llvm-project/lld/ELF/Arch/PPC64.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1244 lines
44 KiB
C++
Raw Normal View History

//===- PPC64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
[ELF][PPC64] Implement IPLT code sequence for non-preemptible IFUNC Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If there is a non-GOT non-PLT relocation, for pointer equality, we change the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the .glink entry. On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence loads the address from its associated .got.plt slot. An IPLT also has an associated .got.plt slot and can use the same code sequence. On EM_PPC64, the PLT code sequence is actually a bl instruction in .glink . It jumps to `__glink_PLTresolve` (the PLT header). and `__glink_PLTresolve` computes the .plt slot (relocated by R_PPC64_JUMP_SLOT). An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use `bl` in .iplt . Instead, create a call stub which has a similar code sequence as PPC64PltCallStub. We don't save the TOC pointer, so such scenarios will not work: a function pointer to a non-preemptible ifunc, which resolves to a function defined in another DSO. This is the restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC (though on many architectures it works in practice): Requirement (a): Resolver must be defined in the same translation unit as the implementations. If an ifunc is taken address but not called, technically we don't need an entry for it, but we currently do that. This patch makes // clang -fuse-ld=lld -fno-pie -no-pie a.c // clang -fuse-ld=lld -fPIE -pie a.c #include <stdio.h> static void impl(void) { puts("meow"); } void thefunc(void) __attribute__((ifunc("resolver"))); void *resolver(void) { return &impl; } int main(void) { thefunc(); void (*theptr)(void) = &thefunc; theptr(); } work on Linux glibc and FreeBSD. Calling a function pointer pointing to a Non-preemptible IFUNC never worked before. Differential Revision: https://reviews.llvm.org/D71509
2019-12-14 10:30:21 +08:00
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
static uint64_t ppc64TocOffset = 0x8000;
static uint64_t dynamicThreadPointerOffset = 0x8000;
// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
// instructions that can be used as part of the initial exec TLS sequence.
enum XFormOpcd {
LBZX = 87,
LHZX = 279,
LWZX = 23,
LDX = 21,
STBX = 215,
STHX = 407,
STWX = 151,
STDX = 149,
ADD = 266,
};
enum DFormOpcd {
LBZ = 34,
LBZU = 35,
LHZ = 40,
LHZU = 41,
LHAU = 43,
LWZ = 32,
LWZU = 33,
LFSU = 49,
LD = 58,
LFDU = 51,
STB = 38,
STBU = 39,
STH = 44,
STHU = 45,
STW = 36,
STWU = 37,
STFSU = 53,
STFDU = 55,
STD = 62,
ADDI = 14
};
uint64_t elf::getPPC64TocBase() {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
// TOC starts where the first of these sections starts. We always create a
// .got when we see a relocation that uses it, so for us the start is always
// the .got.
uint64_t tocVA = in.got->getVA();
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
// code (crt1.o) assumes that you can get from the TOC base to the
// start of the .toc section with only a single (signed) 16-bit relocation.
return tocVA + ppc64TocOffset;
}
unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
// The offset is encoded into the 3 most significant bits of the st_other
// field, with some special values described in section 3.4.1 of the ABI:
// 0 --> Zero offset between the GEP and LEP, and the function does NOT use
// the TOC pointer (r2). r2 will hold the same value on returning from
// the function as it did on entering the function.
// 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
// caller-saved register for all callers.
// 2-6 --> The binary logarithm of the offset eg:
// 2 --> 2^2 = 4 bytes --> 1 instruction.
// 6 --> 2^6 = 64 bytes --> 16 instructions.
// 7 --> Reserved.
uint8_t gepToLep = (stOther >> 5) & 7;
if (gepToLep < 2)
return 0;
// The value encoded in the st_other bits is the
// log-base-2(offset).
if (gepToLep < 7)
return 1 << gepToLep;
error("reserved value of 7 in the 3 most-significant-bits of st_other");
return 0;
}
bool elf::isPPC64SmallCodeModelTocReloc(RelType type) {
// The only small code model relocations that access the .toc section.
return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
}
void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
insn = config->isLE ? insn << 32 | insn >> 32 : insn;
write64(loc, insn);
}
static bool addOptional(StringRef name, uint64_t value,
std::vector<Defined *> &defined) {
Symbol *sym = symtab->find(name);
if (!sym || sym->isDefined())
return false;
sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL,
STV_HIDDEN, STT_FUNC, value,
/*size=*/0, /*section=*/nullptr});
defined.push_back(cast<Defined>(sym));
return true;
}
// If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
// firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
// The labels are defined only if they exist in the symbol table.
static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
int from, uint32_t firstInsn,
ArrayRef<uint32_t> tail) {
std::vector<Defined *> defined;
char name[16];
int first;
uint32_t *ptr = buf.data();
for (int r = from; r < 32; ++r) {
format("%s%d", prefix, r).snprint(name, sizeof(name));
if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
first = r - from;
write32(ptr++, firstInsn + 0x200008 * (r - from));
}
for (uint32_t insn : tail)
write32(ptr++, insn);
assert(ptr == &*buf.end());
if (defined.empty())
return;
// The full section content has the extent of [begin, end). We drop unused
// instructions and write [first,end).
auto *sec = make<InputSection>(
nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
4 * (buf.size() - first)),
".text");
inputSections.push_back(sec);
for (Defined *sym : defined) {
sym->section = sec;
sym->value -= 4 * first;
}
}
// Implements some save and restore functions as described by ELF V2 ABI to be
// compatible with GCC. With GCC -Os, when the number of call-saved registers
// exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
// expects the linker to define them. See
// https://sourceware.org/pipermail/binutils/2002-February/017444.html and
// https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
// weird because libgcc.a would be the natural place. The linker generation
// approach has the advantage that the linker can generate multiple copies to
// avoid long branch thunks. However, we don't consider the advantage
// significant enough to complicate our trunk implementation, so we take the
// simple approach and synthesize .text sections providing the implementation.
void elf::addPPC64SaveRestore() {
static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
// _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
// Tail: ld 0, 16(1); mtlr 0; blr
writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
{0xe8010010, mtlr_0, blr});
// _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
// Tail: blr
writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
// _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
// Tail: std 0, 16(1); blr
writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
// _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
// Tail: blr
writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
}
// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
template <typename ELFT>
static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
if (tocSec->numRelocations == 0)
return {};
// .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
// r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
// relocation index in most cases.
//
// In rare cases a TOC entry may store a constant that doesn't need an
// R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
// points to a relocation with larger r_offset. Do a linear probe then.
// Constants are extremely uncommon in .toc and the extra number of array
// accesses can be seen as a small constant.
ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
for (;;) {
if (relas[index].r_offset == offset) {
Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
}
if (relas[index].r_offset < offset || index == 0)
break;
--index;
}
return {};
}
// When accessing a symbol defined in another translation unit, compilers
// reserve a .toc entry, allocate a local label and generate toc-indirect
// instructions:
//
// addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
// ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
// ld/lwa 3, 0(3) # load the value from the address
//
// .section .toc,"aw",@progbits
// .LC0: .tc var[TC],var
//
// If var is defined, non-preemptable and addressable with a 32-bit signed
// offset from the toc base, the address of var can be computed by adding an
// offset to the toc base, saving a load.
//
// addis 3,2,var@toc@ha # this may be relaxed to a nop,
// addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
// ld/lwa 3, 0(3) # load the value from the address
//
// Returns true if the relaxation is performed.
bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
assert(config->tocOptimize);
if (rel.addend < 0)
return false;
// If the symbol is not the .toc section, this isn't a toc-indirection.
Defined *defSym = dyn_cast<Defined>(rel.sym);
if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
return false;
Defined *d;
int64_t addend;
auto *tocISB = cast<InputSectionBase>(defSym->section);
std::tie(d, addend) =
config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
: getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
// Only non-preemptable defined symbols can be relaxed.
if (!d || d->isPreemptible)
return false;
// R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
// ifunc and changed its type to STT_FUNC.
assert(!d->isGnuIFunc());
// Two instructions can materialize a 32-bit signed offset from the toc base.
uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
if (!isInt<32>(tocRelative))
return false;
// Add PPC64TocOffset that will be subtracted by PPC64::relocate().
target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
return true;
}
namespace {
class PPC64 final : public TargetInfo {
public:
PPC64();
int getTlsGdRelaxSkip(RelType type) const override;
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
[ELF][PPC64] Implement IPLT code sequence for non-preemptible IFUNC Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If there is a non-GOT non-PLT relocation, for pointer equality, we change the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the .glink entry. On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence loads the address from its associated .got.plt slot. An IPLT also has an associated .got.plt slot and can use the same code sequence. On EM_PPC64, the PLT code sequence is actually a bl instruction in .glink . It jumps to `__glink_PLTresolve` (the PLT header). and `__glink_PLTresolve` computes the .plt slot (relocated by R_PPC64_JUMP_SLOT). An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use `bl` in .iplt . Instead, create a call stub which has a similar code sequence as PPC64PltCallStub. We don't save the TOC pointer, so such scenarios will not work: a function pointer to a non-preemptible ifunc, which resolves to a function defined in another DSO. This is the restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC (though on many architectures it works in practice): Requirement (a): Resolver must be defined in the same translation unit as the implementations. If an ifunc is taken address but not called, technically we don't need an entry for it, but we currently do that. This patch makes // clang -fuse-ld=lld -fno-pie -no-pie a.c // clang -fuse-ld=lld -fPIE -pie a.c #include <stdio.h> static void impl(void) { puts("meow"); } void thefunc(void) __attribute__((ifunc("resolver"))); void *resolver(void) { return &impl; } int main(void) { thefunc(); void (*theptr)(void) = &thefunc; theptr(); } work on Linux glibc and FreeBSD. Calling a function pointer pointing to a Non-preemptible IFUNC never worked before. Differential Revision: https://reviews.llvm.org/D71509
2019-12-14 10:30:21 +08:00
void writeIplt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void writeGotHeader(uint8_t *buf) const override;
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const override;
uint32_t getThunkSectionSpacing() const override;
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const override;
void relaxGot(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
[Coding style change] Rename variables so that they start with a lowercase letter This patch is mechanically generated by clang-llvm-rename tool that I wrote using Clang Refactoring Engine just for creating this patch. You can see the source code of the tool at https://reviews.llvm.org/D64123. There's no manual post-processing; you can generate the same patch by re-running the tool against lld's code base. Here is the main discussion thread to change the LLVM coding style: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html In the discussion thread, I proposed we use lld as a testbed for variable naming scheme change, and this patch does that. I chose to rename variables so that they are in camelCase, just because that is a minimal change to make variables to start with a lowercase letter. Note to downstream patch maintainers: if you are maintaining a downstream lld repo, just rebasing ahead of this commit would cause massive merge conflicts because this patch essentially changes every line in the lld subdirectory. But there's a remedy. clang-llvm-rename tool is a batch tool, so you can rename variables in your downstream repo with the tool. Given that, here is how to rebase your repo to a commit after the mass renaming: 1. rebase to the commit just before the mass variable renaming, 2. apply the tool to your downstream repo to mass-rename variables locally, and 3. rebase again to the head. Most changes made by the tool should be identical for a downstream repo and for the head, so at the step 3, almost all changes should be merged and disappear. I'd expect that there would be some lines that you need to merge by hand, but that shouldn't be too many. Differential Revision: https://reviews.llvm.org/D64121 llvm-svn: 365595
2019-07-10 13:00:37 +08:00
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const override;
};
} // namespace
// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t lo(uint64_t v) { return v; }
static uint16_t hi(uint64_t v) { return v >> 16; }
static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
static uint16_t higher(uint64_t v) { return v >> 32; }
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
static uint16_t highest(uint64_t v) { return v >> 48; }
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
// Extracts the 'PO' field of an instruction encoding.
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
static bool isDQFormInstruction(uint32_t encoding) {
switch (getPrimaryOpCode(encoding)) {
default:
return false;
case 56:
// The only instruction with a primary opcode of 56 is `lq`.
return true;
case 61:
// There are both DS and DQ instruction forms with this primary opcode.
// Namely `lxv` and `stxv` are the DQ-forms that use it.
// The DS 'XO' bits being set to 01 is restricted to DQ form.
return (encoding & 3) == 0x1;
}
}
static bool isInstructionUpdateForm(uint32_t encoding) {
switch (getPrimaryOpCode(encoding)) {
default:
return false;
case LBZU:
case LHAU:
case LHZU:
case LWZU:
case LFSU:
case LFDU:
case STBU:
case STHU:
case STWU:
case STFSU:
case STFDU:
return true;
// LWA has the same opcode as LD, and the DS bits is what differentiates
// between LD/LDU/LWA
case LD:
case STD:
return (encoding & 3) == 1;
}
}
// There are a number of places when we either want to read or write an
// instruction when handling a half16 relocation type. On big-endian the buffer
// pointer is pointing into the middle of the word we want to extract, and on
// little-endian it is pointing to the start of the word. These 2 helpers are to
// simplify reading and writing in that context.
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
write32(config->isLE ? loc : loc - 2, insn);
}
static uint32_t readFromHalf16(const uint8_t *loc) {
return read32(config->isLE ? loc : loc - 2);
}
static uint64_t readPrefixedInstruction(const uint8_t *loc) {
uint64_t fullInstr = read64(loc);
return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
}
PPC64::PPC64() {
copyRel = R_PPC64_COPY;
gotRel = R_PPC64_GLOB_DAT;
noneRel = R_PPC64_NONE;
pltRel = R_PPC64_JMP_SLOT;
relativeRel = R_PPC64_RELATIVE;
iRelativeRel = R_PPC64_IRELATIVE;
symbolicRel = R_PPC64_ADDR64;
pltHeaderSize = 60;
pltEntrySize = 4;
[ELF][PPC64] Implement IPLT code sequence for non-preemptible IFUNC Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If there is a non-GOT non-PLT relocation, for pointer equality, we change the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the .glink entry. On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence loads the address from its associated .got.plt slot. An IPLT also has an associated .got.plt slot and can use the same code sequence. On EM_PPC64, the PLT code sequence is actually a bl instruction in .glink . It jumps to `__glink_PLTresolve` (the PLT header). and `__glink_PLTresolve` computes the .plt slot (relocated by R_PPC64_JUMP_SLOT). An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use `bl` in .iplt . Instead, create a call stub which has a similar code sequence as PPC64PltCallStub. We don't save the TOC pointer, so such scenarios will not work: a function pointer to a non-preemptible ifunc, which resolves to a function defined in another DSO. This is the restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC (though on many architectures it works in practice): Requirement (a): Resolver must be defined in the same translation unit as the implementations. If an ifunc is taken address but not called, technically we don't need an entry for it, but we currently do that. This patch makes // clang -fuse-ld=lld -fno-pie -no-pie a.c // clang -fuse-ld=lld -fPIE -pie a.c #include <stdio.h> static void impl(void) { puts("meow"); } void thefunc(void) __attribute__((ifunc("resolver"))); void *resolver(void) { return &impl; } int main(void) { thefunc(); void (*theptr)(void) = &thefunc; theptr(); } work on Linux glibc and FreeBSD. Calling a function pointer pointing to a Non-preemptible IFUNC never worked before. Differential Revision: https://reviews.llvm.org/D71509
2019-12-14 10:30:21 +08:00
ipltEntrySize = 16; // PPC64PltCallStub::size
gotBaseSymInGotPlt = false;
gotHeaderEntriesNum = 1;
gotPltHeaderEntriesNum = 2;
needsThunks = true;
[Coding style change] Rename variables so that they start with a lowercase letter This patch is mechanically generated by clang-llvm-rename tool that I wrote using Clang Refactoring Engine just for creating this patch. You can see the source code of the tool at https://reviews.llvm.org/D64123. There's no manual post-processing; you can generate the same patch by re-running the tool against lld's code base. Here is the main discussion thread to change the LLVM coding style: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html In the discussion thread, I proposed we use lld as a testbed for variable naming scheme change, and this patch does that. I chose to rename variables so that they are in camelCase, just because that is a minimal change to make variables to start with a lowercase letter. Note to downstream patch maintainers: if you are maintaining a downstream lld repo, just rebasing ahead of this commit would cause massive merge conflicts because this patch essentially changes every line in the lld subdirectory. But there's a remedy. clang-llvm-rename tool is a batch tool, so you can rename variables in your downstream repo with the tool. Given that, here is how to rebase your repo to a commit after the mass renaming: 1. rebase to the commit just before the mass variable renaming, 2. apply the tool to your downstream repo to mass-rename variables locally, and 3. rebase again to the head. Most changes made by the tool should be identical for a downstream repo and for the head, so at the step 3, almost all changes should be merged and disappear. I'd expect that there would be some lines that you need to merge by hand, but that shouldn't be too many. Differential Revision: https://reviews.llvm.org/D64121 llvm-svn: 365595
2019-07-10 13:00:37 +08:00
tlsModuleIndexRel = R_PPC64_DTPMOD64;
tlsOffsetRel = R_PPC64_DTPREL64;
[Coding style change] Rename variables so that they start with a lowercase letter This patch is mechanically generated by clang-llvm-rename tool that I wrote using Clang Refactoring Engine just for creating this patch. You can see the source code of the tool at https://reviews.llvm.org/D64123. There's no manual post-processing; you can generate the same patch by re-running the tool against lld's code base. Here is the main discussion thread to change the LLVM coding style: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html In the discussion thread, I proposed we use lld as a testbed for variable naming scheme change, and this patch does that. I chose to rename variables so that they are in camelCase, just because that is a minimal change to make variables to start with a lowercase letter. Note to downstream patch maintainers: if you are maintaining a downstream lld repo, just rebasing ahead of this commit would cause massive merge conflicts because this patch essentially changes every line in the lld subdirectory. But there's a remedy. clang-llvm-rename tool is a batch tool, so you can rename variables in your downstream repo with the tool. Given that, here is how to rebase your repo to a commit after the mass renaming: 1. rebase to the commit just before the mass variable renaming, 2. apply the tool to your downstream repo to mass-rename variables locally, and 3. rebase again to the head. Most changes made by the tool should be identical for a downstream repo and for the head, so at the step 3, almost all changes should be merged and disappear. I'd expect that there would be some lines that you need to merge by hand, but that shouldn't be too many. Differential Revision: https://reviews.llvm.org/D64121 llvm-svn: 365595
2019-07-10 13:00:37 +08:00
tlsGotRel = R_PPC64_TPREL64;
[Coding style change] Rename variables so that they start with a lowercase letter This patch is mechanically generated by clang-llvm-rename tool that I wrote using Clang Refactoring Engine just for creating this patch. You can see the source code of the tool at https://reviews.llvm.org/D64123. There's no manual post-processing; you can generate the same patch by re-running the tool against lld's code base. Here is the main discussion thread to change the LLVM coding style: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html In the discussion thread, I proposed we use lld as a testbed for variable naming scheme change, and this patch does that. I chose to rename variables so that they are in camelCase, just because that is a minimal change to make variables to start with a lowercase letter. Note to downstream patch maintainers: if you are maintaining a downstream lld repo, just rebasing ahead of this commit would cause massive merge conflicts because this patch essentially changes every line in the lld subdirectory. But there's a remedy. clang-llvm-rename tool is a batch tool, so you can rename variables in your downstream repo with the tool. Given that, here is how to rebase your repo to a commit after the mass renaming: 1. rebase to the commit just before the mass variable renaming, 2. apply the tool to your downstream repo to mass-rename variables locally, and 3. rebase again to the head. Most changes made by the tool should be identical for a downstream repo and for the head, so at the step 3, almost all changes should be merged and disappear. I'd expect that there would be some lines that you need to merge by hand, but that shouldn't be too many. Differential Revision: https://reviews.llvm.org/D64121 llvm-svn: 365595
2019-07-10 13:00:37 +08:00
needsMoreStackNonSplit = false;
// We need 64K pages (at least under glibc/Linux, the loader won't
// set different permissions on a finer granularity than that).
defaultMaxPageSize = 65536;
// The PPC64 ELF ABI v1 spec, says:
//
// It is normally desirable to put segments with different characteristics
// in separate 256 Mbyte portions of the address space, to give the
// operating system full paging flexibility in the 64-bit address space.
//
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
// use 0x10000000 as the starting address.
defaultImageBase = 0x10000000;
write32(trapInstr.data(), 0x7fe00008);
}
int PPC64::getTlsGdRelaxSkip(RelType type) const {
// A __tls_get_addr call instruction is marked with 2 relocations:
//
// R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
// R_PPC64_REL24: __tls_get_addr
//
// After the relaxation we no longer call __tls_get_addr and should skip both
// relocations to not create a false dependence on __tls_get_addr being
// defined.
if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
return 2;
return 1;
}
static uint32_t getEFlags(InputFile *file) {
if (config->ekind == ELF64BEKind)
return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader()->e_flags;
return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader()->e_flags;
}
// This file implements v2 ABI. This function makes sure that all
// object files have v2 or an unspecified version as an ABI version.
uint32_t PPC64::calcEFlags() const {
for (InputFile *f : objectFiles) {
uint32_t flag = getEFlags(f);
if (flag == 1)
error(toString(f) + ": ABI version 1 is not supported");
else if (flag > 2)
error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
}
return 2;
}
void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
switch (rel.type) {
case R_PPC64_TOC16_HA:
// Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
relocate(loc, rel, val);
break;
case R_PPC64_TOC16_LO_DS: {
// Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
// "addi reg, 2, var@toc".
uint32_t insn = readFromHalf16(loc);
if (getPrimaryOpCode(insn) != LD)
error("expected a 'ld' for got-indirect to toc-relative relaxing");
writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
relocateNoSym(loc, R_PPC64_TOC16_LO, val);
break;
}
default:
llvm_unreachable("unexpected relocation type");
}
}
void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
// Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` will look like:
// Instruction Relocation Symbol
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
// R_PPC64_REL24 __tls_get_addr
// nop None None
// Relaxing to local exec entails converting:
// addis r3, r2, x@got@tlsgd@ha into nop
// addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
// bl __tls_get_addr(x@tlsgd) into nop
// nop into addi r3, r3, x@tprel@l
switch (rel.type) {
case R_PPC64_GOT_TLSGD16_HA:
writeFromHalf16(loc, 0x60000000); // nop
break;
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSGD16_LO:
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
break;
case R_PPC64_TLSGD:
write32(loc, 0x60000000); // nop
write32(loc + 4, 0x38630000); // addi r3, r3
// Since we are relocating a half16 type relocation and Loc + 4 points to
// the start of an instruction we need to advance the buffer by an extra
// 2 bytes on BE.
relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
R_PPC64_TPREL16_LO, val);
break;
default:
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
}
}
void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
// Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
// The local dynamic code sequence for a global `x` will look like:
// Instruction Relocation Symbol
// addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
// addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
// R_PPC64_REL24 __tls_get_addr
// nop None None
// Relaxing to local exec entails converting:
// addis r3, r2, x@got@tlsld@ha into nop
// addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
// bl __tls_get_addr(x@tlsgd) into nop
// nop into addi r3, r3, 4096
switch (rel.type) {
case R_PPC64_GOT_TLSLD16_HA:
writeFromHalf16(loc, 0x60000000); // nop
break;
case R_PPC64_GOT_TLSLD16_LO:
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
break;
case R_PPC64_TLSLD:
write32(loc, 0x60000000); // nop
write32(loc + 4, 0x38631000); // addi r3, r3, 4096
break;
case R_PPC64_DTPREL16:
case R_PPC64_DTPREL16_HA:
case R_PPC64_DTPREL16_HI:
case R_PPC64_DTPREL16_DS:
case R_PPC64_DTPREL16_LO:
case R_PPC64_DTPREL16_LO_DS:
relocate(loc, rel, val);
break;
default:
llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
}
}
unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
switch (secondaryOp) {
case LBZX:
return LBZ;
case LHZX:
return LHZ;
case LWZX:
return LWZ;
case LDX:
return LD;
case STBX:
return STB;
case STHX:
return STH;
case STWX:
return STW;
case STDX:
return STD;
case ADD:
return ADDI;
default:
return 0;
}
}
void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
// The initial exec code sequence for a global `x` will look like:
// Instruction Relocation Symbol
// addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
// ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
// add r9, r9, x@tls R_PPC64_TLS x
// Relaxing to local exec entails converting:
// addis r9, r2, x@got@tprel@ha into nop
// ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
// add r9, r9, x@tls into addi r9, r9, x@tprel@l
// x@tls R_PPC64_TLS is a relocation which does not compute anything,
// it is replaced with r13 (thread pointer).
// The add instruction in the initial exec sequence has multiple variations
// that need to be handled. If we are building an address it will use an add
// instruction, if we are accessing memory it will use any of the X-form
// indexed load or store instructions.
unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
switch (rel.type) {
case R_PPC64_GOT_TPREL16_HA:
write32(loc - offset, 0x60000000); // nop
break;
case R_PPC64_GOT_TPREL16_LO_DS:
case R_PPC64_GOT_TPREL16_DS: {
uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
break;
}
case R_PPC64_TLS: {
uint32_t primaryOp = getPrimaryOpCode(read32(loc));
if (primaryOp != 31)
error("unrecognized instruction for IE to LE R_PPC64_TLS");
uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
uint32_t dFormOp = getPPCDFormOp(secondaryOp);
if (dFormOp == 0)
error("unrecognized instruction for IE to LE R_PPC64_TLS");
write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
break;
}
default:
llvm_unreachable("unknown relocation for IE to LE");
break;
}
}
RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_PPC64_NONE:
return R_NONE;
case R_PPC64_ADDR16:
case R_PPC64_ADDR16_DS:
case R_PPC64_ADDR16_HA:
case R_PPC64_ADDR16_HI:
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_ADDR16_LO:
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_ADDR32:
case R_PPC64_ADDR64:
return R_ABS;
case R_PPC64_GOT16:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_LO_DS:
return R_GOT_OFF;
case R_PPC64_TOC16:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_HI:
case R_PPC64_TOC16_LO:
return R_GOTREL;
case R_PPC64_GOT_PCREL34:
return R_GOT_PC;
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_LO_DS:
return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
case R_PPC64_TOC:
return R_PPC64_TOCBASE;
case R_PPC64_REL14:
case R_PPC64_REL24:
return R_PPC64_CALL_PLT;
case R_PPC64_REL24_NOTOC:
return R_PLT_PC;
case R_PPC64_REL16_LO:
case R_PPC64_REL16_HA:
case R_PPC64_REL16_HI:
case R_PPC64_REL32:
case R_PPC64_REL64:
case R_PPC64_PCREL34:
return R_PC;
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSGD16_HA:
case R_PPC64_GOT_TLSGD16_HI:
case R_PPC64_GOT_TLSGD16_LO:
return R_TLSGD_GOT;
case R_PPC64_GOT_TLSLD16:
case R_PPC64_GOT_TLSLD16_HA:
case R_PPC64_GOT_TLSLD16_HI:
case R_PPC64_GOT_TLSLD16_LO:
return R_TLSLD_GOT;
case R_PPC64_GOT_TPREL16_HA:
case R_PPC64_GOT_TPREL16_LO_DS:
case R_PPC64_GOT_TPREL16_DS:
case R_PPC64_GOT_TPREL16_HI:
return R_GOT_OFF;
case R_PPC64_GOT_DTPREL16_HA:
case R_PPC64_GOT_DTPREL16_LO_DS:
case R_PPC64_GOT_DTPREL16_DS:
case R_PPC64_GOT_DTPREL16_HI:
return R_TLSLD_GOT_OFF;
case R_PPC64_TPREL16:
case R_PPC64_TPREL16_HA:
case R_PPC64_TPREL16_LO:
case R_PPC64_TPREL16_HI:
case R_PPC64_TPREL16_DS:
case R_PPC64_TPREL16_LO_DS:
case R_PPC64_TPREL16_HIGHER:
case R_PPC64_TPREL16_HIGHERA:
case R_PPC64_TPREL16_HIGHEST:
case R_PPC64_TPREL16_HIGHESTA:
return R_TLS;
case R_PPC64_DTPREL16:
case R_PPC64_DTPREL16_DS:
case R_PPC64_DTPREL16_HA:
case R_PPC64_DTPREL16_HI:
case R_PPC64_DTPREL16_HIGHER:
case R_PPC64_DTPREL16_HIGHERA:
case R_PPC64_DTPREL16_HIGHEST:
case R_PPC64_DTPREL16_HIGHESTA:
case R_PPC64_DTPREL16_LO:
case R_PPC64_DTPREL16_LO_DS:
case R_PPC64_DTPREL64:
return R_DTPREL;
case R_PPC64_TLSGD:
return R_TLSDESC_CALL;
case R_PPC64_TLSLD:
return R_TLSLD_HINT;
case R_PPC64_TLS:
return R_TLSIE_HINT;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelType PPC64::getDynRel(RelType type) const {
if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
return R_PPC64_ADDR64;
return R_PPC64_NONE;
}
void PPC64::writeGotHeader(uint8_t *buf) const {
write64(buf, getPPC64TocBase());
}
void PPC64::writePltHeader(uint8_t *buf) const {
// The generic resolver stub goes first.
write32(buf + 0, 0x7c0802a6); // mflr r0
write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
write32(buf + 8, 0x7d6802a6); // mflr r11
write32(buf + 12, 0x7c0803a6); // mtlr r0
write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
write32(buf + 20, 0x380cffcc); // subi r0,r12,52
write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
write32(buf + 44, 0x7d8903a6); // mtctr r12
write32(buf + 48, 0x4e800420); // bctr
// The 'bcl' instruction will set the link register to the address of the
// following instruction ('mflr r11'). Here we store the offset from that
// instruction to the first entry in the GotPlt section.
int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
write64(buf + 52, gotPltOffset);
}
void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t /*pltEntryAddr*/) const {
int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize;
// bl __glink_PLTresolve
write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
}
[ELF][PPC64] Implement IPLT code sequence for non-preemptible IFUNC Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If there is a non-GOT non-PLT relocation, for pointer equality, we change the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the .glink entry. On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence loads the address from its associated .got.plt slot. An IPLT also has an associated .got.plt slot and can use the same code sequence. On EM_PPC64, the PLT code sequence is actually a bl instruction in .glink . It jumps to `__glink_PLTresolve` (the PLT header). and `__glink_PLTresolve` computes the .plt slot (relocated by R_PPC64_JUMP_SLOT). An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use `bl` in .iplt . Instead, create a call stub which has a similar code sequence as PPC64PltCallStub. We don't save the TOC pointer, so such scenarios will not work: a function pointer to a non-preemptible ifunc, which resolves to a function defined in another DSO. This is the restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC (though on many architectures it works in practice): Requirement (a): Resolver must be defined in the same translation unit as the implementations. If an ifunc is taken address but not called, technically we don't need an entry for it, but we currently do that. This patch makes // clang -fuse-ld=lld -fno-pie -no-pie a.c // clang -fuse-ld=lld -fPIE -pie a.c #include <stdio.h> static void impl(void) { puts("meow"); } void thefunc(void) __attribute__((ifunc("resolver"))); void *resolver(void) { return &impl; } int main(void) { thefunc(); void (*theptr)(void) = &thefunc; theptr(); } work on Linux glibc and FreeBSD. Calling a function pointer pointing to a Non-preemptible IFUNC never worked before. Differential Revision: https://reviews.llvm.org/D71509
2019-12-14 10:30:21 +08:00
void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
uint64_t /*pltEntryAddr*/) const {
writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
}
static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
// Relocations relative to the toc-base need to be adjusted by the Toc offset.
uint64_t tocBiasedVal = val - ppc64TocOffset;
// Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
switch (type) {
// TOC biased relocation.
case R_PPC64_GOT16:
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSLD16:
case R_PPC64_TOC16:
return {R_PPC64_ADDR16, tocBiasedVal};
case R_PPC64_GOT16_DS:
case R_PPC64_TOC16_DS:
case R_PPC64_GOT_TPREL16_DS:
case R_PPC64_GOT_DTPREL16_DS:
return {R_PPC64_ADDR16_DS, tocBiasedVal};
case R_PPC64_GOT16_HA:
case R_PPC64_GOT_TLSGD16_HA:
case R_PPC64_GOT_TLSLD16_HA:
case R_PPC64_GOT_TPREL16_HA:
case R_PPC64_GOT_DTPREL16_HA:
case R_PPC64_TOC16_HA:
return {R_PPC64_ADDR16_HA, tocBiasedVal};
case R_PPC64_GOT16_HI:
case R_PPC64_GOT_TLSGD16_HI:
case R_PPC64_GOT_TLSLD16_HI:
case R_PPC64_GOT_TPREL16_HI:
case R_PPC64_GOT_DTPREL16_HI:
case R_PPC64_TOC16_HI:
return {R_PPC64_ADDR16_HI, tocBiasedVal};
case R_PPC64_GOT16_LO:
case R_PPC64_GOT_TLSGD16_LO:
case R_PPC64_GOT_TLSLD16_LO:
case R_PPC64_TOC16_LO:
return {R_PPC64_ADDR16_LO, tocBiasedVal};
case R_PPC64_GOT16_LO_DS:
case R_PPC64_TOC16_LO_DS:
case R_PPC64_GOT_TPREL16_LO_DS:
case R_PPC64_GOT_DTPREL16_LO_DS:
return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
// Dynamic Thread pointer biased relocation types.
case R_PPC64_DTPREL16:
return {R_PPC64_ADDR16, dtpBiasedVal};
case R_PPC64_DTPREL16_DS:
return {R_PPC64_ADDR16_DS, dtpBiasedVal};
case R_PPC64_DTPREL16_HA:
return {R_PPC64_ADDR16_HA, dtpBiasedVal};
case R_PPC64_DTPREL16_HI:
return {R_PPC64_ADDR16_HI, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHER:
return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHERA:
return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHEST:
return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
case R_PPC64_DTPREL16_HIGHESTA:
return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
case R_PPC64_DTPREL16_LO:
return {R_PPC64_ADDR16_LO, dtpBiasedVal};
case R_PPC64_DTPREL16_LO_DS:
return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
case R_PPC64_DTPREL64:
return {R_PPC64_ADDR64, dtpBiasedVal};
default:
return {type, val};
}
}
static bool isTocOptType(RelType type) {
switch (type) {
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_LO_DS:
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_LO_DS:
case R_PPC64_TOC16_LO:
return true;
default:
return false;
}
}
void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
RelType type = rel.type;
bool shouldTocOptimize = isTocOptType(type);
// For dynamic thread pointer relative, toc-relative, and got-indirect
// relocations, proceed in terms of the corresponding ADDR16 relocation type.
std::tie(type, val) = toAddr16Rel(type, val);
switch (type) {
case R_PPC64_ADDR14: {
checkAlignment(loc, val, 4, rel);
// Preserve the AA/LK bits in the branch instruction
uint8_t aalk = loc[3];
write16(loc + 2, (aalk & 3) | (val & 0xfffc));
break;
}
case R_PPC64_ADDR16:
checkIntUInt(loc, val, 16, rel);
write16(loc, val);
break;
case R_PPC64_ADDR32:
checkIntUInt(loc, val, 32, rel);
write32(loc, val);
break;
case R_PPC64_ADDR16_DS:
case R_PPC64_TPREL16_DS: {
checkInt(loc, val, 16, rel);
// DQ-form instructions use bits 28-31 as part of the instruction encoding
// DS-form instructions only use bits 30-31.
uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
checkAlignment(loc, lo(val), mask + 1, rel);
write16(loc, (read16(loc) & mask) | lo(val));
} break;
case R_PPC64_ADDR16_HA:
case R_PPC64_REL16_HA:
case R_PPC64_TPREL16_HA:
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
writeFromHalf16(loc, 0x60000000);
else
write16(loc, ha(val));
break;
case R_PPC64_ADDR16_HI:
case R_PPC64_REL16_HI:
case R_PPC64_TPREL16_HI:
write16(loc, hi(val));
break;
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_TPREL16_HIGHER:
write16(loc, higher(val));
break;
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_TPREL16_HIGHERA:
write16(loc, highera(val));
break;
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_TPREL16_HIGHEST:
write16(loc, highest(val));
break;
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_TPREL16_HIGHESTA:
write16(loc, highesta(val));
break;
case R_PPC64_ADDR16_LO:
case R_PPC64_REL16_LO:
case R_PPC64_TPREL16_LO:
// When the high-adjusted part of a toc relocation evaluates to 0, it is
// changed into a nop. The lo part then needs to be updated to use the
// toc-pointer register r2, as the base register.
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
uint32_t insn = readFromHalf16(loc);
if (isInstructionUpdateForm(insn))
error(getErrorLocation(loc) +
"can't toc-optimize an update instruction: 0x" +
utohexstr(insn));
writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
} else {
write16(loc, lo(val));
}
break;
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_TPREL16_LO_DS: {
// DQ-form instructions use bits 28-31 as part of the instruction encoding
// DS-form instructions only use bits 30-31.
uint32_t insn = readFromHalf16(loc);
uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
checkAlignment(loc, lo(val), mask + 1, rel);
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
// When the high-adjusted part of a toc relocation evaluates to 0, it is
// changed into a nop. The lo part then needs to be updated to use the toc
// pointer register r2, as the base register.
if (isInstructionUpdateForm(insn))
error(getErrorLocation(loc) +
"Can't toc-optimize an update instruction: 0x" +
Twine::utohexstr(insn));
insn &= 0xffe00000 | mask;
writeFromHalf16(loc, insn | 0x00020000 | lo(val));
} else {
write16(loc, (read16(loc) & mask) | lo(val));
}
} break;
case R_PPC64_TPREL16:
checkInt(loc, val, 16, rel);
write16(loc, val);
break;
case R_PPC64_REL32:
checkInt(loc, val, 32, rel);
write32(loc, val);
break;
case R_PPC64_ADDR64:
case R_PPC64_REL64:
case R_PPC64_TOC:
write64(loc, val);
break;
case R_PPC64_REL14: {
uint32_t mask = 0x0000FFFC;
checkInt(loc, val, 16, rel);
checkAlignment(loc, val, 4, rel);
write32(loc, (read32(loc) & ~mask) | (val & mask));
break;
}
case R_PPC64_REL24:
case R_PPC64_REL24_NOTOC: {
uint32_t mask = 0x03FFFFFC;
checkInt(loc, val, 26, rel);
checkAlignment(loc, val, 4, rel);
write32(loc, (read32(loc) & ~mask) | (val & mask));
break;
}
case R_PPC64_DTPREL64:
write64(loc, val - dynamicThreadPointerOffset);
break;
case R_PPC64_PCREL34: {
const uint64_t si0Mask = 0x00000003ffff0000;
const uint64_t si1Mask = 0x000000000000ffff;
const uint64_t fullMask = 0x0003ffff0000ffff;
checkInt(loc, val, 34, rel);
uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
(val & si1Mask));
break;
}
case R_PPC64_GOT_PCREL34: {
const uint64_t si0Mask = 0x00000003ffff0000;
const uint64_t si1Mask = 0x000000000000ffff;
const uint64_t fullMask = 0x0003ffff0000ffff;
checkInt(loc, val, 34, rel);
uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
(val & si1Mask));
break;
}
default:
llvm_unreachable("unknown relocation");
}
}
bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s, int64_t a) const {
if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
type != R_PPC64_REL24_NOTOC)
return false;
// If a function is in the Plt it needs to be called with a call-stub.
if (s.isInPlt())
return true;
// This check looks at the st_other bits of the callee with relocation
// R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
// clobbers the TOC and we need an R2 save stub.
if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
return true;
if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
return true;
// If a symbol is a weak undefined and we are compiling an executable
// it doesn't need a range-extending thunk since it can't be called.
if (s.isUndefWeak() && !config->shared)
return false;
// If the offset exceeds the range of the branch type then it will need
// a range-extending thunk.
// See the comment in getRelocTargetVA() about R_PPC64_CALL.
return !inBranchRange(type, branchAddr,
s.getVA(a) +
getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
}
uint32_t PPC64::getThunkSectionSpacing() const {
// See comment in Arch/ARM.cpp for a more detailed explanation of
// getThunkSectionSpacing(). For PPC64 we pick the constant here based on
// R_PPC64_REL24, which is used by unconditional branch instructions.
// 0x2000000 = (1 << 24-1) * 4
return 0x2000000;
}
bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
int64_t offset = dst - src;
if (type == R_PPC64_REL14)
return isInt<16>(offset);
if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
return isInt<26>(offset);
llvm_unreachable("unsupported relocation type used in branch");
}
RelExpr PPC64::adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const {
if (expr == R_RELAX_TLS_GD_TO_IE)
return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
if (expr == R_RELAX_TLS_LD_TO_LE)
return R_RELAX_TLS_LD_TO_LE_ABS;
return expr;
}
// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` uses 4 instructions.
// Instruction Relocation Symbol
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
// R_PPC64_REL24 __tls_get_addr
// nop None None
//
// Relaxing to initial-exec entails:
// 1) Convert the addis/addi pair that builds the address of the tls_index
// struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
// 2) Convert the call to __tls_get_addr to a nop.
// 3) Convert the nop following the call to an add of the loaded offset to the
// thread pointer.
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
// used as the relaxation hint for both steps 2 and 3.
void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
switch (rel.type) {
case R_PPC64_GOT_TLSGD16_HA:
// This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
// addis rT, r2, sym@got@tprel@ha.
relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
return;
case R_PPC64_GOT_TLSGD16:
case R_PPC64_GOT_TLSGD16_LO: {
// Relax from addi r3, rA, sym@got@tlsgd@l to
// ld r3, sym@got@tprel@l(rA)
uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
writeFromHalf16(loc, 0xe8600000 | ra);
relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
return;
}
case R_PPC64_TLSGD:
write32(loc, 0x60000000); // bl __tls_get_addr(sym@tlsgd) --> nop
write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
return;
default:
llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
}
}
// The prologue for a split-stack function is expected to look roughly
// like this:
// .Lglobal_entry_point:
// # TOC pointer initialization.
// ...
// .Llocal_entry_point:
// # load the __private_ss member of the threads tcbhead.
// ld r0,-0x7000-64(r13)
// # subtract the functions stack size from the stack pointer.
// addis r12, r1, ha(-stack-frame size)
// addi r12, r12, l(-stack-frame size)
// # compare needed to actual and branch to allocate_more_stack if more
// # space is needed, otherwise fallthrough to 'normal' function body.
// cmpld cr7,r12,r0
// blt- cr7, .Lallocate_more_stack
//
// -) The allocate_more_stack block might be placed after the split-stack
// prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
// instead.
// -) If either the addis or addi is not needed due to the stack size being
// smaller then 32K or a multiple of 64K they will be replaced with a nop,
// but there will always be 2 instructions the linker can overwrite for the
// adjusted stack size.
//
// The linkers job here is to increase the stack size used in the addis/addi
// pair by split-stack-size-adjust.
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
// addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const {
// If the caller has a global entry point adjust the buffer past it. The start
// of the split-stack prologue will be at the local entry point.
loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
// At the very least we expect to see a load of some split-stack data from the
// tcb, and 2 instructions that calculate the ending stack address this
// function will require. If there is not enough room for at least 3
// instructions it can't be a split-stack prologue.
if (loc + 12 >= end)
return false;
// First instruction must be `ld r0, -0x7000-64(r13)`
if (read32(loc) != 0xe80d8fc0)
return false;
int16_t hiImm = 0;
int16_t loImm = 0;
// First instruction can be either an addis if the frame size is larger then
// 32K, or an addi if the size is less then 32K.
int32_t firstInstr = read32(loc + 4);
if (getPrimaryOpCode(firstInstr) == 15) {
hiImm = firstInstr & 0xFFFF;
} else if (getPrimaryOpCode(firstInstr) == 14) {
loImm = firstInstr & 0xFFFF;
} else {
return false;
}
// Second instruction is either an addi or a nop. If the first instruction was
// an addi then LoImm is set and the second instruction must be a nop.
uint32_t secondInstr = read32(loc + 8);
if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
loImm = secondInstr & 0xFFFF;
} else if (secondInstr != 0x60000000) {
return false;
}
// The register operands of the first instruction should be the stack-pointer
// (r1) as the input (RA) and r12 as the output (RT). If the second
// instruction is not a nop, then it should use r12 as both input and output.
auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
uint8_t expectedRA) {
return ((instr & 0x3E00000) >> 21 == expectedRT) &&
((instr & 0x1F0000) >> 16 == expectedRA);
};
if (!checkRegOperands(firstInstr, 12, 1))
return false;
if (secondInstr != 0x60000000 && !checkRegOperands(secondInstr, 12, 12))
return false;
int32_t stackFrameSize = (hiImm * 65536) + loImm;
// Check that the adjusted size doesn't overflow what we can represent with 2
// instructions.
if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
return false;
}
int32_t adjustedStackFrameSize =
stackFrameSize - config->splitStackAdjustSize;
loImm = adjustedStackFrameSize & 0xFFFF;
hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
if (hiImm) {
write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
// If the low immediate is zero the second instruction will be a nop.
secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : 0x60000000;
write32(loc + 8, secondInstr);
} else {
// addi r12, r1, imm
write32(loc + 4, (0x39810000) | (uint16_t)loImm);
write32(loc + 8, 0x60000000);
}
return true;
}
TargetInfo *elf::getPPC64TargetInfo() {
static PPC64 target;
return &target;
}