2i64:$vD, (ctlz v2i64:$vB))]>;
// Population Count
def VPOPCNTB : VXForm_2<1795, (outs vrrc:$vD), (ins vrrc:$vB),
"vpopcntb $vD, $vB", IIC_VecGeneral,
[(set v16i8:$vD, (ctpop v16i8:$vB))]>;
def VPOPCNTH : VXForm_2<1859, (outs vrrc:$vD), (ins vrrc:$vB),
"vpopcnth $vD, $vB", IIC_VecGeneral,
[(set v8i16:$vD, (ctpop v8i16:$vB))]>;
def VPOPCNTW : VXForm_2<1923, (outs vrrc:$vD), (ins vrrc:$vB),
"vpopcntw $vD, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (ctpop v4i32:$vB))]>;
def VPOPCNTD : VXForm_2<1987, (outs vrrc:$vD), (ins vrrc:$vB),
"vpopcntd $vD, $vB", IIC_VecGeneral,
[(set v2i64:$vD, (ctpop v2i64:$vB))]>;
let isCommutable = 1 in {
// FIXME: Use AddedComplexity > 400 to ensure these patterns match before the
// VSX equivalents. We need to fix this up at some point. Two possible
// solutions for this problem:
// 1. Disable Altivec patterns that compete with VSX patterns using the
// !HasVSX predicate. This essentially favours VSX over Altivec, in
// hopes of reducing register pressure (larger register set using VSX
// instructions than VMX instructions)
// 2. Employ a more disciplined use of AddedComplexity, which would provide
// more fine-grained control than option 1. This would be beneficial
// if we find situations where Altivec is really preferred over VSX.
def VEQV : VXForm_1<1668, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"veqv $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (vnot_ppc (xor v4i32:$vA, v4i32:$vB)))]>;
def VNAND : VXForm_1<1412, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vnand $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (vnot_ppc (and v4i32:$vA, v4i32:$vB)))]>;
} // isCommutable
def VORC : VXForm_1<1348, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vorc $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (or v4i32:$vA,
(vnot_ppc v4i32:$vB)))]>;
// i64 element comparisons.
def VCMPEQUD : VCMP <199, "vcmpequd $vD, $vA, $vB" , v2i64>;
def VCMPEQUDo : VCMPo<199, "vcmpequd. $vD, $vA, $vB", v2i64>;
def VCMPGTSD : VCMP <967, "vcmpgtsd $vD, $vA, $vB" , v2i64>;
def VCMPGTSDo : VCMPo<967, "vcmpgtsd. $vD, $vA, $vB", v2i64>;
def VCMPGTUD : VCMP <711, "vcmpgtud $vD, $vA, $vB" , v2i64>;
def VCMPGTUDo : VCMPo<711, "vcmpgtud. $vD, $vA, $vB", v2i64>;
// The cryptography instructions that do not require Category:Vector.Crypto
def VPMSUMB : VX1_Int_Ty<1032, "vpmsumb",
int_ppc_altivec_crypto_vpmsumb, v16i8>;
def VPMSUMH : VX1_Int_Ty<1096, "vpmsumh",
int_ppc_altivec_crypto_vpmsumh, v8i16>;
def VPMSUMW : VX1_Int_Ty<1160, "vpmsumw",
int_ppc_altivec_crypto_vpmsumw, v4i32>;
def VPMSUMD : VX1_Int_Ty<1224, "vpmsumd",
int_ppc_altivec_crypto_vpmsumd, v2i64>;
def VPERMXOR : VA1a_Int_Ty<45, "vpermxor",
int_ppc_altivec_crypto_vpermxor, v16i8>;
// Vector doubleword integer pack and unpack.
def VPKSDSS : VX1_Int_Ty2<1486, "vpksdss", int_ppc_altivec_vpksdss,
v4i32, v2i64>;
def VPKSDUS : VX1_Int_Ty2<1358, "vpksdus", int_ppc_altivec_vpksdus,
v4i32, v2i64>;
def VPKUDUM : VXForm_1<1102, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vpkudum $vD, $vA, $vB", IIC_VecFP,
[(set v16i8:$vD,
(vpkudum_shuffle v16i8:$vA, v16i8:$vB))]>;
def VPKUDUS : VX1_Int_Ty2<1230, "vpkudus", int_ppc_altivec_vpkudus,
v4i32, v2i64>;
def VUPKHSW : VX2_Int_Ty2<1614, "vupkhsw", int_ppc_altivec_vupkhsw,
v2i64, v4i32>;
def VUPKLSW : VX2_Int_Ty2<1742, "vupklsw", int_ppc_altivec_vupklsw,
v2i64, v4i32>;
// Shuffle patterns for unary and swapped (LE) vector pack modulo.
def:Pat<(vpkudum_unary_shuffle v16i8:$vA, undef),
(VPKUDUM $vA, $vA)>;
def:Pat<(vpkudum_swapped_shuffle v16i8:$vA, v16i8:$vB),
(VPKUDUM $vB, $vA)>;
def VGBBD : VX2_Int_Ty2<1292, "vgbbd", int_ppc_altivec_vgbbd, v16i8, v16i8>;
def VBPERMQ : VX1_Int_Ty2<1356, "vbpermq", int_ppc_altivec_vbpermq,
v2i64, v16i8>;
} // end HasP8Altivec
// Crypto instructions (from builtins)
let Predicates = [HasP8Crypto] in {
def VSHASIGMAW : VXCR_Int_Ty<1666, "vshasigmaw",
int_ppc_altivec_crypto_vshasigmaw, v4i32>;
def VSHASIGMAD : VXCR_Int_Ty<1730, "vshasigmad",
int_ppc_altivec_crypto_vshasigmad, v2i64>;
def VCIPHER : VX1_Int_Ty<1288, "vcipher", int_ppc_altivec_crypto_vcipher,
v2i64>;
def VCIPHERLAST : VX1_Int_Ty<1289, "vcipherlast",
int_ppc_altivec_crypto_vcipherlast, v2i64>;
def VNCIPHER : VX1_Int_Ty<1352, "vncipher",
int_ppc_altivec_crypto_vncipher, v2i64>;
def VNCIPHERLAST : VX1_Int_Ty<1353, "vncipherlast",
int_ppc_altivec_crypto_vncipherlast, v2i64>;
def VSBOX : VXBX_Int_Ty<1480, "vsbox", int_ppc_altivec_crypto_vsbox, v2i64>;
} // HasP8Crypto
// The following altivec instructions were introduced in Power ISA 3.0
def HasP9Altivec : Predicate<"PPCSubTarget->hasP9Altivec()">;
let Predicates = [HasP9Altivec] in {
// i8 element comparisons.
def VCMPNEB : VCMP < 7, "vcmpneb $vD, $vA, $vB" , v16i8>;
def VCMPNEBo : VCMPo < 7, "vcmpneb. $vD, $vA, $vB" , v16i8>;
def VCMPNEZB : VCMP <263, "vcmpnezb $vD, $vA, $vB" , v16i8>;
def VCMPNEZBo : VCMPo<263, "vcmpnezb. $vD, $vA, $vB", v16i8>;
// i16 element comparisons.
def VCMPNEH : VCMP < 71, "vcmpneh $vD, $vA, $vB" , v8i16>;
def VCMPNEHo : VCMPo< 71, "vcmpneh. $vD, $vA, $vB" , v8i16>;
def VCMPNEZH : VCMP <327, "vcmpnezh $vD, $vA, $vB" , v8i16>;
def VCMPNEZHo : VCMPo<327, "vcmpnezh. $vD, $vA, $vB", v8i16>;
// i32 element comparisons.
def VCMPNEW : VCMP <135, "vcmpnew $vD, $vA, $vB" , v4i32>;
def VCMPNEWo : VCMPo<135, "vcmpnew. $vD, $vA, $vB" , v4i32>;
def VCMPNEZW : VCMP <391, "vcmpnezw $vD, $vA, $vB" , v4i32>;
def VCMPNEZWo : VCMPo<391, "vcmpnezw. $vD, $vA, $vB", v4i32>;
// VX-Form: [PO VRT / UIM VRB XO].
// We use VXForm_1 to implement it, that is, we use "VRA" (5 bit) to represent
// "/ UIM" (1 + 4 bit)
class VX1_VT5_UIM5_VB5<bits<11> xo, string opc, list<dag> pattern>
: VXForm_1<xo, (outs vrrc:$vD), (ins u4imm:$UIMM, vrrc:$vB),
!strconcat(opc, " $vD, $vB, $UIMM"), IIC_VecGeneral, pattern>;
class VX1_RT5_RA5_VB5<bits<11> xo, string opc, list<dag> pattern>
: VXForm_1<xo, (outs g8rc:$rD), (ins g8rc:$rA, vrrc:$vB),
!strconcat(opc, " $rD, $rA, $vB"), IIC_VecGeneral, pattern>;
// Vector Extract Unsigned
def VEXTRACTUB : VX1_VT5_UIM5_VB5<525, "vextractub", []>;
def VEXTRACTUH : VX1_VT5_UIM5_VB5<589, "vextractuh", []>;
def VEXTRACTUW : VX1_VT5_UIM5_VB5<653, "vextractuw", []>;
def VEXTRACTD : VX1_VT5_UIM5_VB5<717, "vextractd" , []>;
// Vector Extract Unsigned Byte/Halfword/Word Left/Right-Indexed
def VEXTUBLX : VX1_RT5_RA5_VB5<1549, "vextublx", []>;
def VEXTUBRX : VX1_RT5_RA5_VB5<1805, "vextubrx", []>;
def VEXTUHLX : VX1_RT5_RA5_VB5<1613, "vextuhlx", []>;
def VEXTUHRX : VX1_RT5_RA5_VB5<1869, "vextuhrx", []>;
def VEXTUWLX : VX1_RT5_RA5_VB5<1677, "vextuwlx", []>;
def VEXTUWRX : VX1_RT5_RA5_VB5<1933, "vextuwrx", []>;
// Vector Insert Element Instructions
def VINSERTB : VXForm_1<781, (outs vrrc:$vD),
(ins vrrc:$vDi, u4imm:$UIM, vrrc:$vB),
"vinsertb $vD, $vB, $UIM", IIC_VecGeneral,
[(set v16i8:$vD, (PPCvecinsert v16i8:$vDi, v16i8:$vB,
imm32SExt16:$UIM))]>,
RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
def VINSERTH : VXForm_1<845, (outs vrrc:$vD),
(ins vrrc:$vDi, u4imm:$UIM, vrrc:$vB),
"vinserth $vD, $vB, $UIM", IIC_VecGeneral,
[(set v8i16:$vD, (PPCvecinsert v8i16:$vDi, v8i16:$vB,
imm32SExt16:$UIM))]>,
RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
def VINSERTW : VX1_VT5_UIM5_VB5<909, "vinsertw", []>;
def VINSERTD : VX1_VT5_UIM5_VB5<973, "vinsertd", []>;
class VX_VT5_EO5_VB5<bits<11> xo, bits<5> eo, string opc, list<dag> pattern>
: VXForm_RD5_XO5_RS5<xo, eo, (outs vrrc:$vD), (ins vrrc:$vB),
!strconcat(opc, " $vD, $vB"), IIC_VecGeneral, pattern>;
class VX_VT5_EO5_VB5s<bits<11> xo, bits<5> eo, string opc, list<dag> pattern>
: VXForm_RD5_XO5_RS5<xo, eo, (outs vfrc:$vD), (ins vfrc:$vB),
!strconcat(opc, " $vD, $vB"), IIC_VecGeneral, pattern>;
// Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]
def VCLZLSBB : VXForm_RD5_XO5_RS5<1538, 0, (outs gprc:$rD), (ins vrrc:$vB),
"vclzlsbb $rD, $vB", IIC_VecGeneral,
[(set i32:$rD, (int_ppc_altivec_vclzlsbb
v16i8:$vB))]>;
def VCTZLSBB : VXForm_RD5_XO5_RS5<1538, 1, (outs gprc:$rD), (ins vrrc:$vB),
"vctzlsbb $rD, $vB", IIC_VecGeneral,
[(set i32:$rD, (int_ppc_altivec_vctzlsbb
v16i8:$vB))]>;
// Vector Count Trailing Zeros
def VCTZB : VX_VT5_EO5_VB5<1538, 28, "vctzb",
[(set v16i8:$vD, (cttz v16i8:$vB))]>;
def VCTZH : VX_VT5_EO5_VB5<1538, 29, "vctzh",
[(set v8i16:$vD, (cttz v8i16:$vB))]>;
def VCTZW : VX_VT5_EO5_VB5<1538, 30, "vctzw",
[(set v4i32:$vD, (cttz v4i32:$vB))]>;
def VCTZD : VX_VT5_EO5_VB5<1538, 31, "vctzd",
[(set v2i64:$vD, (cttz v2i64:$vB))]>;
// Vector Extend Sign
def VEXTSB2W : VX_VT5_EO5_VB5<1538, 16, "vextsb2w", []>;
def VEXTSH2W : VX_VT5_EO5_VB5<1538, 17, "vextsh2w", []>;
def VEXTSB2D : VX_VT5_EO5_VB5<1538, 24, "vextsb2d", []>;
def VEXTSH2D : VX_VT5_EO5_VB5<1538, 25, "vextsh2d", []>;
def VEXTSW2D : VX_VT5_EO5_VB5<1538, 26, "vextsw2d", []>;
let isCodeGenOnly = 1 in {
def VEXTSB2Ws : VX_VT5_EO5_VB5s<1538, 16, "vextsb2w", []>;
def VEXTSH2Ws : VX_VT5_EO5_VB5s<1538, 17, "vextsh2w", []>;
def VEXTSB2Ds : VX_VT5_EO5_VB5s<1538, 24, "vextsb2d", []>;
def VEXTSH2Ds : VX_VT5_EO5_VB5s<1538, 25, "vextsh2d", []>;
def VEXTSW2Ds : VX_VT5_EO5_VB5s<1538, 26, "vextsw2d", []>;
}
// Vector Integer Negate
def VNEGW : VX_VT5_EO5_VB5<1538, 6, "vnegw",
[(set v4i32:$vD,
(sub (v4i32 immAllZerosV), v4i32:$vB))]>;
def VNEGD : VX_VT5_EO5_VB5<1538, 7, "vnegd",
[(set v2i64:$vD,
(sub (v2i64 (bitconvert (v4i32 immAllZerosV))),
v2i64:$vB))]>;
// Vector Parity Byte
def VPRTYBW : VX_VT5_EO5_VB5<1538, 8, "vprtybw", [(set v4i32:$vD,
(int_ppc_altivec_vprtybw v4i32:$vB))]>;
def VPRTYBD : VX_VT5_EO5_VB5<1538, 9, "vprtybd", [(set v2i64:$vD,
(int_ppc_altivec_vprtybd v2i64:$vB))]>;
def VPRTYBQ : VX_VT5_EO5_VB5<1538, 10, "vprtybq", [(set v1i128:$vD,
(int_ppc_altivec_vprtybq v1i128:$vB))]>;
// Vector (Bit) Permute (Right-indexed)
def VBPERMD : VXForm_1<1484, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vbpermd $vD, $vA, $vB", IIC_VecFP, []>;
def VPERMR : VAForm_1a<59, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
"vpermr $vD, $vA, $vB, $vC", IIC_VecFP, []>;
class VX1_VT5_VA5_VB5<bits<11> xo, string opc, list<dag> pattern>
: VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
!strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, pattern>;
// Vector Rotate Left Mask/Mask-Insert
def VRLWNM : VX1_VT5_VA5_VB5<389, "vrlwnm",
[(set v4i32:$vD,
(int_ppc_altivec_vrlwnm v4i32:$vA,
v4i32:$vB))]>;
def VRLWMI : VXForm_1<133, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vDi),
"vrlwmi $vD, $vA, $vB", IIC_VecFP,
[(set v4i32:$vD,
(int_ppc_altivec_vrlwmi v4i32:$vA, v4i32:$vB,
v4i32:$vDi))]>,
RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
def VRLDNM : VX1_VT5_VA5_VB5<453, "vrldnm",
[(set v2i64:$vD,
(int_ppc_altivec_vrldnm v2i64:$vA,
v2i64:$vB))]>;
def VRLDMI : VXForm_1<197, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vDi),
"vrldmi $vD, $vA, $vB", IIC_VecFP,
[(set v2i64:$vD,
(int_ppc_altivec_vrldmi v2i64:$vA, v2i64:$vB,
v2i64:$vDi))]>,
RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
// Vector Shift Left/Right
def VSLV : VX1_VT5_VA5_VB5<1860, "vslv",
[(set v16i8 : $vD, (int_ppc_altivec_vslv v16i8 : $vA, v16i8 : $vB))]>;
def VSRV : VX1_VT5_VA5_VB5<1796, "vsrv",
[(set v16i8 : $vD, (int_ppc_altivec_vsrv v16i8 : $vA, v16i8 : $vB))]>;
// Vector Multiply-by-10 (& Write Carry) Unsigned Quadword
def VMUL10UQ : VXForm_BX<513, (outs vrrc:$vD), (ins vrrc:$vA),
"vmul10uq $vD, $vA", IIC_VecFP, []>;
def VMUL10CUQ : VXForm_BX< 1, (outs vrrc:$vD), (ins vrrc:$vA),
"vmul10cuq $vD, $vA", IIC_VecFP, []>;
// Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword
def VMUL10EUQ : VX1_VT5_VA5_VB5<577, "vmul10euq" , []>;
def VMUL10ECUQ : VX1_VT5_VA5_VB5< 65, "vmul10ecuq", []>;
// Decimal Integer Format Conversion Instructions
// [PO VRT EO VRB 1 PS XO], "_o" means CR6 is set.
class VX_VT5_EO5_VB5_PS1_XO9_o<bits<5> eo, bits<9> xo, string opc,
list<dag> pattern>
: VX_RD5_EO5_RS5_PS1_XO9<eo, xo, (outs vrrc:$vD), (ins vrrc:$vB, u1imm:$PS),
!strconcat(opc, " $vD, $vB, $PS"), IIC_VecFP, pattern> {
let Defs = [CR6];
}
// [PO VRT EO VRB 1 / XO]
class VX_VT5_EO5_VB5_XO9_o<bits<5> eo, bits<9> xo, string opc,
list<dag> pattern>
: VX_RD5_EO5_RS5_PS1_XO9<eo, xo, (outs vrrc:$vD), (ins vrrc:$vB),
!strconcat(opc, " $vD, $vB"), IIC_VecFP, pattern> {
let Defs = [CR6];
let PS = 0;
}
// Decimal Convert From/to National/Zoned/Signed-QWord
def BCDCFNo : VX_VT5_EO5_VB5_PS1_XO9_o<7, 385, "bcdcfn." , []>;
def BCDCFZo : VX_VT5_EO5_VB5_PS1_XO9_o<6, 385, "bcdcfz." , []>;
def BCDCTNo : VX_VT5_EO5_VB5_XO9_o <5, 385, "bcdctn." , []>;
def BCDCTZo : VX_VT5_EO5_VB5_PS1_XO9_o<4, 385, "bcdctz." , []>;
def BCDCFSQo : VX_VT5_EO5_VB5_PS1_XO9_o<2, 385, "bcdcfsq.", []>;
def BCDCTSQo : VX_VT5_EO5_VB5_XO9_o <0, 385, "bcdctsq.", []>;
// Decimal Copy-Sign/Set-Sign
let Defs = [CR6] in
def BCDCPSGNo : VX1_VT5_VA5_VB5<833, "bcdcpsgn.", []>;
def BCDSETSGNo : VX_VT5_EO5_VB5_PS1_XO9_o<31, 385, "bcdsetsgn.", []>;
// [PO VRT VRA VRB 1 PS XO], "_o" means CR6 is set.
class VX_VT5_VA5_VB5_PS1_XO9_o<bits<9> xo, string opc, list<dag> pattern>
: VX_RD5_RSp5_PS1_XO9<xo,
(outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u1imm:$PS),
!strconcat(opc, " $vD, $vA, $vB, $PS"), IIC_VecFP, pattern> {
let Defs = [CR6];
}
// [PO VRT VRA VRB 1 / XO]
class VX_VT5_VA5_VB5_XO9_o<bits<9> xo, string opc, list<dag> pattern>
: VX_RD5_RSp5_PS1_XO9<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
!strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, pattern> {
let Defs = [CR6];
let PS = 0;
}
// Decimal Shift/Unsigned-Shift/Shift-and-Round
def BCDSo : VX_VT5_VA5_VB5_PS1_XO9_o<193, "bcds." , []>;
def BCDUSo : VX_VT5_VA5_VB5_XO9_o <129, "bcdus.", []>;
def BCDSRo : VX_VT5_VA5_VB5_PS1_XO9_o<449, "bcdsr.", []>;
// Decimal (Unsigned) Truncate
def BCDTRUNCo : VX_VT5_VA5_VB5_PS1_XO9_o<257, "bcdtrunc." , []>;
def BCDUTRUNCo : VX_VT5_VA5_VB5_XO9_o <321, "bcdutrunc.", []>;
// Absolute Difference
def VABSDUB : VXForm_1<1027, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vabsdub $vD, $vA, $vB", IIC_VecGeneral,
[(set v16i8:$vD, (int_ppc_altivec_vabsdub v16i8:$vA, v16i8:$vB))]>;
def VABSDUH : VXForm_1<1091, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vabsduh $vD, $vA, $vB", IIC_VecGeneral,
[(set v8i16:$vD, (int_ppc_altivec_vabsduh v8i16:$vA, v8i16:$vB))]>;
def VABSDUW : VXForm_1<1155, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
"vabsduw $vD, $vA, $vB", IIC_VecGeneral,
[(set v4i32:$vD, (int_ppc_altivec_vabsduw v4i32:$vA, v4i32:$vB))]>;
def : Pat<(v16i8:$vD (abs v16i8:$vA)),
(v16i8 (VABSDUB $vA, (V_SET0B)))>;
def : Pat<(v8i16:$vD (abs v8i16:$vA)),
(v8i16 (VABSDUH $vA, (V_SET0H)))>;
def : Pat<(v4i32:$vD (abs v4i32:$vA)),
(v4i32 (VABSDUW $vA, (V_SET0)))>;
def : Pat<(v16i8:$vD (abs (sub v16i8:$vA, v16i8:$vB))),
(v16i8 (VABSDUB $vA, $vB))>;
def : Pat<(v8i16:$vD (abs (sub v8i16:$vA, v8i16:$vB))),
(v8i16 (VABSDUH $vA, $vB))>;
def : Pat<(v4i32:$vD (abs (sub v4i32:$vA, v4i32:$vB))),
(v4i32 (VABSDUW $vA, $vB))>;
} // end HasP9Altivec