llvm-project/polly/test/ScopInfo/complex-successor-structure...

367 lines
11 KiB
LLVM
Raw Normal View History

; RUN: opt %loadPolly -analyze -polly-scops \
; RUN: -polly-invariant-load-hoisting=true < %s | FileCheck %s
;
; Check that propagation of domains from A(X) to A(X+1) will keep the
; domains small and concise.
;
; CHECK: Assumed Context:
Model zext-extend instructions A zero-extended value can be interpreted as a piecewise defined signed value. If the value was non-negative it stays the same, otherwise it is the sum of the original value and 2^n where n is the bit-width of the original (or operand) type. Examples: zext i8 127 to i32 -> { [127] } zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] } zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 } However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a truncate) to represent some forms of modulo computation. The left-hand side of the condition in the code below would result in the SCEV "zext i1 <false, +, true>for.body" which is just another description of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0". for (i = 0; i < N; i++) if (i & 1 != 0 /* == i % 2 */) /* do something */ If we do not make the modulo explicit but only use the mechanism described above we will get the very restrictive assumption "N < 3", because for all values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap. Alternatively, we can make the modulo in the operand explicit in the resulting piecewise function and thereby avoid the assumption on N. For the example this would result in the following piecewise affine function: { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0; [i0] -> [(0)] : 2*floor((i0)/2) = i0 } To this end we can first determine if the (immediate) operand of the zero-extend can wrap and, in case it might, we will use explicit modulo semantic to compute the result instead of emitting non-wrapping assumptions. Note that operands with large bit-widths are less likely to be negative because it would result in a very large access offset or loop bound after the zero-extend. To this end one can optimistically assume the operand to be positive and avoid the piecewise definition if the bit-width is bigger than some threshold (here MaxZextSmallBitWidth). We choose to go with a hybrid solution of all modeling techniques described above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the wrapping explicitly and use a piecewise defined function. However, if the bit-width is bigger than MaxZextSmallBitWidth we will employ overflow assumptions and assume the "former negative" piece will not exist. llvm-svn: 267408
2016-04-25 22:01:36 +08:00
; CHECK-NEXT: [tmp5, tmp, tmp8, tmp11, tmp14, tmp17, tmp20, tmp23, tmp26] -> { : }
; CHECK-NEXT: Invalid Context:
Model zext-extend instructions A zero-extended value can be interpreted as a piecewise defined signed value. If the value was non-negative it stays the same, otherwise it is the sum of the original value and 2^n where n is the bit-width of the original (or operand) type. Examples: zext i8 127 to i32 -> { [127] } zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] } zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 } However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a truncate) to represent some forms of modulo computation. The left-hand side of the condition in the code below would result in the SCEV "zext i1 <false, +, true>for.body" which is just another description of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0". for (i = 0; i < N; i++) if (i & 1 != 0 /* == i % 2 */) /* do something */ If we do not make the modulo explicit but only use the mechanism described above we will get the very restrictive assumption "N < 3", because for all values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap. Alternatively, we can make the modulo in the operand explicit in the resulting piecewise function and thereby avoid the assumption on N. For the example this would result in the following piecewise affine function: { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0; [i0] -> [(0)] : 2*floor((i0)/2) = i0 } To this end we can first determine if the (immediate) operand of the zero-extend can wrap and, in case it might, we will use explicit modulo semantic to compute the result instead of emitting non-wrapping assumptions. Note that operands with large bit-widths are less likely to be negative because it would result in a very large access offset or loop bound after the zero-extend. To this end one can optimistically assume the operand to be positive and avoid the piecewise definition if the bit-width is bigger than some threshold (here MaxZextSmallBitWidth). We choose to go with a hybrid solution of all modeling techniques described above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the wrapping explicitly and use a piecewise defined function. However, if the bit-width is bigger than MaxZextSmallBitWidth we will employ overflow assumptions and assume the "former negative" piece will not exist. llvm-svn: 267408
2016-04-25 22:01:36 +08:00
; CHECK-NEXT: [tmp5, tmp, tmp8, tmp11, tmp14, tmp17, tmp20, tmp23, tmp26] -> { : 1 = 0 }
;
; CHECK: Stmt_FINAL
; CHECK-NEXT: Domain :=
Model zext-extend instructions A zero-extended value can be interpreted as a piecewise defined signed value. If the value was non-negative it stays the same, otherwise it is the sum of the original value and 2^n where n is the bit-width of the original (or operand) type. Examples: zext i8 127 to i32 -> { [127] } zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] } zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 } However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a truncate) to represent some forms of modulo computation. The left-hand side of the condition in the code below would result in the SCEV "zext i1 <false, +, true>for.body" which is just another description of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0". for (i = 0; i < N; i++) if (i & 1 != 0 /* == i % 2 */) /* do something */ If we do not make the modulo explicit but only use the mechanism described above we will get the very restrictive assumption "N < 3", because for all values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap. Alternatively, we can make the modulo in the operand explicit in the resulting piecewise function and thereby avoid the assumption on N. For the example this would result in the following piecewise affine function: { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0; [i0] -> [(0)] : 2*floor((i0)/2) = i0 } To this end we can first determine if the (immediate) operand of the zero-extend can wrap and, in case it might, we will use explicit modulo semantic to compute the result instead of emitting non-wrapping assumptions. Note that operands with large bit-widths are less likely to be negative because it would result in a very large access offset or loop bound after the zero-extend. To this end one can optimistically assume the operand to be positive and avoid the piecewise definition if the bit-width is bigger than some threshold (here MaxZextSmallBitWidth). We choose to go with a hybrid solution of all modeling techniques described above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the wrapping explicitly and use a piecewise defined function. However, if the bit-width is bigger than MaxZextSmallBitWidth we will employ overflow assumptions and assume the "former negative" piece will not exist. llvm-svn: 267408
2016-04-25 22:01:36 +08:00
; CHECK-NEXT: [tmp5, tmp, tmp8, tmp11, tmp14, tmp17, tmp20, tmp23, tmp26] -> { Stmt_FINAL[] };
; CHECK-NEXT: Schedule :=
Model zext-extend instructions A zero-extended value can be interpreted as a piecewise defined signed value. If the value was non-negative it stays the same, otherwise it is the sum of the original value and 2^n where n is the bit-width of the original (or operand) type. Examples: zext i8 127 to i32 -> { [127] } zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] } zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 } However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a truncate) to represent some forms of modulo computation. The left-hand side of the condition in the code below would result in the SCEV "zext i1 <false, +, true>for.body" which is just another description of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0". for (i = 0; i < N; i++) if (i & 1 != 0 /* == i % 2 */) /* do something */ If we do not make the modulo explicit but only use the mechanism described above we will get the very restrictive assumption "N < 3", because for all values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap. Alternatively, we can make the modulo in the operand explicit in the resulting piecewise function and thereby avoid the assumption on N. For the example this would result in the following piecewise affine function: { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0; [i0] -> [(0)] : 2*floor((i0)/2) = i0 } To this end we can first determine if the (immediate) operand of the zero-extend can wrap and, in case it might, we will use explicit modulo semantic to compute the result instead of emitting non-wrapping assumptions. Note that operands with large bit-widths are less likely to be negative because it would result in a very large access offset or loop bound after the zero-extend. To this end one can optimistically assume the operand to be positive and avoid the piecewise definition if the bit-width is bigger than some threshold (here MaxZextSmallBitWidth). We choose to go with a hybrid solution of all modeling techniques described above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the wrapping explicitly and use a piecewise defined function. However, if the bit-width is bigger than MaxZextSmallBitWidth we will employ overflow assumptions and assume the "former negative" piece will not exist. llvm-svn: 267408
2016-04-25 22:01:36 +08:00
; CHECK-NEXT: [tmp5, tmp, tmp8, tmp11, tmp14, tmp17, tmp20, tmp23, tmp26] -> { Stmt_FINAL[] -> [22] };
;
;
; void f(short *restrict In, int *restrict Out) {
; int InV, V, Idx;
; Idx = 0;
; V = 999;
;
; A0:
; InV = In[Idx++];
; if (InV < V + 42) {
; B0:
; V = V + 42;
; Out[V]++;
; } else {
; C0:
; V = InV;
; Out[V]--;
; }
;
; A1:
; InV = In[Idx++];
; if (InV < V + 42) {
; B1:
; V = V + 42;
; Out[V]++;
; } else {
; C1:
; V = InV;
; Out[V]--;
; }
; V = 999;
;
; A2:
; InV = In[Idx++];
; if (InV < V + 42) {
; B2:
; V = V + 42;
; Out[V]++;
; } else {
; C2:
; V = InV;
; Out[V]--;
; }
;
; A3:
; InV = In[Idx++];
; if (InV < V + 42) {
; B3:
; V = V + 42;
; Out[V]++;
; } else {
; C3:
; V = InV;
; Out[V]--;
; }
; V = 999;
;
; A4:
; InV = In[Idx++];
; if (InV < V + 42) {
; B4:
; V = V + 42;
; Out[V]++;
; } else {
; C4:
; V = InV;
; Out[V]--;
; }
;
; A5:
; InV = In[Idx++];
; if (InV < V + 42) {
; B5:
; V = V + 42;
; Out[V]++;
; } else {
; C5:
; V = InV;
; Out[V]--;
; }
; V = 999;
;
; A6:
; InV = In[Idx++];
; if (InV < V + 42) {
; B6:
; V = V + 42;
; Out[V]++;
; } else {
; C6:
; V = InV;
; Out[V]--;
; }
;
; A7:
; InV = In[Idx++];
; if (InV < V + 42) {
; B7:
; V = V + 42;
; Out[V]++;
; } else {
; C7:
; V = InV;
; Out[V]--;
; }
; V = 999;
;
; A8:
; InV = In[Idx++];
; if (InV < V + 42) {
; B8:
; V = V + 42;
; Out[V]++;
; } else {
; C8:
; V = InV;
; Out[V]--;
; }
; FINAL:
; Out[V]++;
;
; ScopExit:
; return;
; }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @f(i16* noalias %In, i32* noalias %Out) {
entry:
%tmp = load i16, i16* %In, align 2
%conv = sext i16 %tmp to i32
%cmp = icmp slt i16 %tmp, 1041
br i1 %cmp, label %B0, label %C0
B0: ; preds = %entry
%arrayidx4 = getelementptr inbounds i32, i32* %Out, i64 1041
%tmp3 = load i32, i32* %arrayidx4, align 4
%inc5 = add nsw i32 %tmp3, 1
store i32 %inc5, i32* %arrayidx4, align 4
br label %A1
C0: ; preds = %entry
%idxprom6 = sext i16 %tmp to i64
%arrayidx7 = getelementptr inbounds i32, i32* %Out, i64 %idxprom6
%tmp4 = load i32, i32* %arrayidx7, align 4
%dec = add nsw i32 %tmp4, -1
store i32 %dec, i32* %arrayidx7, align 4
br label %A1
A1: ; preds = %B0, %C0
%V.0 = phi i32 [ 1041, %B0 ], [ %conv, %C0 ]
%arrayidx10 = getelementptr inbounds i16, i16* %In, i64 1
%tmp5 = load i16, i16* %arrayidx10, align 2
%conv11 = sext i16 %tmp5 to i32
%add12 = add nsw i32 %V.0, 42
%cmp13 = icmp slt i32 %conv11, %add12
br i1 %cmp13, label %B1, label %C1
B1: ; preds = %A1
%add16 = add nsw i32 %V.0, 42
%idxprom17 = sext i32 %add16 to i64
%arrayidx18 = getelementptr inbounds i32, i32* %Out, i64 %idxprom17
%tmp6 = load i32, i32* %arrayidx18, align 4
%inc19 = add nsw i32 %tmp6, 1
store i32 %inc19, i32* %arrayidx18, align 4
br label %A2
C1: ; preds = %A1
%idxprom21 = sext i16 %tmp5 to i64
%arrayidx22 = getelementptr inbounds i32, i32* %Out, i64 %idxprom21
%tmp7 = load i32, i32* %arrayidx22, align 4
%dec23 = add nsw i32 %tmp7, -1
store i32 %dec23, i32* %arrayidx22, align 4
br label %A2
A2: ; preds = %B1, %C1
%arrayidx27 = getelementptr inbounds i16, i16* %In, i64 2
%tmp8 = load i16, i16* %arrayidx27, align 2
%conv28 = sext i16 %tmp8 to i32
%cmp30 = icmp slt i16 %tmp8, 1041
br i1 %cmp30, label %B2, label %C2
B2: ; preds = %A2
%arrayidx35 = getelementptr inbounds i32, i32* %Out, i64 1041
%tmp9 = load i32, i32* %arrayidx35, align 4
%inc36 = add nsw i32 %tmp9, 1
store i32 %inc36, i32* %arrayidx35, align 4
br label %A3
C2: ; preds = %A2
%idxprom38 = sext i16 %tmp8 to i64
%arrayidx39 = getelementptr inbounds i32, i32* %Out, i64 %idxprom38
%tmp10 = load i32, i32* %arrayidx39, align 4
%dec40 = add nsw i32 %tmp10, -1
store i32 %dec40, i32* %arrayidx39, align 4
br label %A3
A3: ; preds = %B2, %C2
%V.1 = phi i32 [ 1041, %B2 ], [ %conv28, %C2 ]
%arrayidx44 = getelementptr inbounds i16, i16* %In, i64 3
%tmp11 = load i16, i16* %arrayidx44, align 2
%conv45 = sext i16 %tmp11 to i32
%add46 = add nsw i32 %V.1, 42
%cmp47 = icmp slt i32 %conv45, %add46
br i1 %cmp47, label %B3, label %C3
B3: ; preds = %A3
%add50 = add nsw i32 %V.1, 42
%idxprom51 = sext i32 %add50 to i64
%arrayidx52 = getelementptr inbounds i32, i32* %Out, i64 %idxprom51
%tmp12 = load i32, i32* %arrayidx52, align 4
%inc53 = add nsw i32 %tmp12, 1
store i32 %inc53, i32* %arrayidx52, align 4
br label %A4
C3: ; preds = %A3
%idxprom55 = sext i16 %tmp11 to i64
%arrayidx56 = getelementptr inbounds i32, i32* %Out, i64 %idxprom55
%tmp13 = load i32, i32* %arrayidx56, align 4
%dec57 = add nsw i32 %tmp13, -1
store i32 %dec57, i32* %arrayidx56, align 4
br label %A4
A4: ; preds = %B3, %C3
%arrayidx61 = getelementptr inbounds i16, i16* %In, i64 4
%tmp14 = load i16, i16* %arrayidx61, align 2
%conv62 = sext i16 %tmp14 to i32
%cmp64 = icmp slt i16 %tmp14, 1041
br i1 %cmp64, label %B4, label %C4
B4: ; preds = %A4
%arrayidx69 = getelementptr inbounds i32, i32* %Out, i64 1041
%tmp15 = load i32, i32* %arrayidx69, align 4
%inc70 = add nsw i32 %tmp15, 1
store i32 %inc70, i32* %arrayidx69, align 4
br label %A5
C4: ; preds = %A4
%idxprom72 = sext i16 %tmp14 to i64
%arrayidx73 = getelementptr inbounds i32, i32* %Out, i64 %idxprom72
%tmp16 = load i32, i32* %arrayidx73, align 4
%dec74 = add nsw i32 %tmp16, -1
store i32 %dec74, i32* %arrayidx73, align 4
%phitmp = add nsw i32 %conv62, 42
br label %A5
A5: ; preds = %B4, %C4
%V.2 = phi i32 [ 1083, %B4 ], [ %phitmp, %C4 ]
%arrayidx78 = getelementptr inbounds i16, i16* %In, i64 5
%tmp17 = load i16, i16* %arrayidx78, align 2
%conv79 = sext i16 %tmp17 to i32
%cmp81 = icmp slt i32 %conv79, %V.2
br i1 %cmp81, label %B5, label %C5
B5: ; preds = %A5
%idxprom85 = sext i32 %V.2 to i64
%arrayidx86 = getelementptr inbounds i32, i32* %Out, i64 %idxprom85
%tmp18 = load i32, i32* %arrayidx86, align 4
%inc87 = add nsw i32 %tmp18, 1
store i32 %inc87, i32* %arrayidx86, align 4
br label %A6
C5: ; preds = %A5
%idxprom89 = sext i16 %tmp17 to i64
%arrayidx90 = getelementptr inbounds i32, i32* %Out, i64 %idxprom89
%tmp19 = load i32, i32* %arrayidx90, align 4
%dec91 = add nsw i32 %tmp19, -1
store i32 %dec91, i32* %arrayidx90, align 4
br label %A6
A6: ; preds = %B5, %C5
%arrayidx95 = getelementptr inbounds i16, i16* %In, i64 6
%tmp20 = load i16, i16* %arrayidx95, align 2
%conv96 = sext i16 %tmp20 to i32
%cmp98 = icmp slt i16 %tmp20, 1041
br i1 %cmp98, label %B6, label %C6
B6: ; preds = %A6
%arrayidx103 = getelementptr inbounds i32, i32* %Out, i64 1041
%tmp21 = load i32, i32* %arrayidx103, align 4
%inc104 = add nsw i32 %tmp21, 1
store i32 %inc104, i32* %arrayidx103, align 4
br label %A7
C6: ; preds = %A6
%idxprom106 = sext i16 %tmp20 to i64
%arrayidx107 = getelementptr inbounds i32, i32* %Out, i64 %idxprom106
%tmp22 = load i32, i32* %arrayidx107, align 4
%dec108 = add nsw i32 %tmp22, -1
store i32 %dec108, i32* %arrayidx107, align 4
%phitmp1 = add nsw i32 %conv96, 42
br label %A7
A7: ; preds = %B6, %C6
%V.3 = phi i32 [ 1083, %B6 ], [ %phitmp1, %C6 ]
%arrayidx112 = getelementptr inbounds i16, i16* %In, i64 7
%tmp23 = load i16, i16* %arrayidx112, align 2
%conv113 = sext i16 %tmp23 to i32
%cmp115 = icmp slt i32 %conv113, %V.3
br i1 %cmp115, label %B7, label %C7
B7: ; preds = %A7
%idxprom119 = sext i32 %V.3 to i64
%arrayidx120 = getelementptr inbounds i32, i32* %Out, i64 %idxprom119
%tmp24 = load i32, i32* %arrayidx120, align 4
%inc121 = add nsw i32 %tmp24, 1
store i32 %inc121, i32* %arrayidx120, align 4
br label %A8
C7: ; preds = %A7
%idxprom123 = sext i16 %tmp23 to i64
%arrayidx124 = getelementptr inbounds i32, i32* %Out, i64 %idxprom123
%tmp25 = load i32, i32* %arrayidx124, align 4
%dec125 = add nsw i32 %tmp25, -1
store i32 %dec125, i32* %arrayidx124, align 4
br label %A8
A8: ; preds = %B7, %C7
%arrayidx129 = getelementptr inbounds i16, i16* %In, i64 8
%tmp26 = load i16, i16* %arrayidx129, align 2
%cmp132 = icmp slt i16 %tmp26, 1041
br i1 %cmp132, label %B8, label %C8
B8: ; preds = %A8
%arrayidx137 = getelementptr inbounds i32, i32* %Out, i64 1041
%tmp27 = load i32, i32* %arrayidx137, align 4
%inc138 = add nsw i32 %tmp27, 1
store i32 %inc138, i32* %arrayidx137, align 4
br label %FINAL
C8: ; preds = %A8
%idxprom140 = sext i16 %tmp26 to i64
%arrayidx141 = getelementptr inbounds i32, i32* %Out, i64 %idxprom140
%tmp28 = load i32, i32* %arrayidx141, align 4
%dec142 = add nsw i32 %tmp28, -1
store i32 %dec142, i32* %arrayidx141, align 4
%phitmp2 = sext i16 %tmp26 to i64
br label %FINAL
FINAL: ; preds = %C8, %B8
%V.4 = phi i64 [ 1041, %B8 ], [ %phitmp2, %C8 ]
%arrayidx145 = getelementptr inbounds i32, i32* %Out, i64 %V.4
%tmp29 = load i32, i32* %arrayidx145, align 4
%inc146 = add nsw i32 %tmp29, 1
store i32 %inc146, i32* %arrayidx145, align 4
br label %ScopExit
ScopExit:
ret void
}