llvm-project/llvm/test/CodeGen/X86/fp-logic.ll

313 lines
7.6 KiB
LLVM
Raw Normal View History

; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck %s
; PR22428: https://llvm.org/bugs/show_bug.cgi?id=22428
; f1, f2, f3, and f4 should use an integer logic instruction.
; f9 and f10 should use an FP (SSE) logic instruction.
;
; f5, f6, f7, and f8 are less clear.
;
; For f5 and f6, we can save a register move by using an FP logic instruction,
; but we may need to calculate the relative costs of an SSE op vs. int op vs.
; scalar <-> SSE register moves.
;
; For f7 and f8, the SSE instructions don't take immediate operands, so if we
; use one of those, we either have to load a constant from memory or move the
; scalar immediate value from an integer register over to an SSE register.
; Optimizing for size may affect that decision. Also, note that there are no
; scalar versions of the FP logic ops, so if we want to fold a load into a
; logic op, we have to load or splat a 16-byte vector constant.
; 1 FP operand, 1 int operand, int result
define i32 @f1(float %x, i32 %y) {
; CHECK-LABEL: f1:
; CHECK: # BB#0:
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: andl %edi, %eax
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %bc1, %y
ret i32 %and
}
; Swap operands of the logic op.
define i32 @f2(float %x, i32 %y) {
; CHECK-LABEL: f2:
; CHECK: # BB#0:
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: andl %edi, %eax
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %y, %bc1
ret i32 %and
}
; 1 FP operand, 1 constant operand, int result
define i32 @f3(float %x) {
; CHECK-LABEL: f3:
; CHECK: # BB#0:
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: andl $1, %eax
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %bc1, 1
ret i32 %and
}
; Swap operands of the logic op.
define i32 @f4(float %x) {
; CHECK-LABEL: f4:
; CHECK: # BB#0:
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: andl $2, %eax
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 2, %bc1
ret i32 %and
}
; 1 FP operand, 1 integer operand, FP result
define float @f5(float %x, i32 %y) {
; CHECK-LABEL: f5:
; CHECK: # BB#0:
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: andl %edi, %eax
; CHECK-NEXT: movd %eax, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %bc1, %y
%bc2 = bitcast i32 %and to float
ret float %bc2
}
; Swap operands of the logic op.
define float @f6(float %x, i32 %y) {
; CHECK-LABEL: f6:
; CHECK: # BB#0:
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: andl %edi, %eax
; CHECK-NEXT: movd %eax, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %y, %bc1
%bc2 = bitcast i32 %and to float
ret float %bc2
}
; 1 FP operand, 1 constant operand, FP result
define float @f7(float %x) {
; CHECK-LABEL: f7:
; CHECK: # BB#0:
; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT: andps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %bc1, 3
%bc2 = bitcast i32 %and to float
ret float %bc2
}
; Swap operands of the logic op.
define float @f8(float %x) {
; CHECK-LABEL: f8:
; CHECK: # BB#0:
; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT: andps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 4, %bc1
%bc2 = bitcast i32 %and to float
ret float %bc2
}
; 2 FP operands, int result
define i32 @f9(float %x, float %y) {
; CHECK-LABEL: f9:
; CHECK: # BB#0:
; CHECK-NEXT: andps %xmm1, %xmm0
; CHECK-NEXT: movd %xmm0, %eax
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%bc2 = bitcast float %y to i32
%and = and i32 %bc1, %bc2
ret i32 %and
}
; 2 FP operands, FP result
define float @f10(float %x, float %y) {
; CHECK-LABEL: f10:
; CHECK: # BB#0:
; CHECK-NEXT: andps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%bc2 = bitcast float %y to i32
%and = and i32 %bc1, %bc2
%bc3 = bitcast i32 %and to float
ret float %bc3
}
define float @or(float %x, float %y) {
; CHECK-LABEL: or:
; CHECK: # BB#0:
; CHECK-NEXT: orps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%bc2 = bitcast float %y to i32
%and = or i32 %bc1, %bc2
%bc3 = bitcast i32 %and to float
ret float %bc3
}
define float @xor(float %x, float %y) {
; CHECK-LABEL: xor:
; CHECK: # BB#0:
; CHECK-NEXT: xorps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%bc2 = bitcast float %y to i32
%and = xor i32 %bc1, %bc2
%bc3 = bitcast i32 %and to float
ret float %bc3
}
define float @f7_or(float %x) {
; CHECK-LABEL: f7_or:
; CHECK: # BB#0:
; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT: orps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = or i32 %bc1, 3
%bc2 = bitcast i32 %and to float
ret float %bc2
}
define float @f7_xor(float %x) {
; CHECK-LABEL: f7_xor:
; CHECK: # BB#0:
; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT: xorps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = xor i32 %bc1, 3
%bc2 = bitcast i32 %and to float
ret float %bc2
}
; Make sure that doubles work too.
define double @doubles(double %x, double %y) {
; CHECK-LABEL: doubles:
; CHECK: # BB#0:
; CHECK-NEXT: andpd %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast double %x to i64
%bc2 = bitcast double %y to i64
%and = and i64 %bc1, %bc2
%bc3 = bitcast i64 %and to double
ret double %bc3
}
define double @f7_double(double %x) {
; CHECK-LABEL: f7_double:
; CHECK: # BB#0:
; CHECK-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero
; CHECK-NEXT: andpd %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast double %x to i64
%and = and i64 %bc1, 3
%bc2 = bitcast i64 %and to double
ret double %bc2
}
; Grabbing the sign bit is a special case that could be handled
; by movmskps/movmskpd, but if we're not shifting it over, then
; a simple FP logic op is cheaper.
define float @movmsk(float %x) {
; CHECK-LABEL: movmsk:
; CHECK: # BB#0:
; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT: andps %xmm1, %xmm0
; CHECK-NEXT: retq
%bc1 = bitcast float %x to i32
%and = and i32 %bc1, 2147483648
%bc2 = bitcast i32 %and to float
ret float %bc2
}
define double @bitcast_fabs(double %x) {
; CHECK-LABEL: bitcast_fabs:
; CHECK: # BB#0:
; CHECK-NEXT: andpd {{.*}}(%rip), %xmm0
; CHECK-NEXT: retq
;
%bc1 = bitcast double %x to i64
%and = and i64 %bc1, 9223372036854775807
%bc2 = bitcast i64 %and to double
ret double %bc2
}
define float @bitcast_fneg(float %x) {
; CHECK-LABEL: bitcast_fneg:
; CHECK: # BB#0:
; CHECK-NEXT: xorps {{.*}}(%rip), %xmm0
; CHECK-NEXT: retq
;
%bc1 = bitcast float %x to i32
%xor = xor i32 %bc1, 2147483648
%bc2 = bitcast i32 %xor to float
ret float %bc2
}
define <2 x double> @bitcast_fabs_vec(<2 x double> %x) {
; CHECK-LABEL: bitcast_fabs_vec:
; CHECK: # BB#0:
; CHECK-NEXT: andps {{.*}}(%rip), %xmm0
; CHECK-NEXT: retq
;
%bc1 = bitcast <2 x double> %x to <2 x i64>
%and = and <2 x i64> %bc1, <i64 9223372036854775807, i64 9223372036854775807>
%bc2 = bitcast <2 x i64> %and to <2 x double>
ret <2 x double> %bc2
}
define <4 x float> @bitcast_fneg_vec(<4 x float> %x) {
; CHECK-LABEL: bitcast_fneg_vec:
; CHECK: # BB#0:
; CHECK-NEXT: xorps {{.*}}(%rip), %xmm0
; CHECK-NEXT: retq
;
%bc1 = bitcast <4 x float> %x to <4 x i32>
%xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648>
%bc2 = bitcast <4 x i32> %xor to <4 x float>
ret <4 x float> %bc2
}