forked from OSchip/llvm-project
446 lines
15 KiB
C
446 lines
15 KiB
C
|
//==========-- ImmutableGraph.h - A fast DAG implementation ---------=========//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
///
|
||
|
/// Description: ImmutableGraph is a fast DAG implementation that cannot be
|
||
|
/// modified, except by creating a new ImmutableGraph. ImmutableGraph is
|
||
|
/// implemented as two arrays: one containing nodes, and one containing edges.
|
||
|
/// The advantages to this implementation are two-fold:
|
||
|
/// 1. Iteration and traversal operations benefit from cache locality.
|
||
|
/// 2. Operations on sets of nodes/edges are efficient, and representations of
|
||
|
/// those sets in memory are compact. For instance, a set of edges is
|
||
|
/// implemented as a bit vector, wherein each bit corresponds to one edge in
|
||
|
/// the edge array. This implies a lower bound of 64x spatial improvement
|
||
|
/// over, e.g., an llvm::DenseSet or llvm::SmallSet. It also means that
|
||
|
/// insert/erase/contains operations complete in negligible constant time:
|
||
|
/// insert and erase require one load and one store, and contains requires
|
||
|
/// just one load.
|
||
|
///
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
|
||
|
#define LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
|
||
|
|
||
|
#include "llvm/ADT/BitVector.h"
|
||
|
#include "llvm/ADT/GraphTraits.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include <algorithm>
|
||
|
#include <iterator>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
template <typename NodeValueT, typename EdgeValueT> class ImmutableGraph {
|
||
|
using Traits = GraphTraits<ImmutableGraph<NodeValueT, EdgeValueT> *>;
|
||
|
template <typename> friend class ImmutableGraphBuilder;
|
||
|
|
||
|
public:
|
||
|
using node_value_type = NodeValueT;
|
||
|
using edge_value_type = EdgeValueT;
|
||
|
using size_type = int;
|
||
|
class Node;
|
||
|
class Edge {
|
||
|
friend class ImmutableGraph;
|
||
|
template <typename> friend class ImmutableGraphBuilder;
|
||
|
|
||
|
const Node *Dest;
|
||
|
edge_value_type Value;
|
||
|
|
||
|
public:
|
||
|
const Node *getDest() const { return Dest; };
|
||
|
const edge_value_type &getValue() const { return Value; }
|
||
|
};
|
||
|
class Node {
|
||
|
friend class ImmutableGraph;
|
||
|
template <typename> friend class ImmutableGraphBuilder;
|
||
|
|
||
|
const Edge *Edges;
|
||
|
node_value_type Value;
|
||
|
|
||
|
public:
|
||
|
const node_value_type &getValue() const { return Value; }
|
||
|
|
||
|
const Edge *edges_begin() const { return Edges; }
|
||
|
// Nodes are allocated sequentially. Edges for a node are stored together.
|
||
|
// The end of this Node's edges is the beginning of the next node's edges.
|
||
|
// An extra node was allocated to hold the end pointer for the last real
|
||
|
// node.
|
||
|
const Edge *edges_end() const { return (this + 1)->Edges; }
|
||
|
ArrayRef<Edge> edges() const {
|
||
|
return makeArrayRef(edges_begin(), edges_end());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
protected:
|
||
|
ImmutableGraph(std::unique_ptr<Node[]> Nodes, std::unique_ptr<Edge[]> Edges,
|
||
|
size_type NodesSize, size_type EdgesSize)
|
||
|
: Nodes(std::move(Nodes)), Edges(std::move(Edges)), NodesSize(NodesSize),
|
||
|
EdgesSize(EdgesSize) {}
|
||
|
ImmutableGraph(const ImmutableGraph &) = delete;
|
||
|
ImmutableGraph(ImmutableGraph &&) = delete;
|
||
|
ImmutableGraph &operator=(const ImmutableGraph &) = delete;
|
||
|
ImmutableGraph &operator=(ImmutableGraph &&) = delete;
|
||
|
|
||
|
public:
|
||
|
ArrayRef<Node> nodes() const { return makeArrayRef(Nodes.get(), NodesSize); }
|
||
|
const Node *nodes_begin() const { return nodes().begin(); }
|
||
|
const Node *nodes_end() const { return nodes().end(); }
|
||
|
|
||
|
ArrayRef<Edge> edges() const { return makeArrayRef(Edges.get(), EdgesSize); }
|
||
|
const Edge *edges_begin() const { return edges().begin(); }
|
||
|
const Edge *edges_end() const { return edges().end(); }
|
||
|
|
||
|
size_type nodes_size() const { return NodesSize; }
|
||
|
size_type edges_size() const { return EdgesSize; }
|
||
|
|
||
|
// Node N must belong to this ImmutableGraph.
|
||
|
size_type getNodeIndex(const Node &N) const {
|
||
|
return std::distance(nodes_begin(), &N);
|
||
|
}
|
||
|
// Edge E must belong to this ImmutableGraph.
|
||
|
size_type getEdgeIndex(const Edge &E) const {
|
||
|
return std::distance(edges_begin(), &E);
|
||
|
}
|
||
|
|
||
|
// FIXME: Could NodeSet and EdgeSet be templated to share code?
|
||
|
class NodeSet {
|
||
|
const ImmutableGraph &G;
|
||
|
BitVector V;
|
||
|
|
||
|
public:
|
||
|
NodeSet(const ImmutableGraph &G, bool ContainsAll = false)
|
||
|
: G{G}, V{static_cast<unsigned>(G.nodes_size()), ContainsAll} {}
|
||
|
bool insert(const Node &N) {
|
||
|
size_type Idx = G.getNodeIndex(N);
|
||
|
bool AlreadyExists = V.test(Idx);
|
||
|
V.set(Idx);
|
||
|
return !AlreadyExists;
|
||
|
}
|
||
|
void erase(const Node &N) {
|
||
|
size_type Idx = G.getNodeIndex(N);
|
||
|
V.reset(Idx);
|
||
|
}
|
||
|
bool contains(const Node &N) const {
|
||
|
size_type Idx = G.getNodeIndex(N);
|
||
|
return V.test(Idx);
|
||
|
}
|
||
|
void clear() { V.reset(); }
|
||
|
size_type empty() const { return V.none(); }
|
||
|
/// Return the number of elements in the set
|
||
|
size_type count() const { return V.count(); }
|
||
|
/// Return the size of the set's domain
|
||
|
size_type size() const { return V.size(); }
|
||
|
/// Set union
|
||
|
NodeSet &operator|=(const NodeSet &RHS) {
|
||
|
assert(&this->G == &RHS.G);
|
||
|
V |= RHS.V;
|
||
|
return *this;
|
||
|
}
|
||
|
/// Set intersection
|
||
|
NodeSet &operator&=(const NodeSet &RHS) {
|
||
|
assert(&this->G == &RHS.G);
|
||
|
V &= RHS.V;
|
||
|
return *this;
|
||
|
}
|
||
|
/// Set disjoint union
|
||
|
NodeSet &operator^=(const NodeSet &RHS) {
|
||
|
assert(&this->G == &RHS.G);
|
||
|
V ^= RHS.V;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
using index_iterator = typename BitVector::const_set_bits_iterator;
|
||
|
index_iterator index_begin() const { return V.set_bits_begin(); }
|
||
|
index_iterator index_end() const { return V.set_bits_end(); }
|
||
|
void set(size_type Idx) { V.set(Idx); }
|
||
|
void reset(size_type Idx) { V.reset(Idx); }
|
||
|
|
||
|
class iterator {
|
||
|
const NodeSet &Set;
|
||
|
size_type Current;
|
||
|
|
||
|
void advance() {
|
||
|
assert(Current != -1);
|
||
|
Current = Set.V.find_next(Current);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
iterator(const NodeSet &Set, size_type Begin)
|
||
|
: Set{Set}, Current{Begin} {}
|
||
|
iterator operator++(int) {
|
||
|
iterator Tmp = *this;
|
||
|
advance();
|
||
|
return Tmp;
|
||
|
}
|
||
|
iterator &operator++() {
|
||
|
advance();
|
||
|
return *this;
|
||
|
}
|
||
|
Node *operator*() const {
|
||
|
assert(Current != -1);
|
||
|
return Set.G.nodes_begin() + Current;
|
||
|
}
|
||
|
bool operator==(const iterator &other) const {
|
||
|
assert(&this->Set == &other.Set);
|
||
|
return this->Current == other.Current;
|
||
|
}
|
||
|
bool operator!=(const iterator &other) const { return !(*this == other); }
|
||
|
};
|
||
|
|
||
|
iterator begin() const { return iterator{*this, V.find_first()}; }
|
||
|
iterator end() const { return iterator{*this, -1}; }
|
||
|
};
|
||
|
|
||
|
class EdgeSet {
|
||
|
const ImmutableGraph &G;
|
||
|
BitVector V;
|
||
|
|
||
|
public:
|
||
|
EdgeSet(const ImmutableGraph &G, bool ContainsAll = false)
|
||
|
: G{G}, V{static_cast<unsigned>(G.edges_size()), ContainsAll} {}
|
||
|
bool insert(const Edge &E) {
|
||
|
size_type Idx = G.getEdgeIndex(E);
|
||
|
bool AlreadyExists = V.test(Idx);
|
||
|
V.set(Idx);
|
||
|
return !AlreadyExists;
|
||
|
}
|
||
|
void erase(const Edge &E) {
|
||
|
size_type Idx = G.getEdgeIndex(E);
|
||
|
V.reset(Idx);
|
||
|
}
|
||
|
bool contains(const Edge &E) const {
|
||
|
size_type Idx = G.getEdgeIndex(E);
|
||
|
return V.test(Idx);
|
||
|
}
|
||
|
void clear() { V.reset(); }
|
||
|
bool empty() const { return V.none(); }
|
||
|
/// Return the number of elements in the set
|
||
|
size_type count() const { return V.count(); }
|
||
|
/// Return the size of the set's domain
|
||
|
size_type size() const { return V.size(); }
|
||
|
/// Set union
|
||
|
EdgeSet &operator|=(const EdgeSet &RHS) {
|
||
|
assert(&this->G == &RHS.G);
|
||
|
V |= RHS.V;
|
||
|
return *this;
|
||
|
}
|
||
|
/// Set intersection
|
||
|
EdgeSet &operator&=(const EdgeSet &RHS) {
|
||
|
assert(&this->G == &RHS.G);
|
||
|
V &= RHS.V;
|
||
|
return *this;
|
||
|
}
|
||
|
/// Set disjoint union
|
||
|
EdgeSet &operator^=(const EdgeSet &RHS) {
|
||
|
assert(&this->G == &RHS.G);
|
||
|
V ^= RHS.V;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
using index_iterator = typename BitVector::const_set_bits_iterator;
|
||
|
index_iterator index_begin() const { return V.set_bits_begin(); }
|
||
|
index_iterator index_end() const { return V.set_bits_end(); }
|
||
|
void set(size_type Idx) { V.set(Idx); }
|
||
|
void reset(size_type Idx) { V.reset(Idx); }
|
||
|
|
||
|
class iterator {
|
||
|
const EdgeSet &Set;
|
||
|
size_type Current;
|
||
|
|
||
|
void advance() {
|
||
|
assert(Current != -1);
|
||
|
Current = Set.V.find_next(Current);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
iterator(const EdgeSet &Set, size_type Begin)
|
||
|
: Set{Set}, Current{Begin} {}
|
||
|
iterator operator++(int) {
|
||
|
iterator Tmp = *this;
|
||
|
advance();
|
||
|
return Tmp;
|
||
|
}
|
||
|
iterator &operator++() {
|
||
|
advance();
|
||
|
return *this;
|
||
|
}
|
||
|
Edge *operator*() const {
|
||
|
assert(Current != -1);
|
||
|
return Set.G.edges_begin() + Current;
|
||
|
}
|
||
|
bool operator==(const iterator &other) const {
|
||
|
assert(&this->Set == &other.Set);
|
||
|
return this->Current == other.Current;
|
||
|
}
|
||
|
bool operator!=(const iterator &other) const { return !(*this == other); }
|
||
|
};
|
||
|
|
||
|
iterator begin() const { return iterator{*this, V.find_first()}; }
|
||
|
iterator end() const { return iterator{*this, -1}; }
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
std::unique_ptr<Node[]> Nodes;
|
||
|
std::unique_ptr<Edge[]> Edges;
|
||
|
size_type NodesSize;
|
||
|
size_type EdgesSize;
|
||
|
};
|
||
|
|
||
|
template <typename GraphT> class ImmutableGraphBuilder {
|
||
|
using node_value_type = typename GraphT::node_value_type;
|
||
|
using edge_value_type = typename GraphT::edge_value_type;
|
||
|
static_assert(
|
||
|
std::is_base_of<ImmutableGraph<node_value_type, edge_value_type>,
|
||
|
GraphT>::value,
|
||
|
"Template argument to ImmutableGraphBuilder must derive from "
|
||
|
"ImmutableGraph<>");
|
||
|
using size_type = typename GraphT::size_type;
|
||
|
using NodeSet = typename GraphT::NodeSet;
|
||
|
using Node = typename GraphT::Node;
|
||
|
using EdgeSet = typename GraphT::EdgeSet;
|
||
|
using Edge = typename GraphT::Edge;
|
||
|
using BuilderEdge = std::pair<edge_value_type, size_type>;
|
||
|
using EdgeList = std::vector<BuilderEdge>;
|
||
|
using BuilderVertex = std::pair<node_value_type, EdgeList>;
|
||
|
using VertexVec = std::vector<BuilderVertex>;
|
||
|
|
||
|
public:
|
||
|
using BuilderNodeRef = size_type;
|
||
|
|
||
|
BuilderNodeRef addVertex(const node_value_type &V) {
|
||
|
auto I = AdjList.emplace(AdjList.end(), V, EdgeList{});
|
||
|
return std::distance(AdjList.begin(), I);
|
||
|
}
|
||
|
|
||
|
void addEdge(const edge_value_type &E, BuilderNodeRef From,
|
||
|
BuilderNodeRef To) {
|
||
|
AdjList[From].second.emplace_back(E, To);
|
||
|
}
|
||
|
|
||
|
bool empty() const { return AdjList.empty(); }
|
||
|
|
||
|
template <typename... ArgT> std::unique_ptr<GraphT> get(ArgT &&... Args) {
|
||
|
size_type VertexSize = AdjList.size(), EdgeSize = 0;
|
||
|
for (const auto &V : AdjList) {
|
||
|
EdgeSize += V.second.size();
|
||
|
}
|
||
|
auto VertexArray =
|
||
|
std::make_unique<Node[]>(VertexSize + 1 /* terminator node */);
|
||
|
auto EdgeArray = std::make_unique<Edge[]>(EdgeSize);
|
||
|
size_type VI = 0, EI = 0;
|
||
|
for (; VI < VertexSize; ++VI) {
|
||
|
VertexArray[VI].Value = std::move(AdjList[VI].first);
|
||
|
VertexArray[VI].Edges = &EdgeArray[EI];
|
||
|
auto NumEdges = static_cast<size_type>(AdjList[VI].second.size());
|
||
|
for (size_type VEI = 0; VEI < NumEdges; ++VEI, ++EI) {
|
||
|
auto &E = AdjList[VI].second[VEI];
|
||
|
EdgeArray[EI].Value = std::move(E.first);
|
||
|
EdgeArray[EI].Dest = &VertexArray[E.second];
|
||
|
}
|
||
|
}
|
||
|
assert(VI == VertexSize && EI == EdgeSize && "ImmutableGraph malformed");
|
||
|
VertexArray[VI].Edges = &EdgeArray[EdgeSize]; // terminator node
|
||
|
return std::make_unique<GraphT>(std::move(VertexArray),
|
||
|
std::move(EdgeArray), VertexSize, EdgeSize,
|
||
|
std::forward<ArgT>(Args)...);
|
||
|
}
|
||
|
|
||
|
template <typename... ArgT>
|
||
|
static std::unique_ptr<GraphT> trim(const GraphT &G, const NodeSet &TrimNodes,
|
||
|
const EdgeSet &TrimEdges,
|
||
|
ArgT &&... Args) {
|
||
|
size_type NewVertexSize = G.nodes_size() - TrimNodes.count();
|
||
|
size_type NewEdgeSize = G.edges_size() - TrimEdges.count();
|
||
|
auto NewVertexArray =
|
||
|
std::make_unique<Node[]>(NewVertexSize + 1 /* terminator node */);
|
||
|
auto NewEdgeArray = std::make_unique<Edge[]>(NewEdgeSize);
|
||
|
|
||
|
// Walk the nodes and determine the new index for each node.
|
||
|
size_type NewNodeIndex = 0;
|
||
|
std::vector<size_type> RemappedNodeIndex(G.nodes_size());
|
||
|
for (const Node &N : G.nodes()) {
|
||
|
if (TrimNodes.contains(N))
|
||
|
continue;
|
||
|
RemappedNodeIndex[G.getNodeIndex(N)] = NewNodeIndex++;
|
||
|
}
|
||
|
assert(NewNodeIndex == NewVertexSize &&
|
||
|
"Should have assigned NewVertexSize indices");
|
||
|
|
||
|
size_type VertexI = 0, EdgeI = 0;
|
||
|
for (const Node &N : G.nodes()) {
|
||
|
if (TrimNodes.contains(N))
|
||
|
continue;
|
||
|
NewVertexArray[VertexI].Value = N.getValue();
|
||
|
NewVertexArray[VertexI].Edges = &NewEdgeArray[EdgeI];
|
||
|
for (const Edge &E : N.edges()) {
|
||
|
if (TrimEdges.contains(E))
|
||
|
continue;
|
||
|
NewEdgeArray[EdgeI].Value = E.getValue();
|
||
|
size_type DestIdx = G.getNodeIndex(*E.getDest());
|
||
|
size_type NewIdx = RemappedNodeIndex[DestIdx];
|
||
|
assert(NewIdx < NewVertexSize);
|
||
|
NewEdgeArray[EdgeI].Dest = &NewVertexArray[NewIdx];
|
||
|
++EdgeI;
|
||
|
}
|
||
|
++VertexI;
|
||
|
}
|
||
|
assert(VertexI == NewVertexSize && EdgeI == NewEdgeSize &&
|
||
|
"Gadget graph malformed");
|
||
|
NewVertexArray[VertexI].Edges = &NewEdgeArray[NewEdgeSize]; // terminator
|
||
|
return std::make_unique<GraphT>(std::move(NewVertexArray),
|
||
|
std::move(NewEdgeArray), NewVertexSize,
|
||
|
NewEdgeSize, std::forward<ArgT>(Args)...);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
VertexVec AdjList;
|
||
|
};
|
||
|
|
||
|
template <typename NodeValueT, typename EdgeValueT>
|
||
|
struct GraphTraits<ImmutableGraph<NodeValueT, EdgeValueT> *> {
|
||
|
using GraphT = ImmutableGraph<NodeValueT, EdgeValueT>;
|
||
|
using NodeRef = typename GraphT::Node const *;
|
||
|
using EdgeRef = typename GraphT::Edge const &;
|
||
|
|
||
|
static NodeRef edge_dest(EdgeRef E) { return E.getDest(); }
|
||
|
using ChildIteratorType =
|
||
|
mapped_iterator<typename GraphT::Edge const *, decltype(&edge_dest)>;
|
||
|
|
||
|
static NodeRef getEntryNode(GraphT *G) { return G->nodes_begin(); }
|
||
|
static ChildIteratorType child_begin(NodeRef N) {
|
||
|
return {N->edges_begin(), &edge_dest};
|
||
|
}
|
||
|
static ChildIteratorType child_end(NodeRef N) {
|
||
|
return {N->edges_end(), &edge_dest};
|
||
|
}
|
||
|
|
||
|
static NodeRef getNode(typename GraphT::Node const &N) { return NodeRef{&N}; }
|
||
|
using nodes_iterator =
|
||
|
mapped_iterator<typename GraphT::Node const *, decltype(&getNode)>;
|
||
|
static nodes_iterator nodes_begin(GraphT *G) {
|
||
|
return {G->nodes_begin(), &getNode};
|
||
|
}
|
||
|
static nodes_iterator nodes_end(GraphT *G) {
|
||
|
return {G->nodes_end(), &getNode};
|
||
|
}
|
||
|
|
||
|
using ChildEdgeIteratorType = typename GraphT::Edge const *;
|
||
|
|
||
|
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
|
||
|
return N->edges_begin();
|
||
|
}
|
||
|
static ChildEdgeIteratorType child_edge_end(NodeRef N) {
|
||
|
return N->edges_end();
|
||
|
}
|
||
|
static typename GraphT::size_type size(GraphT *G) { return G->nodes_size(); }
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
|