llvm-project/llvm/lib/Target/WebAssembly/Relooper.h

215 lines
7.2 KiB
C
Raw Normal View History

//===-- Relooper.h - Top-level interface for WebAssembly ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===-------------------------------------------------------------------===//
///
/// \file
/// \brief This defines an optimized C++ implemention of the Relooper
/// algorithm, originally developed as part of Emscripten, which
/// generates a structured AST from arbitrary control flow.
///
//===-------------------------------------------------------------------===//
#include <llvm/ADT/MapVector.h>
#include <llvm/ADT/SetVector.h>
#include <llvm/Support/Casting.h>
#include <cassert>
#include <cstdio>
#include <cstdarg>
#include <deque>
#include <list>
#include <map>
#include <memory>
#include <set>
namespace llvm {
namespace Relooper {
struct Block;
struct Shape;
///
/// Info about a branching from one block to another
///
struct Branch {
enum FlowType {
Direct = 0, // We will directly reach the right location through other
// means, no need for continue or break
Break = 1,
Continue = 2,
Nested = 3 // This code is directly reached, but we must be careful to
// ensure it is nested in an if - it is not reached
// unconditionally, other code paths exist alongside it that we need to make
// sure do not intertwine
};
Shape
*Ancestor; // If not nullptr, this shape is the relevant one for purposes
// of getting to the target block. We break or continue on it
Branch::FlowType
Type; // If Ancestor is not nullptr, this says whether to break or
// continue
bool Labeled; // If a break or continue, whether we need to use a label
const char *Condition; // The condition for which we branch. For example,
// "my_var == 1". Conditions are checked one by one.
// One of the conditions should have nullptr as the
// condition, in which case it is the default
// FIXME: move from char* to LLVM data structures
const char *Code; // If provided, code that is run right before the branch is
// taken. This is useful for phis
// FIXME: move from char* to LLVM data structures
Branch(const char *ConditionInit, const char *CodeInit = nullptr);
~Branch();
};
typedef SetVector<Block *> BlockSet;
typedef MapVector<Block *, Branch *> BlockBranchMap;
typedef MapVector<Block *, std::unique_ptr<Branch>> OwningBlockBranchMap;
///
/// Represents a basic block of code - some instructions that end with a
/// control flow modifier (a branch, return or throw).
///
struct Block {
// Branches become processed after we finish the shape relevant to them. For
// example, when we recreate a loop, branches to the loop start become
// continues and are now processed. When we calculate what shape to generate
// from a set of blocks, we ignore processed branches. Blocks own the Branch
// objects they use, and destroy them when done.
OwningBlockBranchMap BranchesOut;
BlockSet BranchesIn;
OwningBlockBranchMap ProcessedBranchesOut;
BlockSet ProcessedBranchesIn;
Shape *Parent; // The shape we are directly inside
int Id; // A unique identifier, defined when added to relooper. Note that this
// uniquely identifies a *logical* block - if we split it, the two
// instances have the same content *and* the same Id
const char *Code; // The string representation of the code in this block.
// Owning pointer (we copy the input)
// FIXME: move from char* to LLVM data structures
const char *BranchVar; // A variable whose value determines where we go; if
// this is not nullptr, emit a switch on that variable
// FIXME: move from char* to LLVM data structures
bool IsCheckedMultipleEntry; // If true, we are a multiple entry, so reaching
// us requires setting the label variable
Block(const char *CodeInit, const char *BranchVarInit);
~Block();
void AddBranchTo(Block *Target, const char *Condition,
const char *Code = nullptr);
};
///
/// Represents a structured control flow shape
///
struct Shape {
int Id; // A unique identifier. Used to identify loops, labels are Lx where x
// is the Id. Defined when added to relooper
Shape *Next; // The shape that will appear in the code right after this one
Shape *Natural; // The shape that control flow gets to naturally (if there is
// Next, then this is Next)
/// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
enum ShapeKind { SK_Simple, SK_Multiple, SK_Loop };
private:
ShapeKind Kind;
public:
ShapeKind getKind() const { return Kind; }
Shape(ShapeKind KindInit) : Id(-1), Next(nullptr), Kind(KindInit) {}
};
///
/// Simple: No control flow at all, just instructions.
///
struct SimpleShape : public Shape {
Block *Inner;
SimpleShape() : Shape(SK_Simple), Inner(nullptr) {}
static bool classof(const Shape *S) { return S->getKind() == SK_Simple; }
};
///
/// A shape that may be implemented with a labeled loop.
///
struct LabeledShape : public Shape {
bool Labeled; // If we have a loop, whether it needs to be labeled
LabeledShape(ShapeKind KindInit) : Shape(KindInit), Labeled(false) {}
};
// Blocks with the same id were split and are identical, so we just care about
// ids in Multiple entries
typedef std::map<int, Shape *> IdShapeMap;
///
/// Multiple: A shape with more than one entry. If the next block to
/// be entered is among them, we run it and continue to
/// the next shape, otherwise we continue immediately to the
/// next shape.
///
struct MultipleShape : public LabeledShape {
IdShapeMap InnerMap; // entry block ID -> shape
int Breaks; // If we have branches on us, we need a loop (or a switch). This
// is a counter of requirements,
// if we optimize it to 0, the loop is unneeded
bool UseSwitch; // Whether to switch on label as opposed to an if-else chain
MultipleShape() : LabeledShape(SK_Multiple), Breaks(0), UseSwitch(false) {}
static bool classof(const Shape *S) { return S->getKind() == SK_Multiple; }
};
///
/// Loop: An infinite loop.
///
struct LoopShape : public LabeledShape {
Shape *Inner;
LoopShape() : LabeledShape(SK_Loop), Inner(nullptr) {}
static bool classof(const Shape *S) { return S->getKind() == SK_Loop; }
};
///
/// Implements the relooper algorithm for a function's blocks.
///
/// Implementation details: The Relooper instance has
/// ownership of the blocks and shapes, and frees them when done.
///
struct Relooper {
std::deque<Block *> Blocks;
std::deque<Shape *> Shapes;
Shape *Root;
bool MinSize;
int BlockIdCounter;
int ShapeIdCounter;
Relooper();
~Relooper();
void AddBlock(Block *New, int Id = -1);
// Calculates the shapes
void Calculate(Block *Entry);
// Sets us to try to minimize size
void SetMinSize(bool MinSize_) { MinSize = MinSize_; }
};
typedef MapVector<Block *, BlockSet> BlockBlockSetMap;
} // namespace Relooper
} // namespace llvm