llvm-project/llvm/test/Transforms/InstCombine/atomic.ll

209 lines
5.8 KiB
LLVM
Raw Normal View History

; RUN: opt -S < %s -instcombine | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-macosx10.7.0"
; Check transforms involving atomic operations
define i32 @test1(i32* %p) {
; CHECK-LABEL: define i32 @test1(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
define i32 @test2(i32* %p) {
; CHECK-LABEL: define i32 @test2(
; CHECK: %x = load volatile i32, i32* %p, align 4
; CHECK: %y = load volatile i32, i32* %p, align 4
%x = load volatile i32, i32* %p, align 4
%y = load volatile i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; The exact semantics of mixing volatile and non-volatile on the same
; memory location are a bit unclear, but conservatively, we know we don't
; want to remove the volatile.
define i32 @test3(i32* %p) {
; CHECK-LABEL: define i32 @test3(
; CHECK: %x = load volatile i32, i32* %p, align 4
%x = load volatile i32, i32* %p, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding from a stronger ordered atomic is fine
define i32 @test4(i32* %p) {
; CHECK-LABEL: define i32 @test4(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p unordered, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding from a non-atomic is not. (The earlier load
; could in priciple be promoted to atomic and then forwarded,
; but we can't just drop the atomic from the load.)
define i32 @test5(i32* %p) {
; CHECK-LABEL: define i32 @test5(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
%x = load atomic i32, i32* %p unordered, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding atomic to atomic is fine
define i32 @test6(i32* %p) {
; CHECK-LABEL: define i32 @test6(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p unordered, align 4
%y = load atomic i32, i32* %p unordered, align 4
%z = add i32 %x, %y
ret i32 %z
}
; FIXME: we currently don't do anything for monotonic
define i32 @test7(i32* %p) {
; CHECK-LABEL: define i32 @test7(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p monotonic, align 4
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p monotonic, align 4
%z = add i32 %x, %y
ret i32 %z
}
; FIXME: We could forward in racy code
define i32 @test8(i32* %p) {
; CHECK-LABEL: define i32 @test8(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p acquire, align 4
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p acquire, align 4
%z = add i32 %x, %y
ret i32 %z
}
; An unordered access to null is still unreachable. There's no
; ordering imposed.
define i32 @test9() {
; CHECK-LABEL: define i32 @test9(
; CHECK: store i32 undef, i32* null
%x = load atomic i32, i32* null unordered, align 4
ret i32 %x
}
; FIXME: Could also fold
define i32 @test10() {
; CHECK-LABEL: define i32 @test10(
; CHECK: load atomic i32, i32* null monotonic
%x = load atomic i32, i32* null monotonic, align 4
ret i32 %x
}
; Would this be legal to fold? Probably?
define i32 @test11() {
; CHECK-LABEL: define i32 @test11(
; CHECK: load atomic i32, i32* null seq_cst
%x = load atomic i32, i32* null seq_cst, align 4
ret i32 %x
}
; An unordered access to null is still unreachable. There's no
; ordering imposed.
define i32 @test12() {
; CHECK-LABEL: define i32 @test12(
; CHECK: store atomic i32 undef, i32* null
store atomic i32 0, i32* null unordered, align 4
ret i32 0
}
; FIXME: Could also fold
define i32 @test13() {
; CHECK-LABEL: define i32 @test13(
; CHECK: store atomic i32 0, i32* null monotonic
store atomic i32 0, i32* null monotonic, align 4
ret i32 0
}
; Would this be legal to fold? Probably?
define i32 @test14() {
; CHECK-LABEL: define i32 @test14(
; CHECK: store atomic i32 0, i32* null seq_cst
store atomic i32 0, i32* null seq_cst, align 4
ret i32 0
}
@a = external global i32
@b = external global i32
define i32 @test15(i1 %cnd) {
; CHECK-LABEL: define i32 @test15(
; CHECK: load atomic i32, i32* @a unordered, align 4
; CHECK: load atomic i32, i32* @b unordered, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr unordered, align 4
ret i32 %x
}
; FIXME: This would be legal to transform
define i32 @test16(i1 %cnd) {
; CHECK-LABEL: define i32 @test16(
; CHECK: load atomic i32, i32* %addr monotonic, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr monotonic, align 4
ret i32 %x
}
; FIXME: This would be legal to transform
define i32 @test17(i1 %cnd) {
; CHECK-LABEL: define i32 @test17(
; CHECK: load atomic i32, i32* %addr seq_cst, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr seq_cst, align 4
ret i32 %x
}
define i32 @test22(i1 %cnd) {
; CHECK-LABEL: define i32 @test22(
; CHECK: [[PHI:%.*]] = phi i32
; CHECK: store atomic i32 [[PHI]], i32* @a unordered, align 4
br i1 %cnd, label %block1, label %block2
block1:
store atomic i32 1, i32* @a unordered, align 4
br label %merge
block2:
store atomic i32 2, i32* @a unordered, align 4
br label %merge
merge:
ret i32 0
}
; TODO: probably also legal here
define i32 @test23(i1 %cnd) {
; CHECK-LABEL: define i32 @test23(
; CHECK: br i1 %cnd, label %block1, label %block2
br i1 %cnd, label %block1, label %block2
block1:
store atomic i32 1, i32* @a monotonic, align 4
br label %merge
block2:
store atomic i32 2, i32* @a monotonic, align 4
br label %merge
merge:
ret i32 0
}