llvm-project/llvm/lib/Target/X86/CMakeLists.txt

76 lines
2.1 KiB
CMake
Raw Normal View History

set(LLVM_TARGET_DEFINITIONS X86.td)
tablegen(LLVM X86GenAsmMatcher.inc -gen-asm-matcher)
tablegen(LLVM X86GenAsmWriter.inc -gen-asm-writer)
tablegen(LLVM X86GenAsmWriter1.inc -gen-asm-writer -asmwriternum=1)
tablegen(LLVM X86GenCallingConv.inc -gen-callingconv)
tablegen(LLVM X86GenDAGISel.inc -gen-dag-isel)
tablegen(LLVM X86GenDisassemblerTables.inc -gen-disassembler)
tablegen(LLVM X86GenEVEX2VEXTables.inc -gen-x86-EVEX2VEX-tables)
tablegen(LLVM X86GenFastISel.inc -gen-fast-isel)
tablegen(LLVM X86GenGlobalISel.inc -gen-global-isel)
tablegen(LLVM X86GenInstrInfo.inc -gen-instr-info)
tablegen(LLVM X86GenRegisterBank.inc -gen-register-bank)
tablegen(LLVM X86GenRegisterInfo.inc -gen-register-info)
tablegen(LLVM X86GenSubtargetInfo.inc -gen-subtarget)
if (X86_GEN_FOLD_TABLES)
tablegen(LLVM X86GenFoldTables.inc -gen-x86-fold-tables)
endif()
add_public_tablegen_target(X86CommonTableGen)
set(sources
ShadowCallStack.cpp
X86AsmPrinter.cpp
X86CallFrameOptimization.cpp
X86CallingConv.cpp
X86CallLowering.cpp
X86CmovConversion.cpp
X86DomainReassignment.cpp
X86ExpandPseudo.cpp
X86FastISel.cpp
X86FixupBWInsts.cpp
X86FixupLEAs.cpp
X86AvoidStoreForwardingBlocks.cpp
X86FixupSetCC.cpp
[x86] Introduce a pass to begin more systematically fixing PR36028 and similar issues. The key idea is to lower COPY nodes populating EFLAGS by scanning the uses of EFLAGS and introducing dedicated code to preserve the necessary state in a GPR. In the vast majority of cases, these uses are cmovCC and jCC instructions. For such cases, we can very easily save and restore the necessary information by simply inserting a setCC into a GPR where the original flags are live, and then testing that GPR directly to feed the cmov or conditional branch. However, things are a bit more tricky if arithmetic is using the flags. This patch handles the vast majority of cases that seem to come up in practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of partially preserved EFLAGS as LLVM doesn't currently model that at all. There are a large number of operations that techinaclly observe EFLAGS currently but shouldn't in this case -- they typically are using DF. Currently, they will not be handled by this approach. However, I have never seen this issue come up in practice. It is already pretty rare to have these patterns come up in practical code with LLVM. I had to resort to writing MIR tests to cover most of the logic in this pass already. I suspect even with its current amount of coverage of arithmetic users of EFLAGS it will be a significant improvement over the current use of pushf/popf. It will also produce substantially faster code in most of the common patterns. This patch also removes all of the old lowering for EFLAGS copies, and the hack that forced us to use a frame pointer when EFLAGS copies were found anywhere in a function so that the dynamic stack adjustment wasn't a problem. None of this is needed as we now lower all of these copies directly in MI and without require stack adjustments. Lots of thanks to Reid who came up with several aspects of this approach, and Craig who helped me work out a couple of things tripping me up while working on this. Differential Revision: https://reviews.llvm.org/D45146 llvm-svn: 329657
2018-04-10 09:41:17 +08:00
X86FlagsCopyLowering.cpp
X86FloatingPoint.cpp
X86FrameLowering.cpp
X86InstructionSelector.cpp
X86ISelDAGToDAG.cpp
X86ISelLowering.cpp
X86IndirectBranchTracking.cpp
X86InterleavedAccess.cpp
X86InstrFMA3Info.cpp
X86InstrInfo.cpp
X86EvexToVex.cpp
X86LegalizerInfo.cpp
X86MCInstLower.cpp
X86MachineFunctionInfo.cpp
X86MacroFusion.cpp
X86OptimizeLEAs.cpp
X86PadShortFunction.cpp
X86RegisterBankInfo.cpp
X86RegisterInfo.cpp
Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre.. Summary: First, we need to explain the core of the vulnerability. Note that this is a very incomplete description, please see the Project Zero blog post for details: https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html The basis for branch target injection is to direct speculative execution of the processor to some "gadget" of executable code by poisoning the prediction of indirect branches with the address of that gadget. The gadget in turn contains an operation that provides a side channel for reading data. Most commonly, this will look like a load of secret data followed by a branch on the loaded value and then a load of some predictable cache line. The attacker then uses timing of the processors cache to determine which direction the branch took *in the speculative execution*, and in turn what one bit of the loaded value was. Due to the nature of these timing side channels and the branch predictor on Intel processors, this allows an attacker to leak data only accessible to a privileged domain (like the kernel) back into an unprivileged domain. The goal is simple: avoid generating code which contains an indirect branch that could have its prediction poisoned by an attacker. In many cases, the compiler can simply use directed conditional branches and a small search tree. LLVM already has support for lowering switches in this way and the first step of this patch is to disable jump-table lowering of switches and introduce a pass to rewrite explicit indirectbr sequences into a switch over integers. However, there is no fully general alternative to indirect calls. We introduce a new construct we call a "retpoline" to implement indirect calls in a non-speculatable way. It can be thought of loosely as a trampoline for indirect calls which uses the RET instruction on x86. Further, we arrange for a specific call->ret sequence which ensures the processor predicts the return to go to a controlled, known location. The retpoline then "smashes" the return address pushed onto the stack by the call with the desired target of the original indirect call. The result is a predicted return to the next instruction after a call (which can be used to trap speculative execution within an infinite loop) and an actual indirect branch to an arbitrary address. On 64-bit x86 ABIs, this is especially easily done in the compiler by using a guaranteed scratch register to pass the target into this device. For 32-bit ABIs there isn't a guaranteed scratch register and so several different retpoline variants are introduced to use a scratch register if one is available in the calling convention and to otherwise use direct stack push/pop sequences to pass the target address. This "retpoline" mitigation is fully described in the following blog post: https://support.google.com/faqs/answer/7625886 We also support a target feature that disables emission of the retpoline thunk by the compiler to allow for custom thunks if users want them. These are particularly useful in environments like kernels that routinely do hot-patching on boot and want to hot-patch their thunk to different code sequences. They can write this custom thunk and use `-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this case, on x86-64 thu thunk names must be: ``` __llvm_external_retpoline_r11 ``` or on 32-bit: ``` __llvm_external_retpoline_eax __llvm_external_retpoline_ecx __llvm_external_retpoline_edx __llvm_external_retpoline_push ``` And the target of the retpoline is passed in the named register, or in the case of the `push` suffix on the top of the stack via a `pushl` instruction. There is one other important source of indirect branches in x86 ELF binaries: the PLT. These patches also include support for LLD to generate PLT entries that perform a retpoline-style indirection. The only other indirect branches remaining that we are aware of are from precompiled runtimes (such as crt0.o and similar). The ones we have found are not really attackable, and so we have not focused on them here, but eventually these runtimes should also be replicated for retpoline-ed configurations for completeness. For kernels or other freestanding or fully static executables, the compiler switch `-mretpoline` is sufficient to fully mitigate this particular attack. For dynamic executables, you must compile *all* libraries with `-mretpoline` and additionally link the dynamic executable and all shared libraries with LLD and pass `-z retpolineplt` (or use similar functionality from some other linker). We strongly recommend also using `-z now` as non-lazy binding allows the retpoline-mitigated PLT to be substantially smaller. When manually apply similar transformations to `-mretpoline` to the Linux kernel we observed very small performance hits to applications running typical workloads, and relatively minor hits (approximately 2%) even for extremely syscall-heavy applications. This is largely due to the small number of indirect branches that occur in performance sensitive paths of the kernel. When using these patches on statically linked applications, especially C++ applications, you should expect to see a much more dramatic performance hit. For microbenchmarks that are switch, indirect-, or virtual-call heavy we have seen overheads ranging from 10% to 50%. However, real-world workloads exhibit substantially lower performance impact. Notably, techniques such as PGO and ThinLTO dramatically reduce the impact of hot indirect calls (by speculatively promoting them to direct calls) and allow optimized search trees to be used to lower switches. If you need to deploy these techniques in C++ applications, we *strongly* recommend that you ensure all hot call targets are statically linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well tuned servers using all of these techniques saw 5% - 10% overhead from the use of retpoline. We will add detailed documentation covering these components in subsequent patches, but wanted to make the core functionality available as soon as possible. Happy for more code review, but we'd really like to get these patches landed and backported ASAP for obvious reasons. We're planning to backport this to both 6.0 and 5.0 release streams and get a 5.0 release with just this cherry picked ASAP for distros and vendors. This patch is the work of a number of people over the past month: Eric, Reid, Rui, and myself. I'm mailing it out as a single commit due to the time sensitive nature of landing this and the need to backport it. Huge thanks to everyone who helped out here, and everyone at Intel who helped out in discussions about how to craft this. Also, credit goes to Paul Turner (at Google, but not an LLVM contributor) for much of the underlying retpoline design. Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D41723 llvm-svn: 323155
2018-01-23 06:05:25 +08:00
X86RetpolineThunks.cpp
X86SelectionDAGInfo.cpp
X86ShuffleDecodeConstantPool.cpp
X86Subtarget.cpp
X86TargetMachine.cpp
X86TargetObjectFile.cpp
X86TargetTransformInfo.cpp
X86VZeroUpper.cpp
X86WinAllocaExpander.cpp
X86WinEHState.cpp
)
add_llvm_target(X86CodeGen ${sources})
add_subdirectory(AsmParser)
add_subdirectory(Disassembler)
add_subdirectory(InstPrinter)
add_subdirectory(MCTargetDesc)
add_subdirectory(TargetInfo)
add_subdirectory(Utils)