llvm-project/llvm/lib/Transforms/IPO/CrossDSOCFI.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

175 lines
5.9 KiB
C++
Raw Normal View History

//===-- CrossDSOCFI.cpp - Externalize this module's CFI checks ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass exports all llvm.bitset's found in the module in the form of a
// __cfi_check function, which can be used to verify cross-DSO call targets.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/CrossDSOCFI.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
#define DEBUG_TYPE "cross-dso-cfi"
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
STATISTIC(NumTypeIds, "Number of unique type identifiers");
namespace {
struct CrossDSOCFI : public ModulePass {
static char ID;
CrossDSOCFI() : ModulePass(ID) {
initializeCrossDSOCFIPass(*PassRegistry::getPassRegistry());
}
MDNode *VeryLikelyWeights;
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
ConstantInt *extractNumericTypeId(MDNode *MD);
void buildCFICheck(Module &M);
bool runOnModule(Module &M) override;
};
} // anonymous namespace
INITIALIZE_PASS_BEGIN(CrossDSOCFI, "cross-dso-cfi", "Cross-DSO CFI", false,
false)
INITIALIZE_PASS_END(CrossDSOCFI, "cross-dso-cfi", "Cross-DSO CFI", false, false)
char CrossDSOCFI::ID = 0;
ModulePass *llvm::createCrossDSOCFIPass() { return new CrossDSOCFI; }
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
/// Extracts a numeric type identifier from an MDNode containing type metadata.
ConstantInt *CrossDSOCFI::extractNumericTypeId(MDNode *MD) {
// This check excludes vtables for classes inside anonymous namespaces.
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
auto TM = dyn_cast<ValueAsMetadata>(MD->getOperand(1));
if (!TM)
return nullptr;
auto C = dyn_cast_or_null<ConstantInt>(TM->getValue());
if (!C) return nullptr;
// We are looking for i64 constants.
if (C->getBitWidth() != 64) return nullptr;
return C;
}
/// buildCFICheck - emits __cfi_check for the current module.
void CrossDSOCFI::buildCFICheck(Module &M) {
// FIXME: verify that __cfi_check ends up near the end of the code section,
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
// but before the jump slots created in LowerTypeTests.
SetVector<uint64_t> TypeIds;
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
SmallVector<MDNode *, 2> Types;
for (GlobalObject &GO : M.global_objects()) {
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
Types.clear();
GO.getMetadata(LLVMContext::MD_type, Types);
cfi-icall: Allow the jump table to be optionally made non-canonical. The default behavior of Clang's indirect function call checker will replace the address of each CFI-checked function in the output file's symbol table with the address of a jump table entry which will pass CFI checks. We refer to this as making the jump table `canonical`. This property allows code that was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address of a function, but it comes with a couple of caveats that are especially relevant for users of cross-DSO CFI: - There is a performance and code size overhead associated with each exported function, because each such function must have an associated jump table entry, which must be emitted even in the common case where the function is never address-taken anywhere in the program, and must be used even for direct calls between DSOs, in addition to the PLT overhead. - There is no good way to take a CFI-valid address of a function written in assembly or a language not supported by Clang. The reason is that the code generator would need to insert a jump table in order to form a CFI-valid address for assembly functions, but there is no way in general for the code generator to determine the language of the function. This may be possible with LTO in the intra-DSO case, but in the cross-DSO case the only information available is the function declaration. One possible solution is to add a C wrapper for each assembly function, but these wrappers can present a significant maintenance burden for heavy users of assembly in addition to adding runtime overhead. For these reasons, we provide the option of making the jump table non-canonical with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump table is made non-canonical, symbol table entries point directly to the function body. Any instances of a function's address being taken in C will be replaced with a jump table address. This scheme does have its own caveats, however. It does end up breaking function address equality more aggressively than the default behavior, especially in cross-DSO mode which normally preserves function address equality entirely. Furthermore, it is occasionally necessary for code not compiled with ``-fsanitize=cfi-icall`` to take a function address that is valid for CFI. For example, this is necessary when a function's address is taken by assembly code and then called by CFI-checking C code. The ``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make the jump table entry of a specific function canonical so that the external code will end up taking a address for the function that will pass CFI checks. Fixes PR41972. Differential Revision: https://reviews.llvm.org/D65629 llvm-svn: 368495
2019-08-10 06:31:59 +08:00
for (MDNode *Type : Types)
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
if (ConstantInt *TypeId = extractNumericTypeId(Type))
TypeIds.insert(TypeId->getZExtValue());
}
NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
if (CfiFunctionsMD) {
for (auto Func : CfiFunctionsMD->operands()) {
assert(Func->getNumOperands() >= 2);
for (unsigned I = 2; I < Func->getNumOperands(); ++I)
if (ConstantInt *TypeId =
extractNumericTypeId(cast<MDNode>(Func->getOperand(I).get())))
TypeIds.insert(TypeId->getZExtValue());
}
}
LLVMContext &Ctx = M.getContext();
[opaque pointer types] Add a FunctionCallee wrapper type, and use it. Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc doesn't choke on it, hopefully. Original Message: The FunctionCallee type is effectively a {FunctionType*,Value*} pair, and is a useful convenience to enable code to continue passing the result of getOrInsertFunction() through to EmitCall, even once pointer types lose their pointee-type. Then: - update the CallInst/InvokeInst instruction creation functions to take a Callee, - modify getOrInsertFunction to return FunctionCallee, and - update all callers appropriately. One area of particular note is the change to the sanitizer code. Previously, they had been casting the result of `getOrInsertFunction` to a `Function*` via `checkSanitizerInterfaceFunction`, and storing that. That would report an error if someone had already inserted a function declaraction with a mismatching signature. However, in general, LLVM allows for such mismatches, as `getOrInsertFunction` will automatically insert a bitcast if needed. As part of this cleanup, cause the sanitizer code to do the same. (It will call its functions using the expected signature, however they may have been declared.) Finally, in a small number of locations, callers of `getOrInsertFunction` actually were expecting/requiring that a brand new function was being created. In such cases, I've switched them to Function::Create instead. Differential Revision: https://reviews.llvm.org/D57315 llvm-svn: 352827
2019-02-01 10:28:03 +08:00
FunctionCallee C = M.getOrInsertFunction(
"__cfi_check", Type::getVoidTy(Ctx), Type::getInt64Ty(Ctx),
Type::getInt8PtrTy(Ctx), Type::getInt8PtrTy(Ctx));
[opaque pointer types] Add a FunctionCallee wrapper type, and use it. Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc doesn't choke on it, hopefully. Original Message: The FunctionCallee type is effectively a {FunctionType*,Value*} pair, and is a useful convenience to enable code to continue passing the result of getOrInsertFunction() through to EmitCall, even once pointer types lose their pointee-type. Then: - update the CallInst/InvokeInst instruction creation functions to take a Callee, - modify getOrInsertFunction to return FunctionCallee, and - update all callers appropriately. One area of particular note is the change to the sanitizer code. Previously, they had been casting the result of `getOrInsertFunction` to a `Function*` via `checkSanitizerInterfaceFunction`, and storing that. That would report an error if someone had already inserted a function declaraction with a mismatching signature. However, in general, LLVM allows for such mismatches, as `getOrInsertFunction` will automatically insert a bitcast if needed. As part of this cleanup, cause the sanitizer code to do the same. (It will call its functions using the expected signature, however they may have been declared.) Finally, in a small number of locations, callers of `getOrInsertFunction` actually were expecting/requiring that a brand new function was being created. In such cases, I've switched them to Function::Create instead. Differential Revision: https://reviews.llvm.org/D57315 llvm-svn: 352827
2019-02-01 10:28:03 +08:00
Function *F = dyn_cast<Function>(C.getCallee());
// Take over the existing function. The frontend emits a weak stub so that the
// linker knows about the symbol; this pass replaces the function body.
F->deleteBody();
F->setAlignment(4096);
Triple T(M.getTargetTriple());
if (T.isARM() || T.isThumb())
F->addFnAttr("target-features", "+thumb-mode");
auto args = F->arg_begin();
Value &CallSiteTypeId = *(args++);
CallSiteTypeId.setName("CallSiteTypeId");
Value &Addr = *(args++);
Addr.setName("Addr");
Value &CFICheckFailData = *(args++);
CFICheckFailData.setName("CFICheckFailData");
assert(args == F->arg_end());
BasicBlock *BB = BasicBlock::Create(Ctx, "entry", F);
BasicBlock *ExitBB = BasicBlock::Create(Ctx, "exit", F);
BasicBlock *TrapBB = BasicBlock::Create(Ctx, "fail", F);
IRBuilder<> IRBFail(TrapBB);
[opaque pointer types] Add a FunctionCallee wrapper type, and use it. Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc doesn't choke on it, hopefully. Original Message: The FunctionCallee type is effectively a {FunctionType*,Value*} pair, and is a useful convenience to enable code to continue passing the result of getOrInsertFunction() through to EmitCall, even once pointer types lose their pointee-type. Then: - update the CallInst/InvokeInst instruction creation functions to take a Callee, - modify getOrInsertFunction to return FunctionCallee, and - update all callers appropriately. One area of particular note is the change to the sanitizer code. Previously, they had been casting the result of `getOrInsertFunction` to a `Function*` via `checkSanitizerInterfaceFunction`, and storing that. That would report an error if someone had already inserted a function declaraction with a mismatching signature. However, in general, LLVM allows for such mismatches, as `getOrInsertFunction` will automatically insert a bitcast if needed. As part of this cleanup, cause the sanitizer code to do the same. (It will call its functions using the expected signature, however they may have been declared.) Finally, in a small number of locations, callers of `getOrInsertFunction` actually were expecting/requiring that a brand new function was being created. In such cases, I've switched them to Function::Create instead. Differential Revision: https://reviews.llvm.org/D57315 llvm-svn: 352827
2019-02-01 10:28:03 +08:00
FunctionCallee CFICheckFailFn =
M.getOrInsertFunction("__cfi_check_fail", Type::getVoidTy(Ctx),
Type::getInt8PtrTy(Ctx), Type::getInt8PtrTy(Ctx));
IRBFail.CreateCall(CFICheckFailFn, {&CFICheckFailData, &Addr});
IRBFail.CreateBr(ExitBB);
IRBuilder<> IRBExit(ExitBB);
IRBExit.CreateRetVoid();
IRBuilder<> IRB(BB);
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
SwitchInst *SI = IRB.CreateSwitch(&CallSiteTypeId, TrapBB, TypeIds.size());
for (uint64_t TypeId : TypeIds) {
ConstantInt *CaseTypeId = ConstantInt::get(Type::getInt64Ty(Ctx), TypeId);
BasicBlock *TestBB = BasicBlock::Create(Ctx, "test", F);
IRBuilder<> IRBTest(TestBB);
Function *BitsetTestFn = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
Value *Test = IRBTest.CreateCall(
BitsetTestFn, {&Addr, MetadataAsValue::get(
Ctx, ConstantAsMetadata::get(CaseTypeId))});
BranchInst *BI = IRBTest.CreateCondBr(Test, ExitBB, TrapBB);
BI->setMetadata(LLVMContext::MD_prof, VeryLikelyWeights);
SI->addCase(CaseTypeId, TestBB);
IR: New representation for CFI and virtual call optimization pass metadata. The bitset metadata currently used in LLVM has a few problems: 1. It has the wrong name. The name "bitset" refers to an implementation detail of one use of the metadata (i.e. its original use case, CFI). This makes it harder to understand, as the name makes no sense in the context of virtual call optimization. 2. It is represented using a global named metadata node, rather than being directly associated with a global. This makes it harder to manipulate the metadata when rebuilding global variables, summarise it as part of ThinLTO and drop unused metadata when associated globals are dropped. For this reason, CFI does not currently work correctly when both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable globals, and fails to associate metadata with the rebuilt globals. As I understand it, the same problem could also affect ASan, which rebuilds globals with a red zone. This patch solves both of those problems in the following way: 1. Rename the metadata to "type metadata". This new name reflects how the metadata is currently being used (i.e. to represent type information for CFI and vtable opt). The new name is reflected in the name for the associated intrinsic (llvm.type.test) and pass (LowerTypeTests). 2. Attach metadata directly to the globals that it pertains to, rather than using the "llvm.bitsets" global metadata node as we are doing now. This is done using the newly introduced capability to attach metadata to global variables (r271348 and r271358). See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html Differential Revision: http://reviews.llvm.org/D21053 llvm-svn: 273729
2016-06-25 05:21:32 +08:00
++NumTypeIds;
}
}
bool CrossDSOCFI::runOnModule(Module &M) {
VeryLikelyWeights =
MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1);
if (M.getModuleFlag("Cross-DSO CFI") == nullptr)
return false;
buildCFICheck(M);
return true;
}
PreservedAnalyses CrossDSOCFIPass::run(Module &M, ModuleAnalysisManager &AM) {
CrossDSOCFI Impl;
bool Changed = Impl.runOnModule(M);
if (!Changed)
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}