2017-12-05 19:15:58 +08:00
|
|
|
// REQUIRES: x86
|
|
|
|
// RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %p/Inputs/shared.s -o %t.o
|
|
|
|
// RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %p/Inputs/copy-in-shared.s -o %t2.o
|
[ELF][PPC] Allow PT_LOAD to have overlapping p_offset ranges
This change affects the non-linker script case (precisely, when the
`SECTIONS` command is not used). It deletes 3 alignments at PT_LOAD
boundaries for the default case: the size of a powerpc64 binary can be
decreased by at most 192kb. The technique can be ported to other
targets.
Let me demonstrate the idea with a maxPageSize=65536 example:
When assigning the address to the first output section of a new PT_LOAD,
if the end p_vaddr of the previous PT_LOAD is 0x10020, we advance to
the next multiple of maxPageSize: 0x20000. The new PT_LOAD will thus
have p_vaddr=0x20000. Because p_offset and p_vaddr are congruent modulo
maxPageSize, p_offset will be 0x20000, leaving a p_offset gap [0x10020,
0x20000) in the output.
Alternatively, if we advance to 0x20020, the new PT_LOAD will have
p_vaddr=0x20020. We can pick either 0x10020 or 0x20020 for p_offset!
Obviously 0x10020 is the choice because it leaves no gap. At runtime,
p_vaddr will be rounded down by pagesize (65536 if
pagesize=maxPageSize). This PT_LOAD will load additional initial
contents from p_offset ranges [0x10000,0x10020), which will also be
loaded by the previous PT_LOAD. This is fine if -z noseparate-code is in
effect or if we are not transiting between executable and non-executable
segments.
ld.bfd -z noseparate-code leverages this technique to keep output small.
This patch implements the technique in lld, which is mostly effective on
targets with large defaultMaxPageSize (AArch64/MIPS/PPC: 65536). The 3
removed alignments can save almost 3*65536 bytes.
Two places that rely on p_vaddr%pagesize = 0 have to be updated.
1) We used to round p_memsz(PT_GNU_RELRO) up to commonPageSize (defaults
to 4096 on all targets). Now p_vaddr%commonPageSize may be non-zero.
The updated formula takes account of that factor.
2) Our TP offsets formulae are only correct if p_vaddr%p_align = 0.
Fix them. See the updated comments in InputSection.cpp for details.
On targets that we enable the technique (only PPC64 now),
we can potentially make `p_vaddr(PT_TLS)%p_align(PT_TLS) != 0`
if `sh_addralign(.tdata) < sh_addralign(.tbss)`
This exposes many problems in ld.so implementations, especially the
offsets of dynamic TLS blocks. Known issues:
FreeBSD 13.0-CURRENT rtld-elf (i386/amd64/powerpc/arm64)
glibc (HEAD) i386 and x86_64 https://sourceware.org/bugzilla/show_bug.cgi?id=24606
musl<=1.1.22 on TLS Variant I architectures (aarch64/powerpc64/...)
So, force p_vaddr%p_align = 0 by rounding dot up to p_align(PT_TLS).
The technique will be enabled (with updated tests) for other targets in
subsequent patches.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64906
llvm-svn: 369343
2019-08-20 16:34:25 +08:00
|
|
|
// RUN: ld.lld -shared -soname=t.so %t.o %t2.o -z separate-code -o %t.so
|
2017-12-05 19:15:58 +08:00
|
|
|
|
|
|
|
// A linker script that will map .bss.rel.ro into .bss.
|
|
|
|
// RUN: echo "SECTIONS { \
|
|
|
|
// RUN: .bss : { *(.bss) *(.bss.*) } \
|
|
|
|
// RUN: } " > %t.script
|
|
|
|
|
|
|
|
// RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t3.o
|
[ELF][PPC] Allow PT_LOAD to have overlapping p_offset ranges
This change affects the non-linker script case (precisely, when the
`SECTIONS` command is not used). It deletes 3 alignments at PT_LOAD
boundaries for the default case: the size of a powerpc64 binary can be
decreased by at most 192kb. The technique can be ported to other
targets.
Let me demonstrate the idea with a maxPageSize=65536 example:
When assigning the address to the first output section of a new PT_LOAD,
if the end p_vaddr of the previous PT_LOAD is 0x10020, we advance to
the next multiple of maxPageSize: 0x20000. The new PT_LOAD will thus
have p_vaddr=0x20000. Because p_offset and p_vaddr are congruent modulo
maxPageSize, p_offset will be 0x20000, leaving a p_offset gap [0x10020,
0x20000) in the output.
Alternatively, if we advance to 0x20020, the new PT_LOAD will have
p_vaddr=0x20020. We can pick either 0x10020 or 0x20020 for p_offset!
Obviously 0x10020 is the choice because it leaves no gap. At runtime,
p_vaddr will be rounded down by pagesize (65536 if
pagesize=maxPageSize). This PT_LOAD will load additional initial
contents from p_offset ranges [0x10000,0x10020), which will also be
loaded by the previous PT_LOAD. This is fine if -z noseparate-code is in
effect or if we are not transiting between executable and non-executable
segments.
ld.bfd -z noseparate-code leverages this technique to keep output small.
This patch implements the technique in lld, which is mostly effective on
targets with large defaultMaxPageSize (AArch64/MIPS/PPC: 65536). The 3
removed alignments can save almost 3*65536 bytes.
Two places that rely on p_vaddr%pagesize = 0 have to be updated.
1) We used to round p_memsz(PT_GNU_RELRO) up to commonPageSize (defaults
to 4096 on all targets). Now p_vaddr%commonPageSize may be non-zero.
The updated formula takes account of that factor.
2) Our TP offsets formulae are only correct if p_vaddr%p_align = 0.
Fix them. See the updated comments in InputSection.cpp for details.
On targets that we enable the technique (only PPC64 now),
we can potentially make `p_vaddr(PT_TLS)%p_align(PT_TLS) != 0`
if `sh_addralign(.tdata) < sh_addralign(.tbss)`
This exposes many problems in ld.so implementations, especially the
offsets of dynamic TLS blocks. Known issues:
FreeBSD 13.0-CURRENT rtld-elf (i386/amd64/powerpc/arm64)
glibc (HEAD) i386 and x86_64 https://sourceware.org/bugzilla/show_bug.cgi?id=24606
musl<=1.1.22 on TLS Variant I architectures (aarch64/powerpc64/...)
So, force p_vaddr%p_align = 0 by rounding dot up to p_align(PT_TLS).
The technique will be enabled (with updated tests) for other targets in
subsequent patches.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64906
llvm-svn: 369343
2019-08-20 16:34:25 +08:00
|
|
|
// RUN: ld.lld %t3.o %t.so -z relro -z separate-code -o %t --script=%t.script 2>&1
|
|
|
|
// RUN: llvm-readelf -l %t | FileCheck %s
|
2017-12-05 19:15:58 +08:00
|
|
|
.section .text, "ax", @progbits
|
|
|
|
.global bar
|
|
|
|
.global foo
|
|
|
|
.global _start
|
|
|
|
_start:
|
|
|
|
callq bar
|
|
|
|
// Will produce .bss.rel.ro that will match in .bss, this will lose
|
|
|
|
// the relro property of the copy relocation.
|
|
|
|
.quad foo
|
|
|
|
|
|
|
|
// Non relro bss
|
|
|
|
.bss
|
|
|
|
// make large enough to affect PT_GNU_RELRO MemSize if this was marked
|
|
|
|
// as relro.
|
|
|
|
.space 0x2000
|
|
|
|
|
[ELF][PPC] Allow PT_LOAD to have overlapping p_offset ranges
This change affects the non-linker script case (precisely, when the
`SECTIONS` command is not used). It deletes 3 alignments at PT_LOAD
boundaries for the default case: the size of a powerpc64 binary can be
decreased by at most 192kb. The technique can be ported to other
targets.
Let me demonstrate the idea with a maxPageSize=65536 example:
When assigning the address to the first output section of a new PT_LOAD,
if the end p_vaddr of the previous PT_LOAD is 0x10020, we advance to
the next multiple of maxPageSize: 0x20000. The new PT_LOAD will thus
have p_vaddr=0x20000. Because p_offset and p_vaddr are congruent modulo
maxPageSize, p_offset will be 0x20000, leaving a p_offset gap [0x10020,
0x20000) in the output.
Alternatively, if we advance to 0x20020, the new PT_LOAD will have
p_vaddr=0x20020. We can pick either 0x10020 or 0x20020 for p_offset!
Obviously 0x10020 is the choice because it leaves no gap. At runtime,
p_vaddr will be rounded down by pagesize (65536 if
pagesize=maxPageSize). This PT_LOAD will load additional initial
contents from p_offset ranges [0x10000,0x10020), which will also be
loaded by the previous PT_LOAD. This is fine if -z noseparate-code is in
effect or if we are not transiting between executable and non-executable
segments.
ld.bfd -z noseparate-code leverages this technique to keep output small.
This patch implements the technique in lld, which is mostly effective on
targets with large defaultMaxPageSize (AArch64/MIPS/PPC: 65536). The 3
removed alignments can save almost 3*65536 bytes.
Two places that rely on p_vaddr%pagesize = 0 have to be updated.
1) We used to round p_memsz(PT_GNU_RELRO) up to commonPageSize (defaults
to 4096 on all targets). Now p_vaddr%commonPageSize may be non-zero.
The updated formula takes account of that factor.
2) Our TP offsets formulae are only correct if p_vaddr%p_align = 0.
Fix them. See the updated comments in InputSection.cpp for details.
On targets that we enable the technique (only PPC64 now),
we can potentially make `p_vaddr(PT_TLS)%p_align(PT_TLS) != 0`
if `sh_addralign(.tdata) < sh_addralign(.tbss)`
This exposes many problems in ld.so implementations, especially the
offsets of dynamic TLS blocks. Known issues:
FreeBSD 13.0-CURRENT rtld-elf (i386/amd64/powerpc/arm64)
glibc (HEAD) i386 and x86_64 https://sourceware.org/bugzilla/show_bug.cgi?id=24606
musl<=1.1.22 on TLS Variant I architectures (aarch64/powerpc64/...)
So, force p_vaddr%p_align = 0 by rounding dot up to p_align(PT_TLS).
The technique will be enabled (with updated tests) for other targets in
subsequent patches.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64906
llvm-svn: 369343
2019-08-20 16:34:25 +08:00
|
|
|
// CHECK: Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
|
|
|
|
// CHECK: GNU_RELRO 0x002150 0x0000000000000150 0x0000000000000150 0x000100 0x000eb0 R 0x1
|