llvm-project/llvm/lib/XRay/Trace.cpp

563 lines
23 KiB
C++
Raw Normal View History

//===- Trace.cpp - XRay Trace Loading implementation. ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// XRay log reader implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Trace.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/XRay/YAMLXRayRecord.h"
using namespace llvm;
using namespace llvm::xray;
using llvm::yaml::Input;
namespace {
using XRayRecordStorage =
std::aligned_storage<sizeof(XRayRecord), alignof(XRayRecord)>::type;
// Populates the FileHeader reference by reading the first 32 bytes of the file.
Error readBinaryFormatHeader(StringRef Data, XRayFileHeader &FileHeader) {
// FIXME: Maybe deduce whether the data is little or big-endian using some
// magic bytes in the beginning of the file?
// First 32 bytes of the file will always be the header. We assume a certain
// format here:
//
// (2) uint16 : version
// (2) uint16 : type
// (4) uint32 : bitfield
// (8) uint64 : cycle frequency
// (16) - : padding
DataExtractor HeaderExtractor(Data, true, 8);
uint32_t OffsetPtr = 0;
FileHeader.Version = HeaderExtractor.getU16(&OffsetPtr);
FileHeader.Type = HeaderExtractor.getU16(&OffsetPtr);
uint32_t Bitfield = HeaderExtractor.getU32(&OffsetPtr);
FileHeader.ConstantTSC = Bitfield & 1uL;
FileHeader.NonstopTSC = Bitfield & 1uL << 1;
FileHeader.CycleFrequency = HeaderExtractor.getU64(&OffsetPtr);
std::memcpy(&FileHeader.FreeFormData, Data.bytes_begin() + OffsetPtr, 16);
if (FileHeader.Version != 1)
return make_error<StringError>(
Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
std::make_error_code(std::errc::invalid_argument));
return Error::success();
}
Error loadNaiveFormatLog(StringRef Data, XRayFileHeader &FileHeader,
std::vector<XRayRecord> &Records) {
// Check that there is at least a header
if (Data.size() < 32)
return make_error<StringError>(
"Not enough bytes for an XRay log.",
std::make_error_code(std::errc::invalid_argument));
if (Data.size() - 32 == 0 || Data.size() % 32 != 0)
return make_error<StringError>(
"Invalid-sized XRay data.",
std::make_error_code(std::errc::invalid_argument));
if (auto E = readBinaryFormatHeader(Data, FileHeader))
return E;
// Each record after the header will be 32 bytes, in the following format:
//
// (2) uint16 : record type
// (1) uint8 : cpu id
// (1) uint8 : type
// (4) sint32 : function id
// (8) uint64 : tsc
// (4) uint32 : thread id
// (12) - : padding
for (auto S = Data.drop_front(32); !S.empty(); S = S.drop_front(32)) {
DataExtractor RecordExtractor(S, true, 8);
uint32_t OffsetPtr = 0;
Records.emplace_back();
auto &Record = Records.back();
Record.RecordType = RecordExtractor.getU16(&OffsetPtr);
Record.CPU = RecordExtractor.getU8(&OffsetPtr);
auto Type = RecordExtractor.getU8(&OffsetPtr);
switch (Type) {
case 0:
Record.Type = RecordTypes::ENTER;
break;
case 1:
Record.Type = RecordTypes::EXIT;
break;
default:
return make_error<StringError>(
Twine("Unknown record type '") + Twine(int{Type}) + "'",
std::make_error_code(std::errc::executable_format_error));
}
Record.FuncId = RecordExtractor.getSigned(&OffsetPtr, sizeof(int32_t));
Record.TSC = RecordExtractor.getU64(&OffsetPtr);
Record.TId = RecordExtractor.getU32(&OffsetPtr);
}
return Error::success();
}
/// When reading from a Flight Data Recorder mode log, metadata records are
/// sparse compared to packed function records, so we must maintain state as we
/// read through the sequence of entries. This allows the reader to denormalize
/// the CPUId and Thread Id onto each Function Record and transform delta
/// encoded TSC values into absolute encodings on each record.
struct FDRState {
uint16_t CPUId;
uint16_t ThreadId;
uint64_t BaseTSC;
/// Encode some of the state transitions for the FDR log reader as explicit
/// checks. These are expectations for the next Record in the stream.
enum class Token {
NEW_BUFFER_RECORD_OR_EOF,
WALLCLOCK_RECORD,
NEW_CPU_ID_RECORD,
FUNCTION_SEQUENCE,
SCAN_TO_END_OF_THREAD_BUF,
CUSTOM_EVENT_DATA,
};
Token Expects;
// Each threads buffer may have trailing garbage to scan over, so we track our
// progress.
uint64_t CurrentBufferSize;
uint64_t CurrentBufferConsumed;
};
const char *fdrStateToTwine(const FDRState::Token &state) {
switch (state) {
case FDRState::Token::NEW_BUFFER_RECORD_OR_EOF:
return "NEW_BUFFER_RECORD_OR_EOF";
case FDRState::Token::WALLCLOCK_RECORD:
return "WALLCLOCK_RECORD";
case FDRState::Token::NEW_CPU_ID_RECORD:
return "NEW_CPU_ID_RECORD";
case FDRState::Token::FUNCTION_SEQUENCE:
return "FUNCTION_SEQUENCE";
case FDRState::Token::SCAN_TO_END_OF_THREAD_BUF:
return "SCAN_TO_END_OF_THREAD_BUF";
case FDRState::Token::CUSTOM_EVENT_DATA:
return "CUSTOM_EVENT_DATA";
}
return "UNKNOWN";
}
/// State transition when a NewBufferRecord is encountered.
Error processFDRNewBufferRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor) {
if (State.Expects != FDRState::Token::NEW_BUFFER_RECORD_OR_EOF)
return make_error<StringError>(
"Malformed log. Read New Buffer record kind out of sequence",
std::make_error_code(std::errc::executable_format_error));
uint32_t OffsetPtr = 1; // 1 byte into record.
State.ThreadId = RecordExtractor.getU16(&OffsetPtr);
State.Expects = FDRState::Token::WALLCLOCK_RECORD;
return Error::success();
}
/// State transition when an EndOfBufferRecord is encountered.
Error processFDREndOfBufferRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor) {
if (State.Expects == FDRState::Token::NEW_BUFFER_RECORD_OR_EOF)
return make_error<StringError>(
"Malformed log. Received EOB message without current buffer.",
std::make_error_code(std::errc::executable_format_error));
State.Expects = FDRState::Token::SCAN_TO_END_OF_THREAD_BUF;
return Error::success();
}
/// State transition when a NewCPUIdRecord is encountered.
Error processFDRNewCPUIdRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor) {
if (State.Expects != FDRState::Token::FUNCTION_SEQUENCE &&
State.Expects != FDRState::Token::NEW_CPU_ID_RECORD)
return make_error<StringError>(
"Malformed log. Read NewCPUId record kind out of sequence",
std::make_error_code(std::errc::executable_format_error));
uint32_t OffsetPtr = 1; // Read starting after the first byte.
State.CPUId = RecordExtractor.getU16(&OffsetPtr);
State.BaseTSC = RecordExtractor.getU64(&OffsetPtr);
State.Expects = FDRState::Token::FUNCTION_SEQUENCE;
return Error::success();
}
/// State transition when a TSCWrapRecord (overflow detection) is encountered.
Error processFDRTSCWrapRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor) {
if (State.Expects != FDRState::Token::FUNCTION_SEQUENCE)
return make_error<StringError>(
"Malformed log. Read TSCWrap record kind out of sequence",
std::make_error_code(std::errc::executable_format_error));
uint32_t OffsetPtr = 1; // Read starting after the first byte.
State.BaseTSC = RecordExtractor.getU64(&OffsetPtr);
return Error::success();
}
/// State transition when a WallTimeMarkerRecord is encountered.
Error processFDRWallTimeRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor) {
if (State.Expects != FDRState::Token::WALLCLOCK_RECORD)
return make_error<StringError>(
"Malformed log. Read Wallclock record kind out of sequence",
std::make_error_code(std::errc::executable_format_error));
// We don't encode the wall time into any of the records.
// XRayRecords are concerned with the TSC instead.
State.Expects = FDRState::Token::NEW_CPU_ID_RECORD;
return Error::success();
}
/// State transition when a CustomEventMarker is encountered.
Error processCustomEventMarker(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor,
size_t &RecordSize) {
// We can encounter a CustomEventMarker anywhere in the log, so we can handle
// it regardless of the expectation. However, we do set the expectation to
// read a set number of fixed bytes, as described in the metadata.
uint32_t OffsetPtr = 1; // Read after the first byte.
uint32_t DataSize = RecordExtractor.getU32(&OffsetPtr);
uint64_t TSC = RecordExtractor.getU64(&OffsetPtr);
// FIXME: Actually represent the record through the API. For now we only skip
// through the data.
(void)TSC;
RecordSize = 16 + DataSize;
return Error::success();
}
/// Advances the state machine for reading the FDR record type by reading one
/// Metadata Record and updating the State appropriately based on the kind of
/// record encountered. The RecordKind is encoded in the first byte of the
/// Record, which the caller should pass in because they have already read it
/// to determine that this is a metadata record as opposed to a function record.
Error processFDRMetadataRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor,
size_t &RecordSize) {
// The remaining 7 bits are the RecordKind enum.
uint8_t RecordKind = RecordFirstByte >> 1;
switch (RecordKind) {
case 0: // NewBuffer
if (auto E =
processFDRNewBufferRecord(State, RecordFirstByte, RecordExtractor))
return E;
break;
case 1: // EndOfBuffer
if (auto E = processFDREndOfBufferRecord(State, RecordFirstByte,
RecordExtractor))
return E;
break;
case 2: // NewCPUId
if (auto E =
processFDRNewCPUIdRecord(State, RecordFirstByte, RecordExtractor))
return E;
break;
case 3: // TSCWrap
if (auto E =
processFDRTSCWrapRecord(State, RecordFirstByte, RecordExtractor))
return E;
break;
case 4: // WallTimeMarker
if (auto E =
processFDRWallTimeRecord(State, RecordFirstByte, RecordExtractor))
return E;
break;
case 5: // CustomEventMarker
if (auto E = processCustomEventMarker(State, RecordFirstByte,
RecordExtractor, RecordSize))
return E;
break;
default:
// Widen the record type to uint16_t to prevent conversion to char.
return make_error<StringError>(
Twine("Illegal metadata record type: ")
.concat(Twine(static_cast<unsigned>(RecordKind))),
std::make_error_code(std::errc::executable_format_error));
}
return Error::success();
}
/// Reads a function record from an FDR format log, appending a new XRayRecord
/// to the vector being populated and updating the State with a new value
/// reference value to interpret TSC deltas.
///
/// The XRayRecord constructed includes information from the function record
/// processed here as well as Thread ID and CPU ID formerly extracted into
/// State.
Error processFDRFunctionRecord(FDRState &State, uint8_t RecordFirstByte,
DataExtractor &RecordExtractor,
std::vector<XRayRecord> &Records) {
switch (State.Expects) {
case FDRState::Token::NEW_BUFFER_RECORD_OR_EOF:
return make_error<StringError>(
"Malformed log. Received Function Record before new buffer setup.",
std::make_error_code(std::errc::executable_format_error));
case FDRState::Token::WALLCLOCK_RECORD:
return make_error<StringError>(
"Malformed log. Received Function Record when expecting wallclock.",
std::make_error_code(std::errc::executable_format_error));
case FDRState::Token::NEW_CPU_ID_RECORD:
return make_error<StringError>(
"Malformed log. Received Function Record before first CPU record.",
std::make_error_code(std::errc::executable_format_error));
default:
Records.emplace_back();
auto &Record = Records.back();
Record.RecordType = 0; // Record is type NORMAL.
// Strip off record type bit and use the next three bits.
uint8_t RecordType = (RecordFirstByte >> 1) & 0x07;
switch (RecordType) {
case static_cast<uint8_t>(RecordTypes::ENTER):
Record.Type = RecordTypes::ENTER;
break;
case static_cast<uint8_t>(RecordTypes::EXIT):
case 2: // TAIL_EXIT is not yet defined in RecordTypes.
Record.Type = RecordTypes::EXIT;
break;
default:
// When initializing the error, convert to uint16_t so that the record
// type isn't interpreted as a char.
return make_error<StringError>(
Twine("Illegal function record type: ")
.concat(Twine(static_cast<unsigned>(RecordType))),
std::make_error_code(std::errc::executable_format_error));
}
Record.CPU = State.CPUId;
Record.TId = State.ThreadId;
// Back up to read first 32 bits, including the 4 we pulled RecordType
// and RecordKind out of. The remaining 28 are FunctionId.
uint32_t OffsetPtr = 0;
// Despite function Id being a signed int on XRayRecord,
// when it is written to an FDR format, the top bits are truncated,
// so it is effectively an unsigned value. When we shift off the
// top four bits, we want the shift to be logical, so we read as
// uint32_t.
uint32_t FuncIdBitField = RecordExtractor.getU32(&OffsetPtr);
Record.FuncId = FuncIdBitField >> 4;
// FunctionRecords have a 32 bit delta from the previous absolute TSC
// or TSC delta. If this would overflow, we should read a TSCWrap record
// with an absolute TSC reading.
uint64_t new_tsc = State.BaseTSC + RecordExtractor.getU32(&OffsetPtr);
State.BaseTSC = new_tsc;
Record.TSC = new_tsc;
}
return Error::success();
}
/// Reads a log in FDR mode for version 1 of this binary format. FDR mode is
/// defined as part of the compiler-rt project in xray_fdr_logging.h, and such
/// a log consists of the familiar 32 bit XRayHeader, followed by sequences of
/// of interspersed 16 byte Metadata Records and 8 byte Function Records.
///
/// The following is an attempt to document the grammar of the format, which is
/// parsed by this function for little-endian machines. Since the format makes
/// use of BitFields, when we support big-Endian architectures, we will need to
/// adjust not only the endianness parameter to llvm's RecordExtractor, but also
/// the bit twiddling logic, which is consistent with the little-endian
/// convention that BitFields within a struct will first be packed into the
/// least significant bits the address they belong to.
///
/// We expect a format complying with the grammar in the following pseudo-EBNF.
///
/// FDRLog: XRayFileHeader ThreadBuffer*
/// XRayFileHeader: 32 bytes to identify the log as FDR with machine metadata.
/// Includes BufferSize
/// ThreadBuffer: NewBuffer WallClockTime NewCPUId FunctionSequence EOB
/// BufSize: 8 byte unsigned integer indicating how large the buffer is.
/// NewBuffer: 16 byte metadata record with Thread Id.
/// WallClockTime: 16 byte metadata record with human readable time.
/// NewCPUId: 16 byte metadata record with CPUId and a 64 bit TSC reading.
/// EOB: 16 byte record in a thread buffer plus mem garbage to fill BufSize.
/// FunctionSequence: NewCPUId | TSCWrap | FunctionRecord
/// TSCWrap: 16 byte metadata record with a full 64 bit TSC reading.
/// FunctionRecord: 8 byte record with FunctionId, entry/exit, and TSC delta.
Error loadFDRLog(StringRef Data, XRayFileHeader &FileHeader,
std::vector<XRayRecord> &Records) {
if (Data.size() < 32)
return make_error<StringError>(
"Not enough bytes for an XRay log.",
std::make_error_code(std::errc::invalid_argument));
// For an FDR log, there are records sized 16 and 8 bytes.
// There actually may be no records if no non-trivial functions are
// instrumented.
if (Data.size() % 8 != 0)
return make_error<StringError>(
"Invalid-sized XRay data.",
std::make_error_code(std::errc::invalid_argument));
if (auto E = readBinaryFormatHeader(Data, FileHeader))
return E;
uint64_t BufferSize = 0;
{
StringRef ExtraDataRef(FileHeader.FreeFormData, 16);
DataExtractor ExtraDataExtractor(ExtraDataRef, true, 8);
uint32_t ExtraDataOffset = 0;
BufferSize = ExtraDataExtractor.getU64(&ExtraDataOffset);
}
FDRState State{0, 0, 0, FDRState::Token::NEW_BUFFER_RECORD_OR_EOF,
BufferSize, 0};
// RecordSize will tell the loop how far to seek ahead based on the record
// type that we have just read.
size_t RecordSize = 0;
for (auto S = Data.drop_front(32); !S.empty(); S = S.drop_front(RecordSize)) {
DataExtractor RecordExtractor(S, true, 8);
uint32_t OffsetPtr = 0;
if (State.Expects == FDRState::Token::SCAN_TO_END_OF_THREAD_BUF) {
RecordSize = State.CurrentBufferSize - State.CurrentBufferConsumed;
if (S.size() < State.CurrentBufferSize - State.CurrentBufferConsumed) {
return make_error<StringError>(
Twine("Incomplete thread buffer. Expected ") +
Twine(State.CurrentBufferSize - State.CurrentBufferConsumed) +
" remaining bytes but found " + Twine(S.size()),
make_error_code(std::errc::invalid_argument));
}
State.CurrentBufferConsumed = 0;
State.Expects = FDRState::Token::NEW_BUFFER_RECORD_OR_EOF;
continue;
}
uint8_t BitField = RecordExtractor.getU8(&OffsetPtr);
bool isMetadataRecord = BitField & 0x01uL;
if (isMetadataRecord) {
RecordSize = 16;
if (auto E = processFDRMetadataRecord(State, BitField, RecordExtractor,
RecordSize))
return E;
State.CurrentBufferConsumed += RecordSize;
} else { // Process Function Record
RecordSize = 8;
if (auto E = processFDRFunctionRecord(State, BitField, RecordExtractor,
Records))
return E;
State.CurrentBufferConsumed += RecordSize;
}
}
// There are two conditions
if (State.Expects != FDRState::Token::NEW_BUFFER_RECORD_OR_EOF &&
!(State.Expects == FDRState::Token::SCAN_TO_END_OF_THREAD_BUF &&
State.CurrentBufferSize == State.CurrentBufferConsumed))
return make_error<StringError>(
Twine("Encountered EOF with unexpected state expectation ") +
fdrStateToTwine(State.Expects) +
". Remaining expected bytes in thread buffer total " +
Twine(State.CurrentBufferSize - State.CurrentBufferConsumed),
std::make_error_code(std::errc::executable_format_error));
return Error::success();
}
Error loadYAMLLog(StringRef Data, XRayFileHeader &FileHeader,
std::vector<XRayRecord> &Records) {
// Load the documents from the MappedFile.
YAMLXRayTrace Trace;
Input In(Data);
In >> Trace;
if (In.error())
return make_error<StringError>("Failed loading YAML Data.", In.error());
FileHeader.Version = Trace.Header.Version;
FileHeader.Type = Trace.Header.Type;
FileHeader.ConstantTSC = Trace.Header.ConstantTSC;
FileHeader.NonstopTSC = Trace.Header.NonstopTSC;
FileHeader.CycleFrequency = Trace.Header.CycleFrequency;
if (FileHeader.Version != 1)
return make_error<StringError>(
Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
std::make_error_code(std::errc::invalid_argument));
Records.clear();
std::transform(Trace.Records.begin(), Trace.Records.end(),
std::back_inserter(Records), [&](const YAMLXRayRecord &R) {
return XRayRecord{R.RecordType, R.CPU, R.Type,
R.FuncId, R.TSC, R.TId};
});
return Error::success();
}
} // namespace
Expected<Trace> llvm::xray::loadTraceFile(StringRef Filename, bool Sort) {
int Fd;
if (auto EC = sys::fs::openFileForRead(Filename, Fd)) {
return make_error<StringError>(
Twine("Cannot read log from '") + Filename + "'", EC);
}
// Attempt to get the filesize.
uint64_t FileSize;
if (auto EC = sys::fs::file_size(Filename, FileSize)) {
return make_error<StringError>(
Twine("Cannot read log from '") + Filename + "'", EC);
}
if (FileSize < 4) {
return make_error<StringError>(
Twine("File '") + Filename + "' too small for XRay.",
std::make_error_code(std::errc::executable_format_error));
}
// Attempt to mmap the file.
std::error_code EC;
sys::fs::mapped_file_region MappedFile(
Fd, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0, EC);
if (EC) {
return make_error<StringError>(
Twine("Cannot read log from '") + Filename + "'", EC);
}
// Attempt to detect the file type using file magic. We have a slight bias
// towards the binary format, and we do this by making sure that the first 4
// bytes of the binary file is some combination of the following byte
// patterns:
//
// 0x0001 0x0000 - version 1, "naive" format
// 0x0001 0x0001 - version 1, "flight data recorder" format
//
// YAML files dont' typically have those first four bytes as valid text so we
// try loading assuming YAML if we don't find these bytes.
//
// Only if we can't load either the binary or the YAML format will we yield an
// error.
StringRef Magic(MappedFile.data(), 4);
DataExtractor HeaderExtractor(Magic, true, 8);
uint32_t OffsetPtr = 0;
uint16_t Version = HeaderExtractor.getU16(&OffsetPtr);
uint16_t Type = HeaderExtractor.getU16(&OffsetPtr);
enum BinaryFormatType { NAIVE_FORMAT = 0, FLIGHT_DATA_RECORDER_FORMAT = 1 };
Trace T;
if (Version == 1 && Type == NAIVE_FORMAT) {
if (auto E =
loadNaiveFormatLog(StringRef(MappedFile.data(), MappedFile.size()),
T.FileHeader, T.Records))
return std::move(E);
} else if (Version == 1 && Type == FLIGHT_DATA_RECORDER_FORMAT) {
if (auto E = loadFDRLog(StringRef(MappedFile.data(), MappedFile.size()),
T.FileHeader, T.Records))
return std::move(E);
} else {
if (auto E = loadYAMLLog(StringRef(MappedFile.data(), MappedFile.size()),
T.FileHeader, T.Records))
return std::move(E);
}
if (Sort)
std::sort(T.Records.begin(), T.Records.end(),
[&](const XRayRecord &L, const XRayRecord &R) {
return L.TSC < R.TSC;
});
return std::move(T);
}