llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp

1011 lines
35 KiB
C++
Raw Normal View History

//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the ELF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//
#include "llvm-readobj.h"
#include "ARMAttributeParser.h"
#include "ARMEHABIPrinter.h"
#include "Error.h"
#include "ObjDumper.h"
#include "StreamWriter.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;
using namespace ELF;
#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
case ns::enum: return #enum;
namespace {
template<typename ELFT>
class ELFDumper : public ObjDumper {
public:
ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer)
: ObjDumper(Writer), Obj(Obj) {}
void printFileHeaders() override;
void printSections() override;
void printRelocations() override;
void printSymbols() override;
void printDynamicSymbols() override;
void printUnwindInfo() override;
void printDynamicTable() override;
void printNeededLibraries() override;
void printProgramHeaders() override;
void printAttributes() override;
private:
typedef ELFFile<ELFT> ELFO;
typedef typename ELFO::Elf_Shdr Elf_Shdr;
typedef typename ELFO::Elf_Sym Elf_Sym;
void printSymbol(typename ELFO::Elf_Sym_Iter Symbol);
void printRelocations(const Elf_Shdr *Sec);
void printRelocation(const Elf_Shdr *Sec, typename ELFO::Elf_Rela Rel);
const ELFO *Obj;
};
template <class T> T errorOrDefault(ErrorOr<T> Val, T Default = T()) {
if (!Val) {
error(Val.getError());
return Default;
}
return *Val;
}
} // namespace
namespace llvm {
template <class ELFT>
static error_code createELFDumper(const ELFFile<ELFT> *Obj,
StreamWriter &Writer,
std::unique_ptr<ObjDumper> &Result) {
Result.reset(new ELFDumper<ELFT>(Obj, Writer));
return readobj_error::success;
}
error_code createELFDumper(const object::ObjectFile *Obj, StreamWriter &Writer,
std::unique_ptr<ObjDumper> &Result) {
// Little-endian 32-bit
if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
// Big-endian 32-bit
if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
// Little-endian 64-bit
if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
// Big-endian 64-bit
if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
return readobj_error::unsupported_obj_file_format;
}
} // namespace llvm
static const EnumEntry<unsigned> ElfClass[] = {
{ "None", ELF::ELFCLASSNONE },
{ "32-bit", ELF::ELFCLASS32 },
{ "64-bit", ELF::ELFCLASS64 },
};
static const EnumEntry<unsigned> ElfDataEncoding[] = {
{ "None", ELF::ELFDATANONE },
{ "LittleEndian", ELF::ELFDATA2LSB },
{ "BigEndian", ELF::ELFDATA2MSB },
};
static const EnumEntry<unsigned> ElfObjectFileType[] = {
{ "None", ELF::ET_NONE },
{ "Relocatable", ELF::ET_REL },
{ "Executable", ELF::ET_EXEC },
{ "SharedObject", ELF::ET_DYN },
{ "Core", ELF::ET_CORE },
};
static const EnumEntry<unsigned> ElfOSABI[] = {
{ "SystemV", ELF::ELFOSABI_NONE },
{ "HPUX", ELF::ELFOSABI_HPUX },
{ "NetBSD", ELF::ELFOSABI_NETBSD },
{ "GNU/Linux", ELF::ELFOSABI_LINUX },
{ "GNU/Hurd", ELF::ELFOSABI_HURD },
{ "Solaris", ELF::ELFOSABI_SOLARIS },
{ "AIX", ELF::ELFOSABI_AIX },
{ "IRIX", ELF::ELFOSABI_IRIX },
{ "FreeBSD", ELF::ELFOSABI_FREEBSD },
{ "TRU64", ELF::ELFOSABI_TRU64 },
{ "Modesto", ELF::ELFOSABI_MODESTO },
{ "OpenBSD", ELF::ELFOSABI_OPENBSD },
{ "OpenVMS", ELF::ELFOSABI_OPENVMS },
{ "NSK", ELF::ELFOSABI_NSK },
{ "AROS", ELF::ELFOSABI_AROS },
{ "FenixOS", ELF::ELFOSABI_FENIXOS },
{ "C6000_ELFABI", ELF::ELFOSABI_C6000_ELFABI },
{ "C6000_LINUX" , ELF::ELFOSABI_C6000_LINUX },
{ "ARM", ELF::ELFOSABI_ARM },
{ "Standalone" , ELF::ELFOSABI_STANDALONE }
};
static const EnumEntry<unsigned> ElfMachineType[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EM_NONE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_386 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_88K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_486 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_860 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_S370 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_RS3_LE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PARISC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VPP500 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC32PLUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_960 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_S390 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_V800 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FR20 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RH32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RCE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARM ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ALPHA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SH ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARCV9 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TRICORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300H ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8S ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_500 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_IA_64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_COLDFIRE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC12 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MMA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PCP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NCPU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NDR1 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_STARCORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ME16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST100 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TINYJ ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_X86_64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PDSP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP10 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP11 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FX66 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST9PLUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST7 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC11 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC08 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC05 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SVX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST19 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VAX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CRIS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_JAVELIN ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FIREPATH ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ZSP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MMIX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_HUANY ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PRISM ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FR30 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_D10V ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_D30V ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_V850 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M32R ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10300 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10200 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PJ ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_OPENRISC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_XTENSA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TMM_GPP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NS32K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TPC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SNP1K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST200 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_IP2K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MAX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CR ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_F2MC16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MSP430 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_BLACKFIN ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C33 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SEP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARCA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_UNICORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_EXCESS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_DXP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ALTERA_NIOS2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CRX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_XGATE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_C166 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M16C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_DSPIC30F ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M32C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TSK3000 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RS08 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SHARC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SCORE7 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_DSP24 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE3 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_LATTICEMICO32),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C17 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C6000 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C2000 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C5500 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MMDSP_PLUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CYPRESS_M8C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_R32C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TRIMEDIA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_HEXAGON ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_8051 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_STXP7X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NDS32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MAXQ30 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_XIMO16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MANIK ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CRAYNV2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_METAG ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MCST_ELBRUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CR16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ETPU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SLE9X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_L10M ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_K10M ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AARCH64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_STM8 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TILE64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEPRO ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CUDA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEGX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CLOUDSHIELD ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_1ST ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_2ND ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_OPEN8 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RL78 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE5 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_78KOR ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_56800EX )
};
static const EnumEntry<unsigned> ElfSymbolBindings[] = {
{ "Local", ELF::STB_LOCAL },
{ "Global", ELF::STB_GLOBAL },
{ "Weak", ELF::STB_WEAK }
};
static const EnumEntry<unsigned> ElfSymbolTypes[] = {
{ "None", ELF::STT_NOTYPE },
{ "Object", ELF::STT_OBJECT },
{ "Function", ELF::STT_FUNC },
{ "Section", ELF::STT_SECTION },
{ "File", ELF::STT_FILE },
{ "Common", ELF::STT_COMMON },
{ "TLS", ELF::STT_TLS },
{ "GNU_IFunc", ELF::STT_GNU_IFUNC }
};
static const char *getElfSectionType(unsigned Arch, unsigned Type) {
switch (Arch) {
case ELF::EM_ARM:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
}
case ELF::EM_HEXAGON:
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
case ELF::EM_X86_64:
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
}
}
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym );
default: return "";
}
}
static const EnumEntry<unsigned> ElfSectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, SHF_WRITE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_ALLOC ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXCLUDE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXECINSTR ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MERGE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_STRINGS ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_INFO_LINK ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_LINK_ORDER ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_OS_NONCONFORMING),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_GROUP ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_TLS ),
LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP )
};
static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
// Check potentially overlapped processor-specific
// program header type.
switch (Arch) {
case ELF::EM_ARM:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
}
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
}
}
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
default: return "";
}
}
static const EnumEntry<unsigned> ElfSegmentFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
};
static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
};
template<class ELFT>
void ELFDumper<ELFT>::printFileHeaders() {
const typename ELFO::Elf_Ehdr *Header = Obj->getHeader();
{
DictScope D(W, "ElfHeader");
{
DictScope D(W, "Ident");
W.printBinary("Magic", makeArrayRef(Header->e_ident).slice(ELF::EI_MAG0,
4));
W.printEnum ("Class", Header->e_ident[ELF::EI_CLASS],
makeArrayRef(ElfClass));
W.printEnum ("DataEncoding", Header->e_ident[ELF::EI_DATA],
makeArrayRef(ElfDataEncoding));
W.printNumber("FileVersion", Header->e_ident[ELF::EI_VERSION]);
W.printEnum ("OS/ABI", Header->e_ident[ELF::EI_OSABI],
makeArrayRef(ElfOSABI));
W.printNumber("ABIVersion", Header->e_ident[ELF::EI_ABIVERSION]);
W.printBinary("Unused", makeArrayRef(Header->e_ident).slice(ELF::EI_PAD));
}
W.printEnum ("Type", Header->e_type, makeArrayRef(ElfObjectFileType));
W.printEnum ("Machine", Header->e_machine, makeArrayRef(ElfMachineType));
W.printNumber("Version", Header->e_version);
W.printHex ("Entry", Header->e_entry);
W.printHex ("ProgramHeaderOffset", Header->e_phoff);
W.printHex ("SectionHeaderOffset", Header->e_shoff);
if (Header->e_machine == EM_MIPS)
W.printFlags("Flags", Header->e_flags, makeArrayRef(ElfHeaderMipsFlags),
unsigned(ELF::EF_MIPS_ARCH));
else
W.printFlags("Flags", Header->e_flags);
W.printNumber("HeaderSize", Header->e_ehsize);
W.printNumber("ProgramHeaderEntrySize", Header->e_phentsize);
W.printNumber("ProgramHeaderCount", Header->e_phnum);
W.printNumber("SectionHeaderEntrySize", Header->e_shentsize);
W.printNumber("SectionHeaderCount", Header->e_shnum);
W.printNumber("StringTableSectionIndex", Header->e_shstrndx);
}
}
template<class ELFT>
void ELFDumper<ELFT>::printSections() {
ListScope SectionsD(W, "Sections");
int SectionIndex = -1;
for (typename ELFO::Elf_Shdr_Iter SecI = Obj->begin_sections(),
SecE = Obj->end_sections();
SecI != SecE; ++SecI) {
++SectionIndex;
const Elf_Shdr *Section = &*SecI;
StringRef Name = errorOrDefault(Obj->getSectionName(Section));
DictScope SectionD(W, "Section");
W.printNumber("Index", SectionIndex);
W.printNumber("Name", Name, Section->sh_name);
W.printHex("Type",
getElfSectionType(Obj->getHeader()->e_machine, Section->sh_type),
Section->sh_type);
W.printFlags ("Flags", Section->sh_flags, makeArrayRef(ElfSectionFlags));
W.printHex ("Address", Section->sh_addr);
W.printHex ("Offset", Section->sh_offset);
W.printNumber("Size", Section->sh_size);
W.printNumber("Link", Section->sh_link);
W.printNumber("Info", Section->sh_info);
W.printNumber("AddressAlignment", Section->sh_addralign);
W.printNumber("EntrySize", Section->sh_entsize);
if (opts::SectionRelocations) {
ListScope D(W, "Relocations");
printRelocations(Section);
}
if (opts::SectionSymbols) {
ListScope D(W, "Symbols");
for (typename ELFO::Elf_Sym_Iter SymI = Obj->begin_symbols(),
SymE = Obj->end_symbols();
SymI != SymE; ++SymI) {
if (Obj->getSection(&*SymI) == Section)
printSymbol(SymI);
}
}
if (opts::SectionData) {
ArrayRef<uint8_t> Data = errorOrDefault(Obj->getSectionContents(Section));
W.printBinaryBlock("SectionData",
StringRef((const char *)Data.data(), Data.size()));
}
}
}
template<class ELFT>
void ELFDumper<ELFT>::printRelocations() {
ListScope D(W, "Relocations");
int SectionNumber = -1;
for (typename ELFO::Elf_Shdr_Iter SecI = Obj->begin_sections(),
SecE = Obj->end_sections();
SecI != SecE; ++SecI) {
++SectionNumber;
if (SecI->sh_type != ELF::SHT_REL && SecI->sh_type != ELF::SHT_RELA)
continue;
StringRef Name = errorOrDefault(Obj->getSectionName(&*SecI));
W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
W.indent();
printRelocations(&*SecI);
W.unindent();
W.startLine() << "}\n";
}
}
template <class ELFT>
void ELFDumper<ELFT>::printRelocations(const Elf_Shdr *Sec) {
switch (Sec->sh_type) {
case ELF::SHT_REL:
for (typename ELFO::Elf_Rel_Iter RI = Obj->begin_rel(Sec),
RE = Obj->end_rel(Sec);
RI != RE; ++RI) {
typename ELFO::Elf_Rela Rela;
Rela.r_offset = RI->r_offset;
Rela.r_info = RI->r_info;
Rela.r_addend = 0;
printRelocation(Sec, Rela);
}
break;
case ELF::SHT_RELA:
for (typename ELFO::Elf_Rela_Iter RI = Obj->begin_rela(Sec),
RE = Obj->end_rela(Sec);
RI != RE; ++RI) {
printRelocation(Sec, *RI);
}
break;
}
}
template <class ELFT>
void ELFDumper<ELFT>::printRelocation(const Elf_Shdr *Sec,
typename ELFO::Elf_Rela Rel) {
SmallString<32> RelocName;
Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
StringRef SymbolName;
std::pair<const Elf_Shdr *, const Elf_Sym *> Sym =
Obj->getRelocationSymbol(Sec, &Rel);
if (Sym.first)
SymbolName = errorOrDefault(Obj->getSymbolName(Sym.first, Sym.second));
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Rel.r_offset);
W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
W.printHex("Addend", Rel.r_addend);
} else {
raw_ostream& OS = W.startLine();
OS << W.hex(Rel.r_offset)
<< " " << RelocName
<< " " << (SymbolName.size() > 0 ? SymbolName : "-")
<< " " << W.hex(Rel.r_addend)
<< "\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printSymbols() {
ListScope Group(W, "Symbols");
for (typename ELFO::Elf_Sym_Iter SymI = Obj->begin_symbols(),
SymE = Obj->end_symbols();
SymI != SymE; ++SymI) {
printSymbol(SymI);
}
}
template<class ELFT>
void ELFDumper<ELFT>::printDynamicSymbols() {
ListScope Group(W, "DynamicSymbols");
for (typename ELFO::Elf_Sym_Iter SymI = Obj->begin_dynamic_symbols(),
SymE = Obj->end_dynamic_symbols();
SymI != SymE; ++SymI) {
printSymbol(SymI);
}
}
template <class ELFT>
void ELFDumper<ELFT>::printSymbol(typename ELFO::Elf_Sym_Iter Symbol) {
StringRef SymbolName = errorOrDefault(Obj->getSymbolName(Symbol));
unsigned SectionIndex = Symbol->st_shndx;
StringRef SectionName;
if (SectionIndex == SHN_UNDEF) {
SectionName = "Undefined";
} else if (SectionIndex >= SHN_LOPROC && SectionIndex <= SHN_HIPROC) {
SectionName = "Processor Specific";
} else if (SectionIndex >= SHN_LOOS && SectionIndex <= SHN_HIOS) {
SectionName = "Operating System Specific";
} else if (SectionIndex > SHN_HIOS && SectionIndex < SHN_ABS) {
SectionName = "Reserved";
} else if (SectionIndex == SHN_ABS) {
SectionName = "Absolute";
} else if (SectionIndex == SHN_COMMON) {
SectionName = "Common";
} else {
if (SectionIndex == SHN_XINDEX)
SectionIndex = Obj->getSymbolTableIndex(&*Symbol);
assert(SectionIndex != SHN_XINDEX &&
"getSymbolTableIndex should handle this");
const Elf_Shdr *Sec = Obj->getSection(SectionIndex);
SectionName = errorOrDefault(Obj->getSectionName(Sec));
}
std::string FullSymbolName(SymbolName);
if (Symbol.isDynamic()) {
bool IsDefault;
ErrorOr<StringRef> Version = Obj->getSymbolVersion(nullptr, &*Symbol,
IsDefault);
if (Version) {
FullSymbolName += (IsDefault ? "@@" : "@");
FullSymbolName += *Version;
} else
error(Version.getError());
}
DictScope D(W, "Symbol");
W.printNumber("Name", FullSymbolName, Symbol->st_name);
W.printHex ("Value", Symbol->st_value);
W.printNumber("Size", Symbol->st_size);
W.printEnum ("Binding", Symbol->getBinding(),
makeArrayRef(ElfSymbolBindings));
W.printEnum ("Type", Symbol->getType(), makeArrayRef(ElfSymbolTypes));
W.printNumber("Other", Symbol->st_other);
W.printHex("Section", SectionName, SectionIndex);
}
#define LLVM_READOBJ_TYPE_CASE(name) \
case DT_##name: return #name
static const char *getTypeString(uint64_t Type) {
switch (Type) {
LLVM_READOBJ_TYPE_CASE(BIND_NOW);
LLVM_READOBJ_TYPE_CASE(DEBUG);
LLVM_READOBJ_TYPE_CASE(FINI);
LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
LLVM_READOBJ_TYPE_CASE(FLAGS);
LLVM_READOBJ_TYPE_CASE(HASH);
LLVM_READOBJ_TYPE_CASE(INIT);
LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
LLVM_READOBJ_TYPE_CASE(JMPREL);
LLVM_READOBJ_TYPE_CASE(NEEDED);
LLVM_READOBJ_TYPE_CASE(NULL);
LLVM_READOBJ_TYPE_CASE(PLTGOT);
LLVM_READOBJ_TYPE_CASE(PLTREL);
LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
LLVM_READOBJ_TYPE_CASE(REL);
LLVM_READOBJ_TYPE_CASE(RELA);
LLVM_READOBJ_TYPE_CASE(RELENT);
LLVM_READOBJ_TYPE_CASE(RELSZ);
LLVM_READOBJ_TYPE_CASE(RELAENT);
LLVM_READOBJ_TYPE_CASE(RELASZ);
LLVM_READOBJ_TYPE_CASE(RPATH);
LLVM_READOBJ_TYPE_CASE(RUNPATH);
LLVM_READOBJ_TYPE_CASE(SONAME);
LLVM_READOBJ_TYPE_CASE(STRSZ);
LLVM_READOBJ_TYPE_CASE(STRTAB);
LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
LLVM_READOBJ_TYPE_CASE(SYMENT);
LLVM_READOBJ_TYPE_CASE(SYMTAB);
LLVM_READOBJ_TYPE_CASE(TEXTREL);
LLVM_READOBJ_TYPE_CASE(VERNEED);
LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
LLVM_READOBJ_TYPE_CASE(VERSYM);
LLVM_READOBJ_TYPE_CASE(RELCOUNT);
LLVM_READOBJ_TYPE_CASE(GNU_HASH);
LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
default: return "unknown";
}
}
#undef LLVM_READOBJ_TYPE_CASE
#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
{ #enum, prefix##_##enum }
static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
};
static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
};
#undef LLVM_READOBJ_DT_FLAG_ENT
template <typename T, typename TFlag>
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
typedef EnumEntry<TFlag> FlagEntry;
typedef SmallVector<FlagEntry, 10> FlagVector;
FlagVector SetFlags;
for (const auto &Flag : Flags) {
if (Flag.Value == 0)
continue;
if ((Value & Flag.Value) == Flag.Value)
SetFlags.push_back(Flag);
}
for (const auto &Flag : SetFlags) {
OS << Flag.Name << " ";
}
}
template <class ELFT>
static void printValue(const ELFFile<ELFT> *O, uint64_t Type, uint64_t Value,
bool Is64, raw_ostream &OS) {
switch (Type) {
case DT_PLTREL:
if (Value == DT_REL) {
OS << "REL";
break;
} else if (Value == DT_RELA) {
OS << "RELA";
break;
}
// Fallthrough.
case DT_PLTGOT:
case DT_HASH:
case DT_STRTAB:
case DT_SYMTAB:
case DT_RELA:
case DT_INIT:
case DT_FINI:
case DT_REL:
case DT_JMPREL:
case DT_INIT_ARRAY:
case DT_FINI_ARRAY:
case DT_PREINIT_ARRAY:
case DT_DEBUG:
case DT_VERNEED:
case DT_VERSYM:
case DT_GNU_HASH:
case DT_NULL:
case DT_MIPS_BASE_ADDRESS:
case DT_MIPS_GOTSYM:
case DT_MIPS_RLD_MAP:
case DT_MIPS_PLTGOT:
OS << format("0x%" PRIX64, Value);
break;
case DT_RELCOUNT:
case DT_VERNEEDNUM:
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
OS << Value;
break;
case DT_PLTRELSZ:
case DT_RELASZ:
case DT_RELAENT:
case DT_STRSZ:
case DT_SYMENT:
case DT_RELSZ:
case DT_RELENT:
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_PREINIT_ARRAYSZ:
OS << Value << " (bytes)";
break;
case DT_NEEDED:
OS << "SharedLibrary (" << O->getDynamicString(Value) << ")";
break;
case DT_SONAME:
OS << "LibrarySoname (" << O->getDynamicString(Value) << ")";
break;
case DT_RPATH:
case DT_RUNPATH:
OS << O->getDynamicString(Value);
break;
case DT_MIPS_FLAGS:
printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
break;
case DT_FLAGS:
printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
break;
}
}
template<class ELFT>
void ELFDumper<ELFT>::printUnwindInfo() {
W.startLine() << "UnwindInfo not implemented.\n";
}
namespace {
template <>
void ELFDumper<ELFType<support::little, 2, false> >::printUnwindInfo() {
const unsigned Machine = Obj->getHeader()->e_machine;
if (Machine == EM_ARM) {
ARM::EHABI::PrinterContext<ELFType<support::little, 2, false> > Ctx(W, Obj);
return Ctx.PrintUnwindInformation();
}
W.startLine() << "UnwindInfo not implemented.\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printDynamicTable() {
typedef typename ELFO::Elf_Dyn_Iter EDI;
EDI Start = Obj->begin_dynamic_table(), End = Obj->end_dynamic_table(true);
if (Start == End)
return;
ptrdiff_t Total = std::distance(Start, End);
raw_ostream &OS = W.getOStream();
W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
bool Is64 = ELFT::Is64Bits;
W.startLine()
<< " Tag" << (Is64 ? " " : " ") << "Type"
<< " " << "Name/Value\n";
for (; Start != End; ++Start) {
W.startLine()
<< " "
<< format(Is64 ? "0x%016" PRIX64 : "0x%08" PRIX64, Start->getTag())
<< " " << format("%-21s", getTypeString(Start->getTag()));
printValue(Obj, Start->getTag(), Start->getVal(), Is64, OS);
OS << "\n";
}
W.startLine() << "]\n";
}
template<class ELFT>
void ELFDumper<ELFT>::printNeededLibraries() {
ListScope D(W, "NeededLibraries");
typedef std::vector<StringRef> LibsTy;
LibsTy Libs;
for (typename ELFO::Elf_Dyn_Iter DynI = Obj->begin_dynamic_table(),
DynE = Obj->end_dynamic_table();
DynI != DynE; ++DynI)
if (DynI->d_tag == ELF::DT_NEEDED)
Libs.push_back(Obj->getDynamicString(DynI->d_un.d_val));
std::stable_sort(Libs.begin(), Libs.end());
for (LibsTy::const_iterator I = Libs.begin(), E = Libs.end(); I != E; ++I) {
outs() << " " << *I << "\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printProgramHeaders() {
ListScope L(W, "ProgramHeaders");
for (typename ELFO::Elf_Phdr_Iter PI = Obj->begin_program_headers(),
PE = Obj->end_program_headers();
PI != PE; ++PI) {
DictScope P(W, "ProgramHeader");
W.printHex ("Type",
getElfSegmentType(Obj->getHeader()->e_machine, PI->p_type),
PI->p_type);
W.printHex ("Offset", PI->p_offset);
W.printHex ("VirtualAddress", PI->p_vaddr);
W.printHex ("PhysicalAddress", PI->p_paddr);
W.printNumber("FileSize", PI->p_filesz);
W.printNumber("MemSize", PI->p_memsz);
W.printFlags ("Flags", PI->p_flags, makeArrayRef(ElfSegmentFlags));
W.printNumber("Alignment", PI->p_align);
}
}
template <class ELFT>
void ELFDumper<ELFT>::printAttributes() {
W.startLine() << "Attributes not implemented.\n";
}
namespace {
template <>
void ELFDumper<ELFType<support::little, 2, false> >::printAttributes() {
if (Obj->getHeader()->e_machine != EM_ARM) {
W.startLine() << "Attributes not implemented.\n";
return;
}
DictScope BA(W, "BuildAttributes");
for (ELFO::Elf_Shdr_Iter SI = Obj->begin_sections(), SE = Obj->end_sections();
SI != SE; ++SI) {
if (SI->sh_type != ELF::SHT_ARM_ATTRIBUTES)
continue;
ErrorOr<ArrayRef<uint8_t> > Contents = Obj->getSectionContents(&(*SI));
if (!Contents)
continue;
if ((*Contents)[0] != ARMBuildAttrs::Format_Version) {
errs() << "unrecognised FormatVersion: 0x" << utohexstr((*Contents)[0])
<< '\n';
continue;
}
W.printHex("FormatVersion", (*Contents)[0]);
if (Contents->size() == 1)
continue;
ARMAttributeParser(W).Parse(*Contents);
}
}
}