llvm-project/compiler-rt/lib/asan/asan_report.cc

1128 lines
40 KiB
C++
Raw Normal View History

//===-- asan_report.cc ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// This file contains error reporting code.
//===----------------------------------------------------------------------===//
#include "asan_flags.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
namespace __asan {
// -------------------- User-specified callbacks ----------------- {{{1
static void (*error_report_callback)(const char*);
static char *error_message_buffer = 0;
static uptr error_message_buffer_pos = 0;
static uptr error_message_buffer_size = 0;
struct ReportData {
uptr pc;
uptr sp;
uptr bp;
uptr addr;
bool is_write;
uptr access_size;
const char *description;
};
static bool report_happened = false;
static ReportData report_data = {};
void AppendToErrorMessageBuffer(const char *buffer) {
if (error_message_buffer) {
uptr length = internal_strlen(buffer);
CHECK_GE(error_message_buffer_size, error_message_buffer_pos);
uptr remaining = error_message_buffer_size - error_message_buffer_pos;
internal_strncpy(error_message_buffer + error_message_buffer_pos,
buffer, remaining);
error_message_buffer[error_message_buffer_size - 1] = '\0';
// FIXME: reallocate the buffer instead of truncating the message.
error_message_buffer_pos += Min(remaining, length);
}
}
// ---------------------- Decorator ------------------------------ {{{1
class Decorator: public __sanitizer::SanitizerCommonDecorator {
public:
Decorator() : SanitizerCommonDecorator() { }
const char *Access() { return Blue(); }
const char *EndAccess() { return Default(); }
const char *Location() { return Green(); }
const char *EndLocation() { return Default(); }
const char *Allocation() { return Magenta(); }
const char *EndAllocation() { return Default(); }
const char *ShadowByte(u8 byte) {
switch (byte) {
case kAsanHeapLeftRedzoneMagic:
case kAsanHeapRightRedzoneMagic:
case kAsanArrayCookieMagic:
return Red();
case kAsanHeapFreeMagic:
return Magenta();
case kAsanStackLeftRedzoneMagic:
case kAsanStackMidRedzoneMagic:
case kAsanStackRightRedzoneMagic:
case kAsanStackPartialRedzoneMagic:
return Red();
case kAsanStackAfterReturnMagic:
return Magenta();
case kAsanInitializationOrderMagic:
return Cyan();
case kAsanUserPoisonedMemoryMagic:
case kAsanContiguousContainerOOBMagic:
case kAsanAllocaLeftMagic:
case kAsanAllocaRightMagic:
return Blue();
case kAsanStackUseAfterScopeMagic:
return Magenta();
case kAsanGlobalRedzoneMagic:
return Red();
case kAsanInternalHeapMagic:
return Yellow();
case kAsanIntraObjectRedzone:
return Yellow();
default:
return Default();
}
}
const char *EndShadowByte() { return Default(); }
const char *MemoryByte() { return Magenta(); }
const char *EndMemoryByte() { return Default(); }
};
// ---------------------- Helper functions ----------------------- {{{1
static void PrintMemoryByte(InternalScopedString *str, const char *before,
u8 byte, bool in_shadow, const char *after = "\n") {
Decorator d;
str->append("%s%s%x%x%s%s", before,
in_shadow ? d.ShadowByte(byte) : d.MemoryByte(),
byte >> 4, byte & 15,
in_shadow ? d.EndShadowByte() : d.EndMemoryByte(), after);
}
static void PrintShadowByte(InternalScopedString *str, const char *before,
u8 byte, const char *after = "\n") {
PrintMemoryByte(str, before, byte, /*in_shadow*/true, after);
}
static void PrintShadowBytes(InternalScopedString *str, const char *before,
u8 *bytes, u8 *guilty, uptr n) {
Decorator d;
if (before) str->append("%s%p:", before, bytes);
for (uptr i = 0; i < n; i++) {
u8 *p = bytes + i;
const char *before =
p == guilty ? "[" : (p - 1 == guilty && i != 0) ? "" : " ";
const char *after = p == guilty ? "]" : "";
PrintShadowByte(str, before, *p, after);
}
str->append("\n");
}
static void PrintLegend(InternalScopedString *str) {
str->append(
"Shadow byte legend (one shadow byte represents %d "
"application bytes):\n",
(int)SHADOW_GRANULARITY);
PrintShadowByte(str, " Addressable: ", 0);
str->append(" Partially addressable: ");
for (u8 i = 1; i < SHADOW_GRANULARITY; i++) PrintShadowByte(str, "", i, " ");
str->append("\n");
PrintShadowByte(str, " Heap left redzone: ",
kAsanHeapLeftRedzoneMagic);
PrintShadowByte(str, " Heap right redzone: ",
kAsanHeapRightRedzoneMagic);
PrintShadowByte(str, " Freed heap region: ", kAsanHeapFreeMagic);
PrintShadowByte(str, " Stack left redzone: ",
kAsanStackLeftRedzoneMagic);
PrintShadowByte(str, " Stack mid redzone: ",
kAsanStackMidRedzoneMagic);
PrintShadowByte(str, " Stack right redzone: ",
kAsanStackRightRedzoneMagic);
PrintShadowByte(str, " Stack partial redzone: ",
kAsanStackPartialRedzoneMagic);
PrintShadowByte(str, " Stack after return: ",
kAsanStackAfterReturnMagic);
PrintShadowByte(str, " Stack use after scope: ",
kAsanStackUseAfterScopeMagic);
PrintShadowByte(str, " Global redzone: ", kAsanGlobalRedzoneMagic);
PrintShadowByte(str, " Global init order: ",
kAsanInitializationOrderMagic);
PrintShadowByte(str, " Poisoned by user: ",
kAsanUserPoisonedMemoryMagic);
PrintShadowByte(str, " Container overflow: ",
kAsanContiguousContainerOOBMagic);
PrintShadowByte(str, " Array cookie: ",
kAsanArrayCookieMagic);
PrintShadowByte(str, " Intra object redzone: ",
kAsanIntraObjectRedzone);
PrintShadowByte(str, " ASan internal: ", kAsanInternalHeapMagic);
PrintShadowByte(str, " Left alloca redzone: ", kAsanAllocaLeftMagic);
PrintShadowByte(str, " Right alloca redzone: ", kAsanAllocaRightMagic);
}
void MaybeDumpInstructionBytes(uptr pc) {
if (!flags()->dump_instruction_bytes || (pc < GetPageSizeCached()))
return;
InternalScopedString str(1024);
str.append("First 16 instruction bytes at pc: ");
if (IsAccessibleMemoryRange(pc, 16)) {
for (int i = 0; i < 16; ++i) {
PrintMemoryByte(&str, "", ((u8 *)pc)[i], /*in_shadow*/false, " ");
}
str.append("\n");
} else {
str.append("unaccessible\n");
}
Report("%s", str.data());
}
static void PrintShadowMemoryForAddress(uptr addr) {
if (!AddrIsInMem(addr)) return;
uptr shadow_addr = MemToShadow(addr);
const uptr n_bytes_per_row = 16;
uptr aligned_shadow = shadow_addr & ~(n_bytes_per_row - 1);
InternalScopedString str(4096 * 8);
str.append("Shadow bytes around the buggy address:\n");
for (int i = -5; i <= 5; i++) {
const char *prefix = (i == 0) ? "=>" : " ";
PrintShadowBytes(&str, prefix, (u8 *)(aligned_shadow + i * n_bytes_per_row),
(u8 *)shadow_addr, n_bytes_per_row);
}
if (flags()->print_legend) PrintLegend(&str);
Printf("%s", str.data());
}
static void PrintZoneForPointer(uptr ptr, uptr zone_ptr,
const char *zone_name) {
if (zone_ptr) {
if (zone_name) {
Printf("malloc_zone_from_ptr(%p) = %p, which is %s\n",
ptr, zone_ptr, zone_name);
} else {
Printf("malloc_zone_from_ptr(%p) = %p, which doesn't have a name\n",
ptr, zone_ptr);
}
} else {
Printf("malloc_zone_from_ptr(%p) = 0\n", ptr);
}
}
static void DescribeThread(AsanThread *t) {
if (t)
DescribeThread(t->context());
}
// ---------------------- Address Descriptions ------------------- {{{1
static bool IsASCII(unsigned char c) {
return /*0x00 <= c &&*/ c <= 0x7F;
}
static const char *MaybeDemangleGlobalName(const char *name) {
// We can spoil names of globals with C linkage, so use an heuristic
// approach to check if the name should be demangled.
bool should_demangle = false;
if (name[0] == '_' && name[1] == 'Z')
should_demangle = true;
else if (SANITIZER_WINDOWS && name[0] == '\01' && name[1] == '?')
should_demangle = true;
return should_demangle ? Symbolizer::GetOrInit()->Demangle(name) : name;
}
// Check if the global is a zero-terminated ASCII string. If so, print it.
static void PrintGlobalNameIfASCII(InternalScopedString *str,
const __asan_global &g) {
for (uptr p = g.beg; p < g.beg + g.size - 1; p++) {
unsigned char c = *(unsigned char*)p;
if (c == '\0' || !IsASCII(c)) return;
}
if (*(char*)(g.beg + g.size - 1) != '\0') return;
str->append(" '%s' is ascii string '%s'\n", MaybeDemangleGlobalName(g.name),
(char *)g.beg);
}
static const char *GlobalFilename(const __asan_global &g) {
const char *res = g.module_name;
// Prefer the filename from source location, if is available.
if (g.location)
res = g.location->filename;
CHECK(res);
return res;
}
static void PrintGlobalLocation(InternalScopedString *str,
const __asan_global &g) {
str->append("%s", GlobalFilename(g));
if (!g.location)
return;
if (g.location->line_no)
str->append(":%d", g.location->line_no);
if (g.location->column_no)
str->append(":%d", g.location->column_no);
}
static void DescribeAddressRelativeToGlobal(uptr addr, uptr size,
const __asan_global &g) {
InternalScopedString str(4096);
Decorator d;
str.append("%s", d.Location());
if (addr < g.beg) {
str.append("%p is located %zd bytes to the left", (void *)addr,
g.beg - addr);
} else if (addr + size > g.beg + g.size) {
if (addr < g.beg + g.size)
addr = g.beg + g.size;
str.append("%p is located %zd bytes to the right", (void *)addr,
addr - (g.beg + g.size));
} else {
// Can it happen?
str.append("%p is located %zd bytes inside", (void *)addr, addr - g.beg);
}
str.append(" of global variable '%s' defined in '",
MaybeDemangleGlobalName(g.name));
PrintGlobalLocation(&str, g);
str.append("' (0x%zx) of size %zu\n", g.beg, g.size);
str.append("%s", d.EndLocation());
PrintGlobalNameIfASCII(&str, g);
Printf("%s", str.data());
}
static bool DescribeAddressIfGlobal(uptr addr, uptr size,
const char *bug_type) {
// Assume address is close to at most four globals.
const int kMaxGlobalsInReport = 4;
__asan_global globals[kMaxGlobalsInReport];
u32 reg_sites[kMaxGlobalsInReport];
int globals_num =
GetGlobalsForAddress(addr, globals, reg_sites, ARRAY_SIZE(globals));
if (globals_num == 0)
return false;
for (int i = 0; i < globals_num; i++) {
DescribeAddressRelativeToGlobal(addr, size, globals[i]);
if (0 == internal_strcmp(bug_type, "initialization-order-fiasco") &&
reg_sites[i]) {
Printf(" registered at:\n");
StackDepotGet(reg_sites[i]).Print();
}
}
return true;
}
bool DescribeAddressIfShadow(uptr addr, AddressDescription *descr, bool print) {
if (AddrIsInMem(addr))
return false;
const char *area_type = nullptr;
if (AddrIsInShadowGap(addr)) area_type = "shadow gap";
else if (AddrIsInHighShadow(addr)) area_type = "high shadow";
else if (AddrIsInLowShadow(addr)) area_type = "low shadow";
if (area_type != nullptr) {
if (print) {
Printf("Address %p is located in the %s area.\n", addr, area_type);
} else {
CHECK(descr);
descr->region_kind = area_type;
}
return true;
}
CHECK(0 && "Address is not in memory and not in shadow?");
return false;
}
// Return " (thread_name) " or an empty string if the name is empty.
const char *ThreadNameWithParenthesis(AsanThreadContext *t, char buff[],
uptr buff_len) {
const char *name = t->name;
if (name[0] == '\0') return "";
buff[0] = 0;
internal_strncat(buff, " (", 3);
internal_strncat(buff, name, buff_len - 4);
internal_strncat(buff, ")", 2);
return buff;
}
const char *ThreadNameWithParenthesis(u32 tid, char buff[],
uptr buff_len) {
if (tid == kInvalidTid) return "";
asanThreadRegistry().CheckLocked();
AsanThreadContext *t = GetThreadContextByTidLocked(tid);
return ThreadNameWithParenthesis(t, buff, buff_len);
}
static void PrintAccessAndVarIntersection(const StackVarDescr &var, uptr addr,
uptr access_size, uptr prev_var_end,
uptr next_var_beg) {
uptr var_end = var.beg + var.size;
uptr addr_end = addr + access_size;
const char *pos_descr = 0;
// If the variable [var.beg, var_end) is the nearest variable to the
// current memory access, indicate it in the log.
if (addr >= var.beg) {
if (addr_end <= var_end)
pos_descr = "is inside"; // May happen if this is a use-after-return.
else if (addr < var_end)
pos_descr = "partially overflows";
else if (addr_end <= next_var_beg &&
next_var_beg - addr_end >= addr - var_end)
pos_descr = "overflows";
} else {
if (addr_end > var.beg)
pos_descr = "partially underflows";
else if (addr >= prev_var_end &&
addr - prev_var_end >= var.beg - addr_end)
pos_descr = "underflows";
}
InternalScopedString str(1024);
str.append(" [%zd, %zd)", var.beg, var_end);
// Render variable name.
str.append(" '");
for (uptr i = 0; i < var.name_len; ++i) {
str.append("%c", var.name_pos[i]);
}
str.append("'");
if (pos_descr) {
Decorator d;
// FIXME: we may want to also print the size of the access here,
// but in case of accesses generated by memset it may be confusing.
str.append("%s <== Memory access at offset %zd %s this variable%s\n",
d.Location(), addr, pos_descr, d.EndLocation());
} else {
str.append("\n");
}
Printf("%s", str.data());
}
bool ParseFrameDescription(const char *frame_descr,
InternalMmapVector<StackVarDescr> *vars) {
CHECK(frame_descr);
char *p;
// This string is created by the compiler and has the following form:
// "n alloc_1 alloc_2 ... alloc_n"
// where alloc_i looks like "offset size len ObjectName".
uptr n_objects = (uptr)internal_simple_strtoll(frame_descr, &p, 10);
if (n_objects == 0)
return false;
for (uptr i = 0; i < n_objects; i++) {
uptr beg = (uptr)internal_simple_strtoll(p, &p, 10);
uptr size = (uptr)internal_simple_strtoll(p, &p, 10);
uptr len = (uptr)internal_simple_strtoll(p, &p, 10);
if (beg == 0 || size == 0 || *p != ' ') {
return false;
}
p++;
StackVarDescr var = {beg, size, p, len};
vars->push_back(var);
p += len;
}
return true;
}
bool DescribeAddressIfStack(uptr addr, uptr access_size) {
AsanThread *t = FindThreadByStackAddress(addr);
if (!t) return false;
Decorator d;
char tname[128];
Printf("%s", d.Location());
Printf("Address %p is located in stack of thread T%d%s", addr, t->tid(),
ThreadNameWithParenthesis(t->tid(), tname, sizeof(tname)));
// Try to fetch precise stack frame for this access.
AsanThread::StackFrameAccess access;
if (!t->GetStackFrameAccessByAddr(addr, &access)) {
Printf("%s\n", d.EndLocation());
return true;
}
Printf(" at offset %zu in frame%s\n", access.offset, d.EndLocation());
// Now we print the frame where the alloca has happened.
// We print this frame as a stack trace with one element.
// The symbolizer may print more than one frame if inlining was involved.
// The frame numbers may be different than those in the stack trace printed
// previously. That's unfortunate, but I have no better solution,
// especially given that the alloca may be from entirely different place
// (e.g. use-after-scope, or different thread's stack).
#if defined(__powerpc64__) && defined(__BIG_ENDIAN__)
// On PowerPC64 ELFv1, the address of a function actually points to a
// three-doubleword data structure with the first field containing
// the address of the function's code.
access.frame_pc = *reinterpret_cast<uptr *>(access.frame_pc);
#endif
access.frame_pc += 16;
Printf("%s", d.EndLocation());
StackTrace alloca_stack(&access.frame_pc, 1);
alloca_stack.Print();
InternalMmapVector<StackVarDescr> vars(16);
if (!ParseFrameDescription(access.frame_descr, &vars)) {
Printf("AddressSanitizer can't parse the stack frame "
"descriptor: |%s|\n", access.frame_descr);
// 'addr' is a stack address, so return true even if we can't parse frame
return true;
}
uptr n_objects = vars.size();
// Report the number of stack objects.
Printf(" This frame has %zu object(s):\n", n_objects);
// Report all objects in this frame.
for (uptr i = 0; i < n_objects; i++) {
uptr prev_var_end = i ? vars[i - 1].beg + vars[i - 1].size : 0;
uptr next_var_beg = i + 1 < n_objects ? vars[i + 1].beg : ~(0UL);
PrintAccessAndVarIntersection(vars[i], access.offset, access_size,
prev_var_end, next_var_beg);
}
Printf("HINT: this may be a false positive if your program uses "
"some custom stack unwind mechanism or swapcontext\n");
if (SANITIZER_WINDOWS)
Printf(" (longjmp, SEH and C++ exceptions *are* supported)\n");
else
Printf(" (longjmp and C++ exceptions *are* supported)\n");
DescribeThread(t);
return true;
}
static void DescribeAccessToHeapChunk(AsanChunkView chunk, uptr addr,
uptr access_size) {
sptr offset;
Decorator d;
InternalScopedString str(4096);
str.append("%s", d.Location());
if (chunk.AddrIsAtLeft(addr, access_size, &offset)) {
str.append("%p is located %zd bytes to the left of", (void *)addr, offset);
} else if (chunk.AddrIsAtRight(addr, access_size, &offset)) {
if (offset < 0) {
addr -= offset;
offset = 0;
}
str.append("%p is located %zd bytes to the right of", (void *)addr, offset);
} else if (chunk.AddrIsInside(addr, access_size, &offset)) {
str.append("%p is located %zd bytes inside of", (void*)addr, offset);
} else {
str.append("%p is located somewhere around (this is AddressSanitizer bug!)",
(void *)addr);
}
str.append(" %zu-byte region [%p,%p)\n", chunk.UsedSize(),
(void *)(chunk.Beg()), (void *)(chunk.End()));
str.append("%s", d.EndLocation());
Printf("%s", str.data());
}
void DescribeHeapAddress(uptr addr, uptr access_size) {
AsanChunkView chunk = FindHeapChunkByAddress(addr);
if (!chunk.IsValid()) {
Printf("AddressSanitizer can not describe address in more detail "
"(wild memory access suspected).\n");
return;
}
DescribeAccessToHeapChunk(chunk, addr, access_size);
CHECK(chunk.AllocTid() != kInvalidTid);
asanThreadRegistry().CheckLocked();
AsanThreadContext *alloc_thread =
GetThreadContextByTidLocked(chunk.AllocTid());
StackTrace alloc_stack = chunk.GetAllocStack();
char tname[128];
Decorator d;
AsanThreadContext *free_thread = 0;
if (chunk.FreeTid() != kInvalidTid) {
free_thread = GetThreadContextByTidLocked(chunk.FreeTid());
Printf("%sfreed by thread T%d%s here:%s\n", d.Allocation(),
free_thread->tid,
ThreadNameWithParenthesis(free_thread, tname, sizeof(tname)),
d.EndAllocation());
StackTrace free_stack = chunk.GetFreeStack();
free_stack.Print();
Printf("%spreviously allocated by thread T%d%s here:%s\n",
d.Allocation(), alloc_thread->tid,
ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)),
d.EndAllocation());
} else {
Printf("%sallocated by thread T%d%s here:%s\n", d.Allocation(),
alloc_thread->tid,
ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)),
d.EndAllocation());
}
alloc_stack.Print();
DescribeThread(GetCurrentThread());
if (free_thread)
DescribeThread(free_thread);
DescribeThread(alloc_thread);
}
static void DescribeAddress(uptr addr, uptr access_size, const char *bug_type) {
// Check if this is shadow or shadow gap.
if (DescribeAddressIfShadow(addr))
return;
CHECK(AddrIsInMem(addr));
if (DescribeAddressIfGlobal(addr, access_size, bug_type))
return;
if (DescribeAddressIfStack(addr, access_size))
return;
// Assume it is a heap address.
DescribeHeapAddress(addr, access_size);
}
// ------------------- Thread description -------------------- {{{1
void DescribeThread(AsanThreadContext *context) {
CHECK(context);
asanThreadRegistry().CheckLocked();
// No need to announce the main thread.
if (context->tid == 0 || context->announced) {
return;
}
context->announced = true;
char tname[128];
InternalScopedString str(1024);
str.append("Thread T%d%s", context->tid,
ThreadNameWithParenthesis(context->tid, tname, sizeof(tname)));
if (context->parent_tid == kInvalidTid) {
str.append(" created by unknown thread\n");
Printf("%s", str.data());
return;
}
str.append(
" created by T%d%s here:\n", context->parent_tid,
ThreadNameWithParenthesis(context->parent_tid, tname, sizeof(tname)));
Printf("%s", str.data());
StackDepotGet(context->stack_id).Print();
// Recursively described parent thread if needed.
if (flags()->print_full_thread_history) {
AsanThreadContext *parent_context =
GetThreadContextByTidLocked(context->parent_tid);
DescribeThread(parent_context);
}
}
// -------------------- Different kinds of reports ----------------- {{{1
// Use ScopedInErrorReport to run common actions just before and
// immediately after printing error report.
class ScopedInErrorReport {
public:
explicit ScopedInErrorReport(ReportData *report = nullptr) {
static atomic_uint32_t num_calls;
static u32 reporting_thread_tid;
if (atomic_fetch_add(&num_calls, 1, memory_order_relaxed) != 0) {
// Do not print more than one report, otherwise they will mix up.
// Error reporting functions shouldn't return at this situation, as
// they are defined as no-return.
Report("AddressSanitizer: while reporting a bug found another one. "
"Ignoring.\n");
u32 current_tid = GetCurrentTidOrInvalid();
if (current_tid != reporting_thread_tid) {
// ASan found two bugs in different threads simultaneously. Sleep
// long enough to make sure that the thread which started to print
// an error report will finish doing it.
SleepForSeconds(Max(100, flags()->sleep_before_dying + 1));
}
// If we're still not dead for some reason, use raw _exit() instead of
// Die() to bypass any additional checks.
internal__exit(flags()->exitcode);
}
if (report) report_data = *report;
report_happened = true;
ASAN_ON_ERROR();
// Make sure the registry and sanitizer report mutexes are locked while
// we're printing an error report.
// We can lock them only here to avoid self-deadlock in case of
// recursive reports.
asanThreadRegistry().Lock();
CommonSanitizerReportMutex.Lock();
reporting_thread_tid = GetCurrentTidOrInvalid();
Printf("===================================================="
"=============\n");
}
// Destructor is NORETURN, as functions that report errors are.
NORETURN ~ScopedInErrorReport() {
// Make sure the current thread is announced.
DescribeThread(GetCurrentThread());
// We may want to grab this lock again when printing stats.
asanThreadRegistry().Unlock();
// Print memory stats.
if (flags()->print_stats)
__asan_print_accumulated_stats();
if (error_report_callback) {
error_report_callback(error_message_buffer);
}
Report("ABORTING\n");
Die();
}
};
void ReportStackOverflow(const SignalContext &sig) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report(
"ERROR: AddressSanitizer: stack-overflow on address %p"
" (pc %p bp %p sp %p T%d)\n",
(void *)sig.addr, (void *)sig.pc, (void *)sig.bp, (void *)sig.sp,
GetCurrentTidOrInvalid());
Printf("%s", d.EndWarning());
GET_STACK_TRACE_SIGNAL(sig);
stack.Print();
ReportErrorSummary("stack-overflow", &stack);
}
void ReportSIGSEGV(const char *description, const SignalContext &sig) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report(
"ERROR: AddressSanitizer: %s on unknown address %p"
" (pc %p bp %p sp %p T%d)\n",
description, (void *)sig.addr, (void *)sig.pc, (void *)sig.bp,
(void *)sig.sp, GetCurrentTidOrInvalid());
if (sig.pc < GetPageSizeCached()) {
Report("Hint: pc points to the zero page.\n");
}
Printf("%s", d.EndWarning());
GET_STACK_TRACE_SIGNAL(sig);
stack.Print();
MaybeDumpInstructionBytes(sig.pc);
Printf("AddressSanitizer can not provide additional info.\n");
ReportErrorSummary("SEGV", &stack);
}
void ReportDoubleFree(uptr addr, BufferedStackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
char tname[128];
u32 curr_tid = GetCurrentTidOrInvalid();
Report("ERROR: AddressSanitizer: attempting double-free on %p in "
"thread T%d%s:\n",
addr, curr_tid,
ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s", d.EndWarning());
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
stack.Print();
DescribeHeapAddress(addr, 1);
ReportErrorSummary("double-free", &stack);
}
void ReportNewDeleteSizeMismatch(uptr addr, uptr delete_size,
BufferedStackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
char tname[128];
u32 curr_tid = GetCurrentTidOrInvalid();
Report("ERROR: AddressSanitizer: new-delete-type-mismatch on %p in "
"thread T%d%s:\n",
addr, curr_tid,
ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s object passed to delete has wrong type:\n", d.EndWarning());
Printf(" size of the allocated type: %zd bytes;\n"
" size of the deallocated type: %zd bytes.\n",
asan_mz_size(reinterpret_cast<void*>(addr)), delete_size);
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
stack.Print();
DescribeHeapAddress(addr, 1);
ReportErrorSummary("new-delete-type-mismatch", &stack);
Report("HINT: if you don't care about these warnings you may set "
"ASAN_OPTIONS=new_delete_type_mismatch=0\n");
}
void ReportFreeNotMalloced(uptr addr, BufferedStackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
char tname[128];
u32 curr_tid = GetCurrentTidOrInvalid();
Report("ERROR: AddressSanitizer: attempting free on address "
"which was not malloc()-ed: %p in thread T%d%s\n", addr,
curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s", d.EndWarning());
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
stack.Print();
DescribeHeapAddress(addr, 1);
ReportErrorSummary("bad-free", &stack);
}
void ReportAllocTypeMismatch(uptr addr, BufferedStackTrace *free_stack,
AllocType alloc_type,
AllocType dealloc_type) {
static const char *alloc_names[] =
{"INVALID", "malloc", "operator new", "operator new []"};
static const char *dealloc_names[] =
{"INVALID", "free", "operator delete", "operator delete []"};
CHECK_NE(alloc_type, dealloc_type);
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: alloc-dealloc-mismatch (%s vs %s) on %p\n",
alloc_names[alloc_type], dealloc_names[dealloc_type], addr);
Printf("%s", d.EndWarning());
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
stack.Print();
DescribeHeapAddress(addr, 1);
ReportErrorSummary("alloc-dealloc-mismatch", &stack);
Report("HINT: if you don't care about these warnings you may set "
"ASAN_OPTIONS=alloc_dealloc_mismatch=0\n");
}
void ReportMallocUsableSizeNotOwned(uptr addr, BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: attempting to call "
"malloc_usable_size() for pointer which is "
"not owned: %p\n", addr);
Printf("%s", d.EndWarning());
stack->Print();
DescribeHeapAddress(addr, 1);
ReportErrorSummary("bad-malloc_usable_size", stack);
}
void ReportSanitizerGetAllocatedSizeNotOwned(uptr addr,
BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: attempting to call "
"__sanitizer_get_allocated_size() for pointer which is "
"not owned: %p\n", addr);
Printf("%s", d.EndWarning());
stack->Print();
DescribeHeapAddress(addr, 1);
ReportErrorSummary("bad-__sanitizer_get_allocated_size", stack);
}
void ReportStringFunctionMemoryRangesOverlap(const char *function,
const char *offset1, uptr length1,
const char *offset2, uptr length2,
BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
char bug_type[100];
internal_snprintf(bug_type, sizeof(bug_type), "%s-param-overlap", function);
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: %s: "
"memory ranges [%p,%p) and [%p, %p) overlap\n", \
bug_type, offset1, offset1 + length1, offset2, offset2 + length2);
Printf("%s", d.EndWarning());
stack->Print();
DescribeAddress((uptr)offset1, length1, bug_type);
DescribeAddress((uptr)offset2, length2, bug_type);
ReportErrorSummary(bug_type, stack);
}
void ReportStringFunctionSizeOverflow(uptr offset, uptr size,
BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
const char *bug_type = "negative-size-param";
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: %s: (size=%zd)\n", bug_type, size);
Printf("%s", d.EndWarning());
stack->Print();
DescribeAddress(offset, size, bug_type);
ReportErrorSummary(bug_type, stack);
}
void ReportBadParamsToAnnotateContiguousContainer(uptr beg, uptr end,
uptr old_mid, uptr new_mid,
BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Report("ERROR: AddressSanitizer: bad parameters to "
"__sanitizer_annotate_contiguous_container:\n"
" beg : %p\n"
" end : %p\n"
" old_mid : %p\n"
" new_mid : %p\n",
beg, end, old_mid, new_mid);
uptr granularity = SHADOW_GRANULARITY;
if (!IsAligned(beg, granularity))
Report("ERROR: beg is not aligned by %d\n", granularity);
stack->Print();
ReportErrorSummary("bad-__sanitizer_annotate_contiguous_container", stack);
}
void ReportODRViolation(const __asan_global *g1, u32 stack_id1,
const __asan_global *g2, u32 stack_id2) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: odr-violation (%p):\n", g1->beg);
Printf("%s", d.EndWarning());
InternalScopedString g1_loc(256), g2_loc(256);
PrintGlobalLocation(&g1_loc, *g1);
PrintGlobalLocation(&g2_loc, *g2);
Printf(" [1] size=%zd '%s' %s\n", g1->size,
MaybeDemangleGlobalName(g1->name), g1_loc.data());
Printf(" [2] size=%zd '%s' %s\n", g2->size,
MaybeDemangleGlobalName(g2->name), g2_loc.data());
if (stack_id1 && stack_id2) {
Printf("These globals were registered at these points:\n");
Printf(" [1]:\n");
StackDepotGet(stack_id1).Print();
Printf(" [2]:\n");
StackDepotGet(stack_id2).Print();
}
Report("HINT: if you don't care about these warnings you may set "
"ASAN_OPTIONS=detect_odr_violation=0\n");
InternalScopedString error_msg(256);
error_msg.append("odr-violation: global '%s' at %s",
MaybeDemangleGlobalName(g1->name), g1_loc.data());
ReportErrorSummary(error_msg.data());
}
// ----------------------- CheckForInvalidPointerPair ----------- {{{1
static NOINLINE void
ReportInvalidPointerPair(uptr pc, uptr bp, uptr sp, uptr a1, uptr a2) {
ScopedInErrorReport in_report;
const char *bug_type = "invalid-pointer-pair";
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: invalid-pointer-pair: %p %p\n", a1, a2);
Printf("%s", d.EndWarning());
GET_STACK_TRACE_FATAL(pc, bp);
stack.Print();
DescribeAddress(a1, 1, bug_type);
DescribeAddress(a2, 1, bug_type);
ReportErrorSummary(bug_type, &stack);
}
static INLINE void CheckForInvalidPointerPair(void *p1, void *p2) {
if (!flags()->detect_invalid_pointer_pairs) return;
uptr a1 = reinterpret_cast<uptr>(p1);
uptr a2 = reinterpret_cast<uptr>(p2);
AsanChunkView chunk1 = FindHeapChunkByAddress(a1);
AsanChunkView chunk2 = FindHeapChunkByAddress(a2);
bool valid1 = chunk1.IsValid();
bool valid2 = chunk2.IsValid();
if ((valid1 != valid2) || (valid1 && valid2 && !chunk1.Eq(chunk2))) {
GET_CALLER_PC_BP_SP; \
return ReportInvalidPointerPair(pc, bp, sp, a1, a2);
}
}
// ----------------------- Mac-specific reports ----------------- {{{1
void WarnMacFreeUnallocated(uptr addr, uptr zone_ptr, const char *zone_name,
BufferedStackTrace *stack) {
// Just print a warning here.
Printf("free_common(%p) -- attempting to free unallocated memory.\n"
"AddressSanitizer is ignoring this error on Mac OS now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
stack->Print();
DescribeHeapAddress(addr, 1);
}
void ReportMacMzReallocUnknown(uptr addr, uptr zone_ptr, const char *zone_name,
BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Printf("mz_realloc(%p) -- attempting to realloc unallocated memory.\n"
"This is an unrecoverable problem, exiting now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
stack->Print();
DescribeHeapAddress(addr, 1);
}
void ReportMacCfReallocUnknown(uptr addr, uptr zone_ptr, const char *zone_name,
BufferedStackTrace *stack) {
ScopedInErrorReport in_report;
Printf("cf_realloc(%p) -- attempting to realloc unallocated memory.\n"
"This is an unrecoverable problem, exiting now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
stack->Print();
DescribeHeapAddress(addr, 1);
}
} // namespace __asan
// --------------------------- Interface --------------------- {{{1
using namespace __asan; // NOLINT
void __asan_report_error(uptr pc, uptr bp, uptr sp, uptr addr, int is_write,
uptr access_size, u32 exp) {
ENABLE_FRAME_POINTER;
// Optimization experiments.
// The experiments can be used to evaluate potential optimizations that remove
// instrumentation (assess false negatives). Instead of completely removing
// some instrumentation, compiler can emit special calls into runtime
// (e.g. __asan_report_exp_load1 instead of __asan_report_load1) and pass
// mask of experiments (exp).
// The reaction to a non-zero value of exp is to be defined.
(void)exp;
// Determine the error type.
const char *bug_descr = "unknown-crash";
if (AddrIsInMem(addr)) {
u8 *shadow_addr = (u8*)MemToShadow(addr);
// If we are accessing 16 bytes, look at the second shadow byte.
if (*shadow_addr == 0 && access_size > SHADOW_GRANULARITY)
shadow_addr++;
// If we are in the partial right redzone, look at the next shadow byte.
if (*shadow_addr > 0 && *shadow_addr < 128)
shadow_addr++;
switch (*shadow_addr) {
case kAsanHeapLeftRedzoneMagic:
case kAsanHeapRightRedzoneMagic:
case kAsanArrayCookieMagic:
bug_descr = "heap-buffer-overflow";
break;
case kAsanHeapFreeMagic:
bug_descr = "heap-use-after-free";
break;
case kAsanStackLeftRedzoneMagic:
bug_descr = "stack-buffer-underflow";
break;
case kAsanInitializationOrderMagic:
bug_descr = "initialization-order-fiasco";
break;
case kAsanStackMidRedzoneMagic:
case kAsanStackRightRedzoneMagic:
case kAsanStackPartialRedzoneMagic:
bug_descr = "stack-buffer-overflow";
break;
case kAsanStackAfterReturnMagic:
bug_descr = "stack-use-after-return";
break;
case kAsanUserPoisonedMemoryMagic:
bug_descr = "use-after-poison";
break;
case kAsanContiguousContainerOOBMagic:
bug_descr = "container-overflow";
break;
case kAsanStackUseAfterScopeMagic:
bug_descr = "stack-use-after-scope";
break;
case kAsanGlobalRedzoneMagic:
bug_descr = "global-buffer-overflow";
break;
case kAsanIntraObjectRedzone:
bug_descr = "intra-object-overflow";
break;
case kAsanAllocaLeftMagic:
case kAsanAllocaRightMagic:
bug_descr = "dynamic-stack-buffer-overflow";
break;
}
}
ReportData report = { pc, sp, bp, addr, (bool)is_write, access_size,
bug_descr };
ScopedInErrorReport in_report(&report);
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: %s on address "
"%p at pc %p bp %p sp %p\n",
bug_descr, (void*)addr, pc, bp, sp);
Printf("%s", d.EndWarning());
u32 curr_tid = GetCurrentTidOrInvalid();
char tname[128];
Printf("%s%s of size %zu at %p thread T%d%s%s\n",
d.Access(),
access_size ? (is_write ? "WRITE" : "READ") : "ACCESS",
access_size, (void*)addr, curr_tid,
ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)),
d.EndAccess());
GET_STACK_TRACE_FATAL(pc, bp);
stack.Print();
DescribeAddress(addr, access_size, bug_descr);
ReportErrorSummary(bug_descr, &stack);
PrintShadowMemoryForAddress(addr);
}
void NOINLINE __asan_set_error_report_callback(void (*callback)(const char*)) {
error_report_callback = callback;
if (callback) {
error_message_buffer_size = 1 << 16;
error_message_buffer =
(char*)MmapOrDie(error_message_buffer_size, __func__);
error_message_buffer_pos = 0;
}
}
void __asan_describe_address(uptr addr) {
// Thread registry must be locked while we're describing an address.
asanThreadRegistry().Lock();
DescribeAddress(addr, 1, "");
asanThreadRegistry().Unlock();
}
int __asan_report_present() {
return report_happened ? 1 : 0;
}
uptr __asan_get_report_pc() {
return report_data.pc;
}
uptr __asan_get_report_bp() {
return report_data.bp;
}
uptr __asan_get_report_sp() {
return report_data.sp;
}
uptr __asan_get_report_address() {
return report_data.addr;
}
int __asan_get_report_access_type() {
return report_data.is_write ? 1 : 0;
}
uptr __asan_get_report_access_size() {
return report_data.access_size;
}
const char *__asan_get_report_description() {
return report_data.description;
}
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_ptr_sub(void *a, void *b) {
CheckForInvalidPointerPair(a, b);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_ptr_cmp(void *a, void *b) {
CheckForInvalidPointerPair(a, b);
}
} // extern "C"
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default implementation of __asan_on_error that does nothing
// and may be overriden by user.
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE NOINLINE
void __asan_on_error() {}
#endif