llvm-project/clang/lib/AST/MicrosoftMangle.cpp

2592 lines
97 KiB
C++
Raw Normal View History

//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/MathExtras.h"
using namespace clang;
namespace {
/// \brief Retrieve the declaration context that should be used when mangling
/// the given declaration.
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
// The ABI assumes that lambda closure types that occur within
// default arguments live in the context of the function. However, due to
// the way in which Clang parses and creates function declarations, this is
// not the case: the lambda closure type ends up living in the context
// where the function itself resides, because the function declaration itself
// had not yet been created. Fix the context here.
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
if (RD->isLambda())
if (ParmVarDecl *ContextParam =
dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
return ContextParam->getDeclContext();
}
// Perform the same check for block literals.
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (ParmVarDecl *ContextParam =
dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
return ContextParam->getDeclContext();
}
const DeclContext *DC = D->getDeclContext();
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
return getEffectiveDeclContext(CD);
return DC;
}
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
return getEffectiveDeclContext(cast<Decl>(DC));
}
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
return ftd->getTemplatedDecl();
return fn;
}
static bool isLambda(const NamedDecl *ND) {
const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
if (!Record)
return false;
return Record->isLambda();
}
/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
/// Microsoft Visual C++ ABI.
class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
public:
MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
: MicrosoftMangleContext(Context, Diags) {}
bool shouldMangleCXXName(const NamedDecl *D) override;
bool shouldMangleStringLiteral(const StringLiteral *SL) override;
void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
raw_ostream &) override;
void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
raw_ostream &) override;
void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment,
raw_ostream &) override;
void mangleCXXVFTable(const CXXRecordDecl *Derived,
ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) override;
void mangleCXXVBTable(const CXXRecordDecl *Derived,
ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) override;
void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
uint32_t NVOffset, int32_t VBPtrOffset,
uint32_t VBTableOffset, uint32_t Flags,
raw_ostream &Out) override;
void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
raw_ostream &Out) override;
void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
raw_ostream &Out) override;
void
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) override;
void mangleTypeName(QualType T, raw_ostream &) override;
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
raw_ostream &) override;
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
raw_ostream &) override;
void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
raw_ostream &) override;
void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
void mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) override;
void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
// Lambda closure types are already numbered.
if (isLambda(ND))
return false;
const DeclContext *DC = getEffectiveDeclContext(ND);
if (!DC->isFunctionOrMethod())
return false;
// Use the canonical number for externally visible decls.
if (ND->isExternallyVisible()) {
disc = getASTContext().getManglingNumber(ND);
return true;
}
// Anonymous tags are already numbered.
if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
return false;
}
// Make up a reasonable number for internal decls.
unsigned &discriminator = Uniquifier[ND];
if (!discriminator)
discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
disc = discriminator;
return true;
}
unsigned getLambdaId(const CXXRecordDecl *RD) {
assert(RD->isLambda() && "RD must be a lambda!");
assert(!RD->isExternallyVisible() && "RD must not be visible!");
assert(RD->getLambdaManglingNumber() == 0 &&
"RD must not have a mangling number!");
std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
return Result.first->second;
}
private:
void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
};
/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
/// Microsoft Visual C++ ABI.
class MicrosoftCXXNameMangler {
MicrosoftMangleContextImpl &Context;
raw_ostream &Out;
/// The "structor" is the top-level declaration being mangled, if
/// that's not a template specialization; otherwise it's the pattern
/// for that specialization.
const NamedDecl *Structor;
unsigned StructorType;
typedef llvm::StringMap<unsigned> BackRefMap;
BackRefMap NameBackReferences;
typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
ArgBackRefMap TypeBackReferences;
ASTContext &getASTContext() const { return Context.getASTContext(); }
// FIXME: If we add support for __ptr32/64 qualifiers, then we should push
// this check into mangleQualifiers().
const bool PointersAre64Bit;
public:
enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
: Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
64) {}
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
const CXXDestructorDecl *D, CXXDtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
64) {}
raw_ostream &getStream() const { return Out; }
void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
void mangleName(const NamedDecl *ND);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleVariableEncoding(const VarDecl *VD);
void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
const CXXMethodDecl *MD);
void mangleVirtualMemPtrThunk(
const CXXMethodDecl *MD,
const MicrosoftVTableContext::MethodVFTableLocation &ML);
void mangleNumber(int64_t Number);
void mangleType(QualType T, SourceRange Range,
QualifierMangleMode QMM = QMM_Mangle);
void mangleFunctionType(const FunctionType *T,
const FunctionDecl *D = nullptr,
bool ForceThisQuals = false);
void mangleNestedName(const NamedDecl *ND);
private:
void mangleUnqualifiedName(const NamedDecl *ND) {
mangleUnqualifiedName(ND, ND->getDeclName());
}
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
void mangleSourceName(StringRef Name);
void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
void mangleCXXDtorType(CXXDtorType T);
void mangleQualifiers(Qualifiers Quals, bool IsMember);
void mangleRefQualifier(RefQualifierKind RefQualifier);
void manglePointerCVQualifiers(Qualifiers Quals);
void manglePointerExtQualifiers(Qualifiers Quals, const Type *PointeeType);
void mangleUnscopedTemplateName(const TemplateDecl *ND);
void
mangleTemplateInstantiationName(const TemplateDecl *TD,
const TemplateArgumentList &TemplateArgs);
void mangleObjCMethodName(const ObjCMethodDecl *MD);
void mangleArgumentType(QualType T, SourceRange Range);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
SourceRange Range);
#include "clang/AST/TypeNodes.def"
#undef ABSTRACT_TYPE
#undef NON_CANONICAL_TYPE
#undef TYPE
void mangleType(const TagDecl *TD);
void mangleDecayedArrayType(const ArrayType *T);
void mangleArrayType(const ArrayType *T);
void mangleFunctionClass(const FunctionDecl *FD);
void mangleCallingConvention(const FunctionType *T);
void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
void mangleExpression(const Expr *E);
void mangleThrowSpecification(const FunctionProtoType *T);
void mangleTemplateArgs(const TemplateDecl *TD,
const TemplateArgumentList &TemplateArgs);
void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
const NamedDecl *Parm);
};
}
bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
LanguageLinkage L = FD->getLanguageLinkage();
// Overloadable functions need mangling.
if (FD->hasAttr<OverloadableAttr>())
return true;
// The ABI expects that we would never mangle "typical" user-defined entry
// points regardless of visibility or freestanding-ness.
//
// N.B. This is distinct from asking about "main". "main" has a lot of
// special rules associated with it in the standard while these
// user-defined entry points are outside of the purview of the standard.
// For example, there can be only one definition for "main" in a standards
// compliant program; however nothing forbids the existence of wmain and
// WinMain in the same translation unit.
if (FD->isMSVCRTEntryPoint())
return false;
// C++ functions and those whose names are not a simple identifier need
// mangling.
if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
return true;
// C functions are not mangled.
if (L == CLanguageLinkage)
return false;
}
// Otherwise, no mangling is done outside C++ mode.
if (!getASTContext().getLangOpts().CPlusPlus)
return false;
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
// C variables are not mangled.
if (VD->isExternC())
return false;
// Variables at global scope with non-internal linkage are not mangled.
const DeclContext *DC = getEffectiveDeclContext(D);
// Check for extern variable declared locally.
if (DC->isFunctionOrMethod() && D->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
!isa<VarTemplateSpecializationDecl>(D))
return false;
}
return true;
}
bool
MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
return SL->isAscii() || SL->isWide();
// TODO: This needs to be updated when MSVC gains support for Unicode
// literals.
}
void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
// MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
// Therefore it's really important that we don't decorate the
// name with leading underscores or leading/trailing at signs. So, by
// default, we emit an asm marker at the start so we get the name right.
// Callers can override this with a custom prefix.
// <mangled-name> ::= ? <name> <type-encoding>
Out << Prefix;
mangleName(D);
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
mangleFunctionEncoding(FD);
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
mangleVariableEncoding(VD);
else {
// TODO: Fields? Can MSVC even mangle them?
// Issue a diagnostic for now.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "cannot mangle this declaration yet");
Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
}
}
void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <type-encoding> ::= <function-class> <function-type>
// Since MSVC operates on the type as written and not the canonical type, it
// actually matters which decl we have here. MSVC appears to choose the
// first, since it is most likely to be the declaration in a header file.
FD = FD->getFirstDecl();
// We should never ever see a FunctionNoProtoType at this point.
// We don't even know how to mangle their types anyway :).
const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
// extern "C" functions can hold entities that must be mangled.
// As it stands, these functions still need to get expressed in the full
// external name. They have their class and type omitted, replaced with '9'.
if (Context.shouldMangleDeclName(FD)) {
// First, the function class.
mangleFunctionClass(FD);
mangleFunctionType(FT, FD);
} else
Out << '9';
}
void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
// <type-encoding> ::= <storage-class> <variable-type>
// <storage-class> ::= 0 # private static member
// ::= 1 # protected static member
// ::= 2 # public static member
// ::= 3 # global
// ::= 4 # static local
// The first character in the encoding (after the name) is the storage class.
if (VD->isStaticDataMember()) {
// If it's a static member, it also encodes the access level.
switch (VD->getAccess()) {
default:
case AS_private: Out << '0'; break;
case AS_protected: Out << '1'; break;
case AS_public: Out << '2'; break;
}
}
else if (!VD->isStaticLocal())
Out << '3';
else
Out << '4';
// Now mangle the type.
// <variable-type> ::= <type> <cvr-qualifiers>
// ::= <type> <pointee-cvr-qualifiers> # pointers, references
// Pointers and references are odd. The type of 'int * const foo;' gets
// mangled as 'QAHA' instead of 'PAHB', for example.
SourceRange SR = VD->getSourceRange();
QualType Ty = VD->getType();
if (Ty->isPointerType() || Ty->isReferenceType() ||
Ty->isMemberPointerType()) {
mangleType(Ty, SR, QMM_Drop);
manglePointerExtQualifiers(
Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), nullptr);
if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
// Member pointers are suffixed with a back reference to the member
// pointer's class name.
mangleName(MPT->getClass()->getAsCXXRecordDecl());
} else
mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
} else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
// Global arrays are funny, too.
mangleDecayedArrayType(AT);
if (AT->getElementType()->isArrayType())
Out << 'A';
else
mangleQualifiers(Ty.getQualifiers(), false);
} else {
mangleType(Ty, SR, QMM_Drop);
mangleQualifiers(Ty.getLocalQualifiers(), false);
}
}
void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
const ValueDecl *VD) {
// <member-data-pointer> ::= <integer-literal>
// ::= $F <number> <number>
// ::= $G <number> <number> <number>
int64_t FieldOffset;
int64_t VBTableOffset;
MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
if (VD) {
FieldOffset = getASTContext().getFieldOffset(VD);
assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
"cannot take address of bitfield");
FieldOffset /= getASTContext().getCharWidth();
VBTableOffset = 0;
} else {
FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
VBTableOffset = -1;
}
char Code = '\0';
switch (IM) {
case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
}
Out << '$' << Code;
mangleNumber(FieldOffset);
// The C++ standard doesn't allow base-to-derived member pointer conversions
// in template parameter contexts, so the vbptr offset of data member pointers
// is always zero.
if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
mangleNumber(0);
if (MSInheritanceAttr::hasVBTableOffsetField(IM))
mangleNumber(VBTableOffset);
}
void
MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
const CXXMethodDecl *MD) {
// <member-function-pointer> ::= $1? <name>
// ::= $H? <name> <number>
// ::= $I? <name> <number> <number>
// ::= $J? <name> <number> <number> <number>
MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
char Code = '\0';
switch (IM) {
case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
}
// If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
// thunk.
uint64_t NVOffset = 0;
uint64_t VBTableOffset = 0;
uint64_t VBPtrOffset = 0;
if (MD) {
Out << '$' << Code << '?';
if (MD->isVirtual()) {
MicrosoftVTableContext *VTContext =
cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
const MicrosoftVTableContext::MethodVFTableLocation &ML =
VTContext->getMethodVFTableLocation(GlobalDecl(MD));
mangleVirtualMemPtrThunk(MD, ML);
NVOffset = ML.VFPtrOffset.getQuantity();
VBTableOffset = ML.VBTableIndex * 4;
if (ML.VBase) {
const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
}
} else {
mangleName(MD);
mangleFunctionEncoding(MD);
}
} else {
// Null single inheritance member functions are encoded as a simple nullptr.
if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
Out << "$0A@";
return;
}
if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
VBTableOffset = -1;
Out << '$' << Code;
}
if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
mangleNumber(NVOffset);
if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
mangleNumber(VBPtrOffset);
if (MSInheritanceAttr::hasVBTableOffsetField(IM))
mangleNumber(VBTableOffset);
}
void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
const CXXMethodDecl *MD,
const MicrosoftVTableContext::MethodVFTableLocation &ML) {
// Get the vftable offset.
CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
getASTContext().getTargetInfo().getPointerWidth(0));
uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
Out << "?_9";
mangleName(MD->getParent());
Out << "$B";
mangleNumber(OffsetInVFTable);
Out << 'A';
Out << (PointersAre64Bit ? 'A' : 'E');
}
void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
// Always start with the unqualified name.
mangleUnqualifiedName(ND);
mangleNestedName(ND);
// Terminate the whole name with an '@'.
Out << '@';
}
void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
// <non-negative integer> ::= A@ # when Number == 0
// ::= <decimal digit> # when 1 <= Number <= 10
// ::= <hex digit>+ @ # when Number >= 10
//
// <number> ::= [?] <non-negative integer>
uint64_t Value = static_cast<uint64_t>(Number);
if (Number < 0) {
Value = -Value;
Out << '?';
}
if (Value == 0)
Out << "A@";
else if (Value >= 1 && Value <= 10)
Out << (Value - 1);
else {
// Numbers that are not encoded as decimal digits are represented as nibbles
// in the range of ASCII characters 'A' to 'P'.
// The number 0x123450 would be encoded as 'BCDEFA'
char EncodedNumberBuffer[sizeof(uint64_t) * 2];
MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
for (; Value != 0; Value >>= 4)
*I++ = 'A' + (Value & 0xf);
Out.write(I.base(), I - BufferRef.rbegin());
Out << '@';
}
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
TemplateArgs = FD->getTemplateSpecializationArgs();
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
// Check if we have a variable template.
if (const VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
return nullptr;
}
void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
DeclarationName Name) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
// ::= <template-name>
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
// Function templates aren't considered for name back referencing. This
// makes sense since function templates aren't likely to occur multiple
// times in a symbol.
// FIXME: Test alias template mangling with MSVC 2013.
if (!isa<ClassTemplateDecl>(TD)) {
mangleTemplateInstantiationName(TD, *TemplateArgs);
Out << '@';
return;
}
// Here comes the tricky thing: if we need to mangle something like
// void foo(A::X<Y>, B::X<Y>),
// the X<Y> part is aliased. However, if you need to mangle
// void foo(A::X<A::Y>, A::X<B::Y>),
// the A::X<> part is not aliased.
// That said, from the mangler's perspective we have a structure like this:
// namespace[s] -> type[ -> template-parameters]
// but from the Clang perspective we have
// type [ -> template-parameters]
// \-> namespace[s]
// What we do is we create a new mangler, mangle the same type (without
// a namespace suffix) to a string using the extra mangler and then use
// the mangled type name as a key to check the mangling of different types
// for aliasing.
llvm::SmallString<64> TemplateMangling;
llvm::raw_svector_ostream Stream(TemplateMangling);
MicrosoftCXXNameMangler Extra(Context, Stream);
Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
Stream.flush();
mangleSourceName(TemplateMangling);
return;
}
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
mangleSourceName(II->getName());
break;
}
// Otherwise, an anonymous entity. We must have a declaration.
assert(ND && "mangling empty name without declaration");
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->isAnonymousNamespace()) {
Out << "?A@";
break;
}
}
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
// We must have an anonymous union or struct declaration.
const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
assert(RD && "expected variable decl to have a record type");
// Anonymous types with no tag or typedef get the name of their
// declarator mangled in. If they have no declarator, number them with
// a $S prefix.
llvm::SmallString<64> Name("$S");
// Get a unique id for the anonymous struct.
Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
mangleSourceName(Name.str());
break;
}
// We must have an anonymous struct.
const TagDecl *TD = cast<TagDecl>(ND);
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
assert(TD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
break;
}
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
if (Record->isLambda()) {
llvm::SmallString<10> Name("<lambda_");
unsigned LambdaId;
if (Record->getLambdaManglingNumber())
LambdaId = Record->getLambdaManglingNumber();
else
LambdaId = Context.getLambdaId(Record);
Name += llvm::utostr(LambdaId);
Name += ">";
mangleSourceName(Name);
break;
}
}
llvm::SmallString<64> Name("<unnamed-type-");
if (TD->hasDeclaratorForAnonDecl()) {
// Anonymous types with no tag or typedef get the name of their
// declarator mangled in if they have one.
Name += TD->getDeclaratorForAnonDecl()->getName();
} else {
// Otherwise, number the types using a $S prefix.
Name += "$S";
Name += llvm::utostr(Context.getAnonymousStructId(TD));
}
Name += ">";
mangleSourceName(Name.str());
break;
}
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
case DeclarationName::CXXConstructorName:
if (ND == Structor) {
assert(StructorType == Ctor_Complete &&
"Should never be asked to mangle a ctor other than complete");
}
Out << "?0";
break;
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling,
// use the type we were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the base destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Base);
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= ?B # (cast)
// The target type is encoded as the return type.
Out << "?B";
break;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
break;
case DeclarationName::CXXLiteralOperatorName: {
Out << "?__K";
mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
break;
}
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
}
}
void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
// <postfix> ::= <unqualified-name> [<postfix>]
// ::= <substitution> [<postfix>]
const DeclContext *DC = getEffectiveDeclContext(ND);
while (!DC->isTranslationUnit()) {
if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
unsigned Disc;
if (Context.getNextDiscriminator(ND, Disc)) {
Out << '?';
mangleNumber(Disc);
Out << '?';
}
}
if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID =
Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle a local inside this block yet");
Diags.Report(BD->getLocation(), DiagID);
// FIXME: This is completely, utterly, wrong; see ItaniumMangle
// for how this should be done.
Out << "__block_invoke" << Context.getBlockId(BD, false);
Out << '@';
continue;
} else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
mangleObjCMethodName(Method);
} else if (isa<NamedDecl>(DC)) {
ND = cast<NamedDecl>(DC);
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
mangle(FD, "?");
break;
} else
mangleUnqualifiedName(ND);
}
DC = DC->getParent();
}
}
void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
// Microsoft uses the names on the case labels for these dtor variants. Clang
// uses the Itanium terminology internally. Everything in this ABI delegates
// towards the base dtor.
switch (T) {
// <operator-name> ::= ?1 # destructor
case Dtor_Base: Out << "?1"; return;
// <operator-name> ::= ?_D # vbase destructor
case Dtor_Complete: Out << "?_D"; return;
// <operator-name> ::= ?_G # scalar deleting destructor
case Dtor_Deleting: Out << "?_G"; return;
// <operator-name> ::= ?_E # vector deleting destructor
// FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
// it.
}
llvm_unreachable("Unsupported dtor type?");
}
void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
SourceLocation Loc) {
switch (OO) {
// ?0 # constructor
// ?1 # destructor
// <operator-name> ::= ?2 # new
case OO_New: Out << "?2"; break;
// <operator-name> ::= ?3 # delete
case OO_Delete: Out << "?3"; break;
// <operator-name> ::= ?4 # =
case OO_Equal: Out << "?4"; break;
// <operator-name> ::= ?5 # >>
case OO_GreaterGreater: Out << "?5"; break;
// <operator-name> ::= ?6 # <<
case OO_LessLess: Out << "?6"; break;
// <operator-name> ::= ?7 # !
case OO_Exclaim: Out << "?7"; break;
// <operator-name> ::= ?8 # ==
case OO_EqualEqual: Out << "?8"; break;
// <operator-name> ::= ?9 # !=
case OO_ExclaimEqual: Out << "?9"; break;
// <operator-name> ::= ?A # []
case OO_Subscript: Out << "?A"; break;
// ?B # conversion
// <operator-name> ::= ?C # ->
case OO_Arrow: Out << "?C"; break;
// <operator-name> ::= ?D # *
case OO_Star: Out << "?D"; break;
// <operator-name> ::= ?E # ++
case OO_PlusPlus: Out << "?E"; break;
// <operator-name> ::= ?F # --
case OO_MinusMinus: Out << "?F"; break;
// <operator-name> ::= ?G # -
case OO_Minus: Out << "?G"; break;
// <operator-name> ::= ?H # +
case OO_Plus: Out << "?H"; break;
// <operator-name> ::= ?I # &
case OO_Amp: Out << "?I"; break;
// <operator-name> ::= ?J # ->*
case OO_ArrowStar: Out << "?J"; break;
// <operator-name> ::= ?K # /
case OO_Slash: Out << "?K"; break;
// <operator-name> ::= ?L # %
case OO_Percent: Out << "?L"; break;
// <operator-name> ::= ?M # <
case OO_Less: Out << "?M"; break;
// <operator-name> ::= ?N # <=
case OO_LessEqual: Out << "?N"; break;
// <operator-name> ::= ?O # >
case OO_Greater: Out << "?O"; break;
// <operator-name> ::= ?P # >=
case OO_GreaterEqual: Out << "?P"; break;
// <operator-name> ::= ?Q # ,
case OO_Comma: Out << "?Q"; break;
// <operator-name> ::= ?R # ()
case OO_Call: Out << "?R"; break;
// <operator-name> ::= ?S # ~
case OO_Tilde: Out << "?S"; break;
// <operator-name> ::= ?T # ^
case OO_Caret: Out << "?T"; break;
// <operator-name> ::= ?U # |
case OO_Pipe: Out << "?U"; break;
// <operator-name> ::= ?V # &&
case OO_AmpAmp: Out << "?V"; break;
// <operator-name> ::= ?W # ||
case OO_PipePipe: Out << "?W"; break;
// <operator-name> ::= ?X # *=
case OO_StarEqual: Out << "?X"; break;
// <operator-name> ::= ?Y # +=
case OO_PlusEqual: Out << "?Y"; break;
// <operator-name> ::= ?Z # -=
case OO_MinusEqual: Out << "?Z"; break;
// <operator-name> ::= ?_0 # /=
case OO_SlashEqual: Out << "?_0"; break;
// <operator-name> ::= ?_1 # %=
case OO_PercentEqual: Out << "?_1"; break;
// <operator-name> ::= ?_2 # >>=
case OO_GreaterGreaterEqual: Out << "?_2"; break;
// <operator-name> ::= ?_3 # <<=
case OO_LessLessEqual: Out << "?_3"; break;
// <operator-name> ::= ?_4 # &=
case OO_AmpEqual: Out << "?_4"; break;
// <operator-name> ::= ?_5 # |=
case OO_PipeEqual: Out << "?_5"; break;
// <operator-name> ::= ?_6 # ^=
case OO_CaretEqual: Out << "?_6"; break;
// ?_7 # vftable
// ?_8 # vbtable
// ?_9 # vcall
// ?_A # typeof
// ?_B # local static guard
// ?_C # string
// ?_D # vbase destructor
// ?_E # vector deleting destructor
// ?_F # default constructor closure
// ?_G # scalar deleting destructor
// ?_H # vector constructor iterator
// ?_I # vector destructor iterator
// ?_J # vector vbase constructor iterator
// ?_K # virtual displacement map
// ?_L # eh vector constructor iterator
// ?_M # eh vector destructor iterator
// ?_N # eh vector vbase constructor iterator
// ?_O # copy constructor closure
// ?_P<name> # udt returning <name>
// ?_Q # <unknown>
// ?_R0 # RTTI Type Descriptor
// ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
// ?_R2 # RTTI Base Class Array
// ?_R3 # RTTI Class Hierarchy Descriptor
// ?_R4 # RTTI Complete Object Locator
// ?_S # local vftable
// ?_T # local vftable constructor closure
// <operator-name> ::= ?_U # new[]
case OO_Array_New: Out << "?_U"; break;
// <operator-name> ::= ?_V # delete[]
case OO_Array_Delete: Out << "?_V"; break;
case OO_Conditional: {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this conditional operator yet");
Diags.Report(Loc, DiagID);
break;
}
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Not an overloaded operator");
}
}
void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
// <source name> ::= <identifier> @
BackRefMap::iterator Found;
if (NameBackReferences.size() < 10) {
size_t Size = NameBackReferences.size();
bool Inserted;
std::tie(Found, Inserted) =
NameBackReferences.insert(std::make_pair(Name, Size));
if (Inserted)
Found = NameBackReferences.end();
} else {
Found = NameBackReferences.find(Name);
}
if (Found == NameBackReferences.end()) {
Out << Name << '@';
} else {
Out << Found->second;
}
}
void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
Context.mangleObjCMethodName(MD, Out);
}
void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
// <template-name> ::= <unscoped-template-name> <template-args>
// ::= <substitution>
// Always start with the unqualified name.
// Templates have their own context for back references.
ArgBackRefMap OuterArgsContext;
BackRefMap OuterTemplateContext;
NameBackReferences.swap(OuterTemplateContext);
TypeBackReferences.swap(OuterArgsContext);
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(TD, TemplateArgs);
// Restore the previous back reference contexts.
NameBackReferences.swap(OuterTemplateContext);
TypeBackReferences.swap(OuterArgsContext);
}
void
MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
// <unscoped-template-name> ::= ?$ <unqualified-name>
Out << "?$";
mangleUnqualifiedName(TD);
}
void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
bool IsBoolean) {
// <integer-literal> ::= $0 <number>
Out << "$0";
// Make sure booleans are encoded as 0/1.
if (IsBoolean && Value.getBoolValue())
mangleNumber(1);
else
mangleNumber(Value.getSExtValue());
}
void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
// See if this is a constant expression.
llvm::APSInt Value;
if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
mangleIntegerLiteral(Value, E->getType()->isBooleanType());
return;
}
// Look through no-op casts like template parameter substitutions.
E = E->IgnoreParenNoopCasts(Context.getASTContext());
const CXXUuidofExpr *UE = nullptr;
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
if (UO->getOpcode() == UO_AddrOf)
UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
} else
UE = dyn_cast<CXXUuidofExpr>(E);
if (UE) {
// This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
// const __s_GUID _GUID_{lower case UUID with underscores}
StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
std::string Name = "_GUID_" + Uuid.lower();
std::replace(Name.begin(), Name.end(), '-', '_');
// If we had to peek through an address-of operator, treat this like we are
// dealing with a pointer type. Otherwise, treat it like a const reference.
//
// N.B. This matches up with the handling of TemplateArgument::Declaration
// in mangleTemplateArg
if (UE == E)
Out << "$E?";
else
Out << "$1?";
Out << Name << "@@3U__s_GUID@@B";
return;
}
// As bad as this diagnostic is, it's better than crashing.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
<< E->getSourceRange();
}
void MicrosoftCXXNameMangler::mangleTemplateArgs(
const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
// <template-args> ::= <template-arg>+
const TemplateParameterList *TPL = TD->getTemplateParameters();
assert(TPL->size() == TemplateArgs.size() &&
"size mismatch between args and parms!");
unsigned Idx = 0;
for (const TemplateArgument &TA : TemplateArgs.asArray())
mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
}
void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
const TemplateArgument &TA,
const NamedDecl *Parm) {
// <template-arg> ::= <type>
// ::= <integer-literal>
// ::= <member-data-pointer>
// ::= <member-function-pointer>
// ::= $E? <name> <type-encoding>
// ::= $1? <name> <type-encoding>
// ::= $0A@
// ::= <template-args>
switch (TA.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Can't mangle null template arguments!");
case TemplateArgument::TemplateExpansion:
llvm_unreachable("Can't mangle template expansion arguments!");
case TemplateArgument::Type: {
QualType T = TA.getAsType();
mangleType(T, SourceRange(), QMM_Escape);
break;
}
case TemplateArgument::Declaration: {
const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
mangleMemberDataPointer(
cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
cast<ValueDecl>(ND));
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
if (MD && MD->isInstance())
mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
else
mangle(FD, "$1?");
} else {
mangle(ND, TA.isDeclForReferenceParam() ? "$E?" : "$1?");
}
break;
}
case TemplateArgument::Integral:
mangleIntegerLiteral(TA.getAsIntegral(),
TA.getIntegralType()->isBooleanType());
break;
case TemplateArgument::NullPtr: {
QualType T = TA.getNullPtrType();
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
if (MPT->isMemberFunctionPointerType() && isa<ClassTemplateDecl>(TD)) {
mangleMemberFunctionPointer(RD, nullptr);
return;
}
if (MPT->isMemberDataPointer()) {
mangleMemberDataPointer(RD, nullptr);
return;
}
}
Out << "$0A@";
break;
}
case TemplateArgument::Expression:
mangleExpression(TA.getAsExpr());
break;
case TemplateArgument::Pack: {
ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
if (TemplateArgs.empty()) {
if (isa<TemplateTypeParmDecl>(Parm) ||
isa<TemplateTemplateParmDecl>(Parm))
Out << "$$V";
else if (isa<NonTypeTemplateParmDecl>(Parm))
Out << "$S";
else
llvm_unreachable("unexpected template parameter decl!");
} else {
for (const TemplateArgument &PA : TemplateArgs)
mangleTemplateArg(TD, PA, Parm);
}
break;
}
case TemplateArgument::Template: {
const NamedDecl *ND =
TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
if (const auto *TD = dyn_cast<TagDecl>(ND)) {
mangleType(TD);
} else if (isa<TypeAliasDecl>(ND)) {
Out << "$$Y";
mangleName(ND);
} else {
llvm_unreachable("unexpected template template NamedDecl!");
}
break;
}
}
}
void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
bool IsMember) {
// <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
// 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
// 'I' means __restrict (32/64-bit).
// Note that the MSVC __restrict keyword isn't the same as the C99 restrict
// keyword!
// <base-cvr-qualifiers> ::= A # near
// ::= B # near const
// ::= C # near volatile
// ::= D # near const volatile
// ::= E # far (16-bit)
// ::= F # far const (16-bit)
// ::= G # far volatile (16-bit)
// ::= H # far const volatile (16-bit)
// ::= I # huge (16-bit)
// ::= J # huge const (16-bit)
// ::= K # huge volatile (16-bit)
// ::= L # huge const volatile (16-bit)
// ::= M <basis> # based
// ::= N <basis> # based const
// ::= O <basis> # based volatile
// ::= P <basis> # based const volatile
// ::= Q # near member
// ::= R # near const member
// ::= S # near volatile member
// ::= T # near const volatile member
// ::= U # far member (16-bit)
// ::= V # far const member (16-bit)
// ::= W # far volatile member (16-bit)
// ::= X # far const volatile member (16-bit)
// ::= Y # huge member (16-bit)
// ::= Z # huge const member (16-bit)
// ::= 0 # huge volatile member (16-bit)
// ::= 1 # huge const volatile member (16-bit)
// ::= 2 <basis> # based member
// ::= 3 <basis> # based const member
// ::= 4 <basis> # based volatile member
// ::= 5 <basis> # based const volatile member
// ::= 6 # near function (pointers only)
// ::= 7 # far function (pointers only)
// ::= 8 # near method (pointers only)
// ::= 9 # far method (pointers only)
// ::= _A <basis> # based function (pointers only)
// ::= _B <basis> # based function (far?) (pointers only)
// ::= _C <basis> # based method (pointers only)
// ::= _D <basis> # based method (far?) (pointers only)
// ::= _E # block (Clang)
// <basis> ::= 0 # __based(void)
// ::= 1 # __based(segment)?
// ::= 2 <name> # __based(name)
// ::= 3 # ?
// ::= 4 # ?
// ::= 5 # not really based
bool HasConst = Quals.hasConst(),
HasVolatile = Quals.hasVolatile();
if (!IsMember) {
if (HasConst && HasVolatile) {
Out << 'D';
} else if (HasVolatile) {
Out << 'C';
} else if (HasConst) {
Out << 'B';
} else {
Out << 'A';
}
} else {
if (HasConst && HasVolatile) {
Out << 'T';
} else if (HasVolatile) {
Out << 'S';
} else if (HasConst) {
Out << 'R';
} else {
Out << 'Q';
}
}
// FIXME: For now, just drop all extension qualifiers on the floor.
}
void
MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
// <ref-qualifier> ::= G # lvalue reference
// ::= H # rvalue-reference
switch (RefQualifier) {
case RQ_None:
break;
case RQ_LValue:
Out << 'G';
break;
case RQ_RValue:
Out << 'H';
break;
}
}
void
MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
const Type *PointeeType) {
bool HasRestrict = Quals.hasRestrict();
if (PointersAre64Bit && (!PointeeType || !PointeeType->isFunctionType()))
Out << 'E';
if (HasRestrict)
Out << 'I';
}
void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
// <pointer-cv-qualifiers> ::= P # no qualifiers
// ::= Q # const
// ::= R # volatile
// ::= S # const volatile
bool HasConst = Quals.hasConst(),
HasVolatile = Quals.hasVolatile();
if (HasConst && HasVolatile) {
Out << 'S';
} else if (HasVolatile) {
Out << 'R';
} else if (HasConst) {
Out << 'Q';
} else {
Out << 'P';
}
}
void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
SourceRange Range) {
// MSVC will backreference two canonically equivalent types that have slightly
// different manglings when mangled alone.
// Decayed types do not match up with non-decayed versions of the same type.
//
// e.g.
// void (*x)(void) will not form a backreference with void x(void)
void *TypePtr;
if (const DecayedType *DT = T->getAs<DecayedType>()) {
TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
// If the original parameter was textually written as an array,
// instead treat the decayed parameter like it's const.
//
// e.g.
// int [] -> int * const
if (DT->getOriginalType()->isArrayType())
T = T.withConst();
} else
TypePtr = T.getCanonicalType().getAsOpaquePtr();
ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
if (Found == TypeBackReferences.end()) {
size_t OutSizeBefore = Out.GetNumBytesInBuffer();
mangleType(T, Range, QMM_Drop);
// See if it's worth creating a back reference.
// Only types longer than 1 character are considered
// and only 10 back references slots are available:
bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
if (LongerThanOneChar && TypeBackReferences.size() < 10) {
size_t Size = TypeBackReferences.size();
TypeBackReferences[TypePtr] = Size;
}
} else {
Out << Found->second;
}
}
void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
QualifierMangleMode QMM) {
// Don't use the canonical types. MSVC includes things like 'const' on
// pointer arguments to function pointers that canonicalization strips away.
T = T.getDesugaredType(getASTContext());
Qualifiers Quals = T.getLocalQualifiers();
if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
// If there were any Quals, getAsArrayType() pushed them onto the array
// element type.
if (QMM == QMM_Mangle)
Out << 'A';
else if (QMM == QMM_Escape || QMM == QMM_Result)
Out << "$$B";
mangleArrayType(AT);
return;
}
bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
T->isBlockPointerType();
switch (QMM) {
case QMM_Drop:
break;
case QMM_Mangle:
if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
Out << '6';
mangleFunctionType(FT);
return;
}
mangleQualifiers(Quals, false);
break;
case QMM_Escape:
if (!IsPointer && Quals) {
Out << "$$C";
mangleQualifiers(Quals, false);
}
break;
case QMM_Result:
if ((!IsPointer && Quals) || isa<TagType>(T)) {
Out << '?';
mangleQualifiers(Quals, false);
}
break;
}
// We have to mangle these now, while we still have enough information.
if (IsPointer) {
manglePointerCVQualifiers(Quals);
manglePointerExtQualifiers(Quals, T->getPointeeType().getTypePtr());
}
const Type *ty = T.getTypePtr();
switch (ty->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(cast<CLASS##Type>(ty), Range); \
break;
#include "clang/AST/TypeNodes.def"
#undef ABSTRACT_TYPE
#undef NON_CANONICAL_TYPE
#undef TYPE
}
}
void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
SourceRange Range) {
// <type> ::= <builtin-type>
// <builtin-type> ::= X # void
// ::= C # signed char
// ::= D # char
// ::= E # unsigned char
// ::= F # short
// ::= G # unsigned short (or wchar_t if it's not a builtin)
// ::= H # int
// ::= I # unsigned int
// ::= J # long
// ::= K # unsigned long
// L # <none>
// ::= M # float
// ::= N # double
// ::= O # long double (__float80 is mangled differently)
// ::= _J # long long, __int64
// ::= _K # unsigned long long, __int64
// ::= _L # __int128
// ::= _M # unsigned __int128
// ::= _N # bool
// _O # <array in parameter>
// ::= _T # __float80 (Intel)
// ::= _W # wchar_t
// ::= _Z # __float80 (Digital Mars)
switch (T->getKind()) {
case BuiltinType::Void: Out << 'X'; break;
case BuiltinType::SChar: Out << 'C'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
case BuiltinType::UChar: Out << 'E'; break;
case BuiltinType::Short: Out << 'F'; break;
case BuiltinType::UShort: Out << 'G'; break;
case BuiltinType::Int: Out << 'H'; break;
case BuiltinType::UInt: Out << 'I'; break;
case BuiltinType::Long: Out << 'J'; break;
case BuiltinType::ULong: Out << 'K'; break;
case BuiltinType::Float: Out << 'M'; break;
case BuiltinType::Double: Out << 'N'; break;
// TODO: Determine size and mangle accordingly
case BuiltinType::LongDouble: Out << 'O'; break;
case BuiltinType::LongLong: Out << "_J"; break;
case BuiltinType::ULongLong: Out << "_K"; break;
case BuiltinType::Int128: Out << "_L"; break;
case BuiltinType::UInt128: Out << "_M"; break;
case BuiltinType::Bool: Out << "_N"; break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U: Out << "_W"; break;
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("placeholder types shouldn't get to name mangling");
case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
case BuiltinType::NullPtr: Out << "$$T"; break;
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Half: {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this built-in %0 type yet");
Diags.Report(Range.getBegin(), DiagID)
<< T->getName(Context.getASTContext().getPrintingPolicy())
<< Range;
break;
}
}
}
// <type> ::= <function-type>
void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
SourceRange) {
// Structors only appear in decls, so at this point we know it's not a
// structor type.
// FIXME: This may not be lambda-friendly.
if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
Out << "$$A8@@";
mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
} else {
Out << "$$A6";
mangleFunctionType(T);
}
}
void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
SourceRange) {
llvm_unreachable("Can't mangle K&R function prototypes");
}
void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
const FunctionDecl *D,
bool ForceThisQuals) {
// <function-type> ::= <this-cvr-qualifiers> <calling-convention>
// <return-type> <argument-list> <throw-spec>
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
SourceRange Range;
if (D) Range = D->getSourceRange();
bool IsStructor = false, HasThisQuals = ForceThisQuals;
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
if (MD->isInstance())
HasThisQuals = true;
if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
IsStructor = true;
}
// If this is a C++ instance method, mangle the CVR qualifiers for the
// this pointer.
if (HasThisQuals) {
Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
manglePointerExtQualifiers(Quals, /*PointeeType=*/nullptr);
mangleRefQualifier(Proto->getRefQualifier());
mangleQualifiers(Quals, /*IsMember=*/false);
}
mangleCallingConvention(T);
// <return-type> ::= <type>
// ::= @ # structors (they have no declared return type)
if (IsStructor) {
if (isa<CXXDestructorDecl>(D) && D == Structor &&
StructorType == Dtor_Deleting) {
// The scalar deleting destructor takes an extra int argument.
// However, the FunctionType generated has 0 arguments.
// FIXME: This is a temporary hack.
// Maybe should fix the FunctionType creation instead?
Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
return;
}
Out << '@';
} else {
QualType ResultType = Proto->getReturnType();
if (const auto *AT =
dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
Out << '?';
mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
Out << '?';
mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
Out << '@';
} else {
if (ResultType->isVoidType())
ResultType = ResultType.getUnqualifiedType();
mangleType(ResultType, Range, QMM_Result);
}
}
// <argument-list> ::= X # void
// ::= <type>+ @
// ::= <type>* Z # varargs
if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
Out << 'X';
} else {
// Happens for function pointer type arguments for example.
for (const QualType Arg : Proto->param_types())
mangleArgumentType(Arg, Range);
// <builtin-type> ::= Z # ellipsis
if (Proto->isVariadic())
Out << 'Z';
else
Out << '@';
}
mangleThrowSpecification(Proto);
}
void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
// <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
// # pointer. in 64-bit mode *all*
// # 'this' pointers are 64-bit.
// ::= <global-function>
// <member-function> ::= A # private: near
// ::= B # private: far
// ::= C # private: static near
// ::= D # private: static far
// ::= E # private: virtual near
// ::= F # private: virtual far
// ::= I # protected: near
// ::= J # protected: far
// ::= K # protected: static near
// ::= L # protected: static far
// ::= M # protected: virtual near
// ::= N # protected: virtual far
// ::= Q # public: near
// ::= R # public: far
// ::= S # public: static near
// ::= T # public: static far
// ::= U # public: virtual near
// ::= V # public: virtual far
// <global-function> ::= Y # global near
// ::= Z # global far
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
switch (MD->getAccess()) {
case AS_none:
llvm_unreachable("Unsupported access specifier");
case AS_private:
if (MD->isStatic())
Out << 'C';
else if (MD->isVirtual())
Out << 'E';
else
Out << 'A';
break;
case AS_protected:
if (MD->isStatic())
Out << 'K';
else if (MD->isVirtual())
Out << 'M';
else
Out << 'I';
break;
case AS_public:
if (MD->isStatic())
Out << 'S';
else if (MD->isVirtual())
Out << 'U';
else
Out << 'Q';
}
} else
Out << 'Y';
}
void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
// <calling-convention> ::= A # __cdecl
// ::= B # __export __cdecl
// ::= C # __pascal
// ::= D # __export __pascal
// ::= E # __thiscall
// ::= F # __export __thiscall
// ::= G # __stdcall
// ::= H # __export __stdcall
// ::= I # __fastcall
// ::= J # __export __fastcall
// The 'export' calling conventions are from a bygone era
// (*cough*Win16*cough*) when functions were declared for export with
// that keyword. (It didn't actually export them, it just made them so
// that they could be in a DLL and somebody from another module could call
// them.)
CallingConv CC = T->getCallConv();
switch (CC) {
default:
llvm_unreachable("Unsupported CC for mangling");
case CC_X86_64Win64:
case CC_X86_64SysV:
case CC_C: Out << 'A'; break;
case CC_X86Pascal: Out << 'C'; break;
case CC_X86ThisCall: Out << 'E'; break;
case CC_X86StdCall: Out << 'G'; break;
case CC_X86FastCall: Out << 'I'; break;
}
}
void MicrosoftCXXNameMangler::mangleThrowSpecification(
const FunctionProtoType *FT) {
// <throw-spec> ::= Z # throw(...) (default)
// ::= @ # throw() or __declspec/__attribute__((nothrow))
// ::= <type>+
// NOTE: Since the Microsoft compiler ignores throw specifications, they are
// all actually mangled as 'Z'. (They're ignored because their associated
// functionality isn't implemented, and probably never will be.)
Out << 'Z';
}
void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
SourceRange Range) {
// Probably should be mangled as a template instantiation; need to see what
// VC does first.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this unresolved dependent type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
// <union-type> ::= T <name>
// <struct-type> ::= U <name>
// <class-type> ::= V <name>
// <enum-type> ::= W4 <name>
void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
mangleType(cast<TagType>(T)->getDecl());
}
void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
mangleType(cast<TagType>(T)->getDecl());
}
void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
switch (TD->getTagKind()) {
case TTK_Union:
Out << 'T';
break;
case TTK_Struct:
case TTK_Interface:
Out << 'U';
break;
case TTK_Class:
Out << 'V';
break;
case TTK_Enum:
Out << "W4";
break;
}
mangleName(TD);
}
// <type> ::= <array-type>
// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
// [Y <dimension-count> <dimension>+]
// <element-type> # as global, E is never required
// It's supposed to be the other way around, but for some strange reason, it
// isn't. Today this behavior is retained for the sole purpose of backwards
// compatibility.
void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
// This isn't a recursive mangling, so now we have to do it all in this
// one call.
manglePointerCVQualifiers(T->getElementType().getQualifiers());
mangleType(T->getElementType(), SourceRange());
}
void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
SourceRange) {
llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
SourceRange) {
llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
SourceRange) {
llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
SourceRange) {
llvm_unreachable("Should have been special cased");
}
void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
QualType ElementTy(T, 0);
SmallVector<llvm::APInt, 3> Dimensions;
for (;;) {
if (const ConstantArrayType *CAT =
getASTContext().getAsConstantArrayType(ElementTy)) {
Dimensions.push_back(CAT->getSize());
ElementTy = CAT->getElementType();
} else if (ElementTy->isVariableArrayType()) {
const VariableArrayType *VAT =
getASTContext().getAsVariableArrayType(ElementTy);
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this variable-length array yet");
Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
<< VAT->getBracketsRange();
return;
} else if (ElementTy->isDependentSizedArrayType()) {
// The dependent expression has to be folded into a constant (TODO).
const DependentSizedArrayType *DSAT =
getASTContext().getAsDependentSizedArrayType(ElementTy);
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent-length array yet");
Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
<< DSAT->getBracketsRange();
return;
} else if (const IncompleteArrayType *IAT =
getASTContext().getAsIncompleteArrayType(ElementTy)) {
Dimensions.push_back(llvm::APInt(32, 0));
ElementTy = IAT->getElementType();
}
else break;
}
Out << 'Y';
// <dimension-count> ::= <number> # number of extra dimensions
mangleNumber(Dimensions.size());
for (const llvm::APInt &Dimension : Dimensions)
mangleNumber(Dimension.getLimitedValue());
mangleType(ElementTy, SourceRange(), QMM_Escape);
}
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
// <class name> <type>
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
SourceRange Range) {
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
Out << '8';
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
mangleFunctionType(FPT, nullptr, true);
} else {
mangleQualifiers(PointeeType.getQualifiers(), true);
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
mangleType(PointeeType, Range, QMM_Drop);
}
}
void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this template type parameter type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(
const SubstTemplateTypeParmPackType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this substituted parameter pack yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
// <type> ::= <pointer-type>
// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
// # the E is required for 64-bit non-static pointers
void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
SourceRange Range) {
QualType PointeeTy = T->getPointeeType();
mangleType(PointeeTy, Range);
}
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
SourceRange Range) {
// Object pointers never have qualifiers.
Out << 'A';
manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
mangleType(T->getPointeeType(), Range);
}
// <type> ::= <reference-type>
// <reference-type> ::= A E? <cvr-qualifiers> <type>
// # the E is required for 64-bit non-static lvalue references
void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
SourceRange Range) {
Out << 'A';
manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
mangleType(T->getPointeeType(), Range);
}
// <type> ::= <r-value-reference-type>
// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
// # the E is required for 64-bit non-static rvalue references
void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
SourceRange Range) {
Out << "$$Q";
manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
mangleType(T->getPointeeType(), Range);
}
void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this complex number type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
SourceRange Range) {
const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
assert(ET && "vectors with non-builtin elements are unsupported");
uint64_t Width = getASTContext().getTypeSize(T);
// Pattern match exactly the typedefs in our intrinsic headers. Anything that
// doesn't match the Intel types uses a custom mangling below.
bool IntelVector = true;
if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
Out << "T__m64";
} else if (Width == 128 || Width == 256) {
if (ET->getKind() == BuiltinType::Float)
Out << "T__m" << Width;
else if (ET->getKind() == BuiltinType::LongLong)
Out << "T__m" << Width << 'i';
else if (ET->getKind() == BuiltinType::Double)
Out << "U__m" << Width << 'd';
else
IntelVector = false;
} else {
IntelVector = false;
}
if (!IntelVector) {
// The MS ABI doesn't have a special mangling for vector types, so we define
// our own mangling to handle uses of __vector_size__ on user-specified
// types, and for extensions like __v4sf.
Out << "T__clang_vec" << T->getNumElements() << '_';
mangleType(ET, Range);
}
Out << "@@";
}
void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this extended vector type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent-sized extended vector type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
SourceRange) {
// ObjC interfaces have structs underlying them.
Out << 'U';
mangleName(T->getDecl());
}
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
SourceRange Range) {
// We don't allow overloading by different protocol qualification,
// so mangling them isn't necessary.
mangleType(T->getBaseType(), Range);
}
void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
SourceRange Range) {
Out << "_E";
QualType pointee = T->getPointeeType();
mangleFunctionType(pointee->castAs<FunctionProtoType>());
}
void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
SourceRange) {
llvm_unreachable("Cannot mangle injected class name type.");
}
void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this template specialization type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent name type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(
const DependentTemplateSpecializationType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent template specialization type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this pack expansion yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this typeof(type) yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this typeof(expression) yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this decltype() yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this unary transform type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
assert(T->getDeducedType().isNull() && "expecting a dependent type!");
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this 'auto' type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this C11 atomic type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
raw_ostream &Out) {
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
"Invalid mangleName() call, argument is not a variable or function!");
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
"Invalid mangleName() call on 'structor decl!");
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
getASTContext().getSourceManager(),
"Mangling declaration");
MicrosoftCXXNameMangler Mangler(*this, Out);
return Mangler.mangle(D);
}
// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
// <virtual-adjustment>
// <no-adjustment> ::= A # private near
// ::= B # private far
// ::= I # protected near
// ::= J # protected far
// ::= Q # public near
// ::= R # public far
// <static-adjustment> ::= G <static-offset> # private near
// ::= H <static-offset> # private far
// ::= O <static-offset> # protected near
// ::= P <static-offset> # protected far
// ::= W <static-offset> # public near
// ::= X <static-offset> # public far
// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
// ::= $1 <virtual-shift> <static-offset> # private far
// ::= $2 <virtual-shift> <static-offset> # protected near
// ::= $3 <virtual-shift> <static-offset> # protected far
// ::= $4 <virtual-shift> <static-offset> # public near
// ::= $5 <virtual-shift> <static-offset> # public far
// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
// <vtordisp-shift> ::= <offset-to-vtordisp>
// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
// <offset-to-vtordisp>
static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
const ThisAdjustment &Adjustment,
MicrosoftCXXNameMangler &Mangler,
raw_ostream &Out) {
if (!Adjustment.Virtual.isEmpty()) {
Out << '$';
char AccessSpec;
switch (MD->getAccess()) {
case AS_none:
llvm_unreachable("Unsupported access specifier");
case AS_private:
AccessSpec = '0';
break;
case AS_protected:
AccessSpec = '2';
break;
case AS_public:
AccessSpec = '4';
}
if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
Out << 'R' << AccessSpec;
Mangler.mangleNumber(
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
Mangler.mangleNumber(
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
Mangler.mangleNumber(
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
} else {
Out << AccessSpec;
Mangler.mangleNumber(
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
}
} else if (Adjustment.NonVirtual != 0) {
switch (MD->getAccess()) {
case AS_none:
llvm_unreachable("Unsupported access specifier");
case AS_private:
Out << 'G';
break;
case AS_protected:
Out << 'O';
break;
case AS_public:
Out << 'W';
}
Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
} else {
switch (MD->getAccess()) {
case AS_none:
llvm_unreachable("Unsupported access specifier");
case AS_private:
Out << 'A';
break;
case AS_protected:
Out << 'I';
break;
case AS_public:
Out << 'Q';
}
}
}
void
MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
raw_ostream &Out) {
MicrosoftVTableContext *VTContext =
cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
const MicrosoftVTableContext::MethodVFTableLocation &ML =
VTContext->getMethodVFTableLocation(GlobalDecl(MD));
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01?";
Mangler.mangleVirtualMemPtrThunk(MD, ML);
}
void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
const ThunkInfo &Thunk,
raw_ostream &Out) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Out << "\01?";
Mangler.mangleName(MD);
mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
if (!Thunk.Return.isEmpty())
assert(Thunk.Method != nullptr &&
"Thunk info should hold the overridee decl");
const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
Mangler.mangleFunctionType(
DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
}
void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &Adjustment, raw_ostream &Out) {
// FIXME: Actually, the dtor thunk should be emitted for vector deleting
// dtors rather than scalar deleting dtors. Just use the vector deleting dtor
// mangling manually until we support both deleting dtor types.
assert(Type == Dtor_Deleting);
MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
Out << "\01??_E";
Mangler.mangleName(DD->getParent());
mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
}
void MicrosoftMangleContextImpl::mangleCXXVFTable(
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) {
// <mangled-name> ::= ?_7 <class-name> <storage-class>
// <cvr-qualifiers> [<name>] @
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
// is always '6' for vftables.
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_7";
Mangler.mangleName(Derived);
Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
for (const CXXRecordDecl *RD : BasePath)
Mangler.mangleName(RD);
Mangler.getStream() << '@';
}
void MicrosoftMangleContextImpl::mangleCXXVBTable(
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) {
// <mangled-name> ::= ?_8 <class-name> <storage-class>
// <cvr-qualifiers> [<name>] @
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
// is always '7' for vbtables.
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_8";
Mangler.mangleName(Derived);
Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
for (const CXXRecordDecl *RD : BasePath)
Mangler.mangleName(RD);
Mangler.getStream() << '@';
}
void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_R0";
Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
Mangler.getStream() << "@8";
}
void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
raw_ostream &Out) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << '.';
Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
}
void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_R1";
Mangler.mangleNumber(NVOffset);
Mangler.mangleNumber(VBPtrOffset);
Mangler.mangleNumber(VBTableOffset);
Mangler.mangleNumber(Flags);
Mangler.mangleName(Derived);
Mangler.getStream() << "8";
}
void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
const CXXRecordDecl *Derived, raw_ostream &Out) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_R2";
Mangler.mangleName(Derived);
Mangler.getStream() << "8";
}
void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
const CXXRecordDecl *Derived, raw_ostream &Out) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_R3";
Mangler.mangleName(Derived);
Mangler.getStream() << "8";
}
void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
raw_ostream &Out) {
// <mangled-name> ::= ?_R4 <class-name> <storage-class>
// <cvr-qualifiers> [<name>] @
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
// is always '6' for vftables.
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_R4";
Mangler.mangleName(Derived);
Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
for (const CXXRecordDecl *RD : BasePath)
Mangler.mangleName(RD);
Mangler.getStream() << '@';
}
void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
// This is just a made up unique string for the purposes of tbaa. undname
// does *not* know how to demangle it.
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << '?';
Mangler.mangleType(T, SourceRange());
}
void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
CXXCtorType Type,
raw_ostream &Out) {
MicrosoftCXXNameMangler mangler(*this, Out);
mangler.mangle(D);
}
void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
CXXDtorType Type,
raw_ostream &Out) {
MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
mangler.mangle(D);
}
void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
unsigned,
raw_ostream &) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this reference temporary yet");
getDiags().Report(VD->getLocation(), DiagID);
}
void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
raw_ostream &Out) {
// TODO: This is not correct, especially with respect to MSVC2013. MSVC2013
// utilizes thread local variables to implement thread safe, re-entrant
// initialization for statics. They no longer differentiate between an
// externally visible and non-externally visible static with respect to
// mangling, they all get $TSS <number>.
//
// N.B. This means that they can get more than 32 static variable guards in a
// scope. It also means that they broke compatibility with their own ABI.
// <guard-name> ::= ?_B <postfix> @5 <scope-depth>
// ::= ?$S <guard-num> @ <postfix> @4IA
// The first mangling is what MSVC uses to guard static locals in inline
// functions. It uses a different mangling in external functions to support
// guarding more than 32 variables. MSVC rejects inline functions with more
// than 32 static locals. We don't fully implement the second mangling
// because those guards are not externally visible, and instead use LLVM's
// default renaming when creating a new guard variable.
MicrosoftCXXNameMangler Mangler(*this, Out);
bool Visible = VD->isExternallyVisible();
// <operator-name> ::= ?_B # local static guard
Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
unsigned ScopeDepth = 0;
if (Visible && !getNextDiscriminator(VD, ScopeDepth))
// If we do not have a discriminator and are emitting a guard variable for
// use at global scope, then mangling the nested name will not be enough to
// remove ambiguities.
Mangler.mangle(VD, "");
else
Mangler.mangleNestedName(VD);
Mangler.getStream() << (Visible ? "@5" : "@4IA");
if (ScopeDepth)
Mangler.mangleNumber(ScopeDepth);
}
void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
raw_ostream &Out,
char CharCode) {
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??__" << CharCode;
Mangler.mangleName(D);
if (D->isStaticDataMember()) {
Mangler.mangleVariableEncoding(D);
Mangler.getStream() << '@';
}
// This is the function class mangling. These stubs are global, non-variadic,
// cdecl functions that return void and take no args.
Mangler.getStream() << "YAXXZ";
}
void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
raw_ostream &Out) {
// <initializer-name> ::= ?__E <name> YAXXZ
mangleInitFiniStub(D, Out, 'E');
}
void
MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) {
// <destructor-name> ::= ?__F <name> YAXXZ
mangleInitFiniStub(D, Out, 'F');
}
void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
raw_ostream &Out) {
// <char-type> ::= 0 # char
// ::= 1 # wchar_t
// ::= ??? # char16_t/char32_t will need a mangling too...
//
// <literal-length> ::= <non-negative integer> # the length of the literal
//
// <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
// # null-terminator
//
// <encoded-string> ::= <simple character> # uninteresting character
// ::= '?$' <hex digit> <hex digit> # these two nibbles
// # encode the byte for the
// # character
// ::= '?' [a-z] # \xe1 - \xfa
// ::= '?' [A-Z] # \xc1 - \xda
// ::= '?' [0-9] # [,/\:. \n\t'-]
//
// <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
// <encoded-string> '@'
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_C@_";
// <char-type>: The "kind" of string literal is encoded into the mangled name.
// TODO: This needs to be updated when MSVC gains support for unicode
// literals.
if (SL->isAscii())
Mangler.getStream() << '0';
else if (SL->isWide())
Mangler.getStream() << '1';
else
llvm_unreachable("unexpected string literal kind!");
// <literal-length>: The next part of the mangled name consists of the length
// of the string.
// The StringLiteral does not consider the NUL terminator byte(s) but the
// mangling does.
// N.B. The length is in terms of bytes, not characters.
Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
// We will use the "Rocksoft^tm Model CRC Algorithm" to describe the
// properties of our CRC:
// Width : 32
// Poly : 04C11DB7
// Init : FFFFFFFF
// RefIn : True
// RefOut : True
// XorOut : 00000000
// Check : 340BC6D9
uint32_t CRC = 0xFFFFFFFFU;
auto UpdateCRC = [&CRC](char Byte) {
for (unsigned i = 0; i < 8; ++i) {
bool Bit = CRC & 0x80000000U;
if (Byte & (1U << i))
Bit = !Bit;
CRC <<= 1;
if (Bit)
CRC ^= 0x04C11DB7U;
}
};
auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
unsigned CharByteWidth = SL->getCharByteWidth();
uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
unsigned OffsetInCodeUnit = Index % CharByteWidth;
return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
};
auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
unsigned CharByteWidth = SL->getCharByteWidth();
uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
};
// CRC all the bytes of the StringLiteral.
for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
UpdateCRC(GetLittleEndianByte(I));
// The NUL terminator byte(s) were not present earlier,
// we need to manually process those bytes into the CRC.
for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
++NullTerminator)
UpdateCRC('\x00');
// The literature refers to the process of reversing the bits in the final CRC
// output as "reflection".
CRC = llvm::reverseBits(CRC);
// <encoded-crc>: The CRC is encoded utilizing the standard number mangling
// scheme.
Mangler.mangleNumber(CRC);
// <encoded-string>: The mangled name also contains the first 32 _characters_
// (including null-terminator bytes) of the StringLiteral.
// Each character is encoded by splitting them into bytes and then encoding
// the constituent bytes.
auto MangleByte = [&Mangler](char Byte) {
// There are five different manglings for characters:
// - [a-zA-Z0-9_$]: A one-to-one mapping.
// - ?[a-z]: The range from \xe1 to \xfa.
// - ?[A-Z]: The range from \xc1 to \xda.
// - ?[0-9]: The set of [,/\:. \n\t'-].
// - ?$XX: A fallback which maps nibbles.
if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
Mangler.getStream() << Byte;
} else if (isLetter(Byte & 0x7f)) {
Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
} else {
switch (Byte) {
case ',':
Mangler.getStream() << "?0";
break;
case '/':
Mangler.getStream() << "?1";
break;
case '\\':
Mangler.getStream() << "?2";
break;
case ':':
Mangler.getStream() << "?3";
break;
case '.':
Mangler.getStream() << "?4";
break;
case ' ':
Mangler.getStream() << "?5";
break;
case '\n':
Mangler.getStream() << "?6";
break;
case '\t':
Mangler.getStream() << "?7";
break;
case '\'':
Mangler.getStream() << "?8";
break;
case '-':
Mangler.getStream() << "?9";
break;
default:
Mangler.getStream() << "?$";
Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
break;
}
}
};
// Enforce our 32 character max.
unsigned NumCharsToMangle = std::min(32U, SL->getLength());
for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
++I)
MangleByte(GetBigEndianByte(I));
// Encode the NUL terminator if there is room.
if (NumCharsToMangle < 32)
for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
++NullTerminator)
MangleByte(0);
Mangler.getStream() << '@';
}
MicrosoftMangleContext *
MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
return new MicrosoftMangleContextImpl(Context, Diags);
}