llvm-project/mlir/docs/ConversionToLLVMDialect.md

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

644 lines
24 KiB
Markdown
Raw Normal View History

# Conversion to the LLVM Dialect
Conversion from the Standard to the [LLVM Dialect](Dialects/LLVM.md) can be
performed by the specialized dialect conversion pass by running
```shell
mlir-opt -convert-std-to-llvm <filename.mlir>
```
It performs type and operation conversions for a subset of operations from
standard dialect (operations on scalars and vectors, control flow operations) as
described in this document. We use the terminology defined by the
[LLVM IR Dialect description](Dialects/LLVM.md) throughout this document.
[TOC]
## Type Conversion
### Scalar Types
Scalar types are converted to their LLVM counterparts if they exist. The
following conversions are currently implemented.
- `i*` converts to `!llvm.i*`
- `f16` converts to `!llvm.half`
- `f32` converts to `!llvm.float`
- `f64` converts to `!llvm.double`
Note: `bf16` type is not supported by LLVM IR and cannot be converted.
### Index Type
Index type is converted to a wrapped LLVM IR integer with bitwidth equal to the
bitwidth of the pointer size as specified by the
[data layout](https://llvm.org/docs/LangRef.html#data-layout) of the LLVM module
[contained](Dialects/LLVM.md#context-and-module-association) in the LLVM Dialect
object. For example, on x86-64 CPUs it converts to `!llvm.i64`.
### Vector Types
LLVM IR only supports *one-dimensional* vectors, unlike MLIR where vectors can
be multi-dimensional. Vector types cannot be nested in either IR. In the
one-dimensional case, MLIR vectors are converted to LLVM IR vectors of the same
size with element type converted using these conversion rules. In the
n-dimensional case, MLIR vectors are converted to (n-1)-dimensional array types
of one-dimensional vectors.
For example, `vector<4 x f32>` converts to `!llvm<"<4 x float>">` and `vector<4
x 8 x 16 x f32>` converts to `!llvm<"[4 x [8 x <16 x float>]]">`.
### Memref Types
Memref types in MLIR have both static and dynamic information associated with
them. The dynamic information comprises the buffer pointer as well as sizes and
strides of any dynamically sized dimensions. Memref types are normalized and
converted to a descriptor that is only dependent on the rank of the memref. The
descriptor contains:
1. the pointer to the data buffer, followed by
2. the pointer to properly aligned data payload that the memref indexes,
followed by
3. a lowered `index`-type integer containing the distance between the beginning
of the buffer and the first element to be accessed through the memref,
followed by
4. an array containing as many `index`-type integers as the rank of the memref:
the array represents the size, in number of elements, of the memref along
the given dimension. For constant MemRef dimensions, the corresponding size
entry is a constant whose runtime value must match the static value,
followed by
5. a second array containing as many 64-bit integers as the rank of the MemRef:
the second array represents the "stride" (in tensor abstraction sense), i.e.
the number of consecutive elements of the underlying buffer.
For constant memref dimensions, the corresponding size entry is a constant whose
runtime value matches the static value. This normalization serves as an ABI for
the memref type to interoperate with externally linked functions. In the
particular case of rank `0` memrefs, the size and stride arrays are omitted,
resulting in a struct containing two pointers + offset.
Examples:
```mlir
memref<f32> -> !llvm<"{ float*, float*, i64 }">
memref<1 x f32> -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
memref<? x f32> -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
memref<10x42x42x43x123 x f32> -> !llvm<"{ float*, float*, i64, [5 x i64], [5 x i64] }">
memref<10x?x42x?x123 x f32> -> !llvm<"{ float*, float*, i64, [5 x i64], [5 x i64] }">
// Memref types can have vectors as element types
memref<1x? x vector<4xf32>> -> !llvm<"{ <4 x float>*, <4 x float>*, i64, [1 x i64], [1 x i64] }">
```
If the rank of the memref is unknown at compile time, the Memref is converted to
an unranked descriptor that contains:
1. a 64-bit integer representing the dynamic rank of the memref, followed by
2. a pointer to a ranked memref descriptor with the contents listed above.
Dynamic ranked memrefs should be used only to pass arguments to external library
calls that expect a unified memref type. The called functions can parse any
unranked memref descriptor by reading the rank and parsing the enclosed ranked
descriptor pointer.
Examples:
```mlir
// unranked descriptor
memref<*xf32> -> !llvm<"{i64, i8*}">
```
**In function signatures,** `memref` is passed as a _pointer_ to the structured
defined above to comply with the calling convention.
Example:
```mlir
// A function type with memref as argument
(memref<?xf32>) -> ()
// is transformed into the LLVM function with pointer-to-structure argument.
!llvm<"void({ float*, float*, i64, [1 x i64], [1 x i64]}*) ">
```
### Function Types
Function types get converted to LLVM function types. The arguments are converted
individually according to these rules. The result types need to accommodate the
fact that LLVM IR functions always have a return type, which may be a Void type.
The converted function always has a single result type. If the original function
type had no results, the converted function will have one result of the wrapped
`void` type. If the original function type had one result, the converted
function will have one result converted using these rules. Otherwise, the result
type will be a wrapped LLVM IR structure type where each element of the
structure corresponds to one of the results of the original function, converted
using these rules. In high-order functions, function-typed arguments and results
are converted to a wrapped LLVM IR function pointer type (since LLVM IR does not
allow passing functions to functions without indirection) with the pointee type
converted using these rules.
Examples:
```mlir
// zero-ary function type with no results.
() -> ()
// is converted to a zero-ary function with `void` result
!llvm<"void ()">
// unary function with one result
(i32) -> (i64)
// has its argument and result type converted, before creating the LLVM IR function type
!llvm<"i64 (i32)">
// binary function with one result
(i32, f32) -> (i64)
// has its arguments handled separately
!llvm<"i64 (i32, float)">
// binary function with two results
(i32, f32) -> (i64, f64)
// has its result aggregated into a structure type
!llvm<"{i64, double} (i32, f32)">
// function-typed arguments or results in higher-order functions
(() -> ()) -> (() -> ())
// are converted into pointers to functions
!llvm<"void ()* (void ()*)">
```
## Calling Convention
### Function Signature Conversion
LLVM IR functions are defined by a custom operation. The function itself has a
wrapped LLVM IR function type converted as described above. The function
definition operation uses MLIR syntax.
Examples:
```mlir
// zero-ary function type with no results.
func @foo() -> ()
// gets LLVM type void().
llvm.func @foo() -> ()
// function with one result
func @bar(i32) -> (i64)
// gets converted to LLVM type i64(i32).
func @bar(!llvm.i32) -> !llvm.i64
// function with two results
func @qux(i32, f32) -> (i64, f64)
// has its result aggregated into a structure type
func @qux(!llvm.i32, !llvm.float) -> !llvm<"{i64, double}">
// function-typed arguments or results in higher-order functions
func @quux(() -> ()) -> (() -> ())
// are converted into pointers to functions
func @quux(!llvm<"void ()*">) -> !llvm<"void ()*">
// the call flow is handled by the LLVM dialect `call` operation supporting both
// direct and indirect calls
```
### Result Packing
In case of multi-result functions, the returned values are inserted into a
structure-typed value before being returned and extracted from it at the call
site. This transformation is a part of the conversion and is transparent to the
defines and uses of the values being returned.
Example:
```mlir
func @foo(%arg0: i32, %arg1: i64) -> (i32, i64) {
return %arg0, %arg1 : i32, i64
}
func @bar() {
%0 = constant 42 : i32
%1 = constant 17 : i64
%2:2 = call @foo(%0, %1) : (i32, i64) -> (i32, i64)
"use_i32"(%2#0) : (i32) -> ()
"use_i64"(%2#1) : (i64) -> ()
}
// is transformed into
func @foo(%arg0: !llvm.i32, %arg1: !llvm.i64) -> !llvm<"{i32, i64}"> {
// insert the vales into a structure
%0 = llvm.mlir.undef : !llvm<"{i32, i64}">
%1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{i32, i64}">
%2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{i32, i64}">
// return the structure value
llvm.return %2 : !llvm<"{i32, i64}">
}
func @bar() {
%0 = llvm.mlir.constant(42 : i32) : !llvm.i32
%1 = llvm.mlir.constant(17) : !llvm.i64
// call and extract the values from the structure
%2 = llvm.call @bar(%0, %1) : (%arg0: !llvm.i32, %arg1: !llvm.i32) -> !llvm<"{i32, i64}">
%3 = llvm.extractvalue %2[0] : !llvm<"{i32, i64}">
%4 = llvm.extractvalue %2[1] : !llvm<"{i32, i64}">
// use as before
"use_i32"(%3) : (!llvm.i32) -> ()
"use_i64"(%4) : (!llvm.i64) -> ()
}
```
### Calling Convention for `memref`
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
Function _arguments_ of `memref` type, ranked or unranked, are _expanded_ into a
list of arguments of non-aggregate types that the memref descriptor defined
above comprises. That is, the outer struct type and the inner array types are
replaced with individual arguments.
This convention is implemented in the conversion of `std.func` and `std.call` to
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
the LLVM dialect, with the former unpacking the descriptor into a set of
individual values and the latter packing those values back into a descriptor so
as to make it transparently usable by other operations. Conversions from other
dialects should take this convention into account.
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
This specific convention is motivated by the necessity to specify alignment and
aliasing attributes on the raw pointers underpinning the memref.
Examples:
```mlir
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
func @foo(%arg0: memref<?xf32>) -> () {
"use"(%arg0) : (memref<?xf32>) -> ()
return
}
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
// Gets converted to the following.
llvm.func @foo(%arg0: !llvm<"float*">, // Allocated pointer.
%arg1: !llvm<"float*">, // Aligned pointer.
%arg2: !llvm.i64, // Offset.
%arg3: !llvm.i64, // Size in dim 0.
%arg4: !llvm.i64) { // Stride in dim 0.
// Populate memref descriptor structure.
%0 = llvm.mlir.undef : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%3 = llvm.insertvalue %arg2, %2[2] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%4 = llvm.insertvalue %arg3, %3[3, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%5 = llvm.insertvalue %arg4, %4[4, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
// Descriptor is now usable as a single value.
"use"(%5) : (!llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">) -> ()
llvm.return
}
```
```mlir
func @bar() {
%0 = "get"() : () -> (memref<?xf32>)
call @foo(%0) : (memref<?xf32>) -> ()
return
}
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
// Gets converted to the following.
llvm.func @bar() {
%0 = "get"() : () -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
// Unpack the memref descriptor.
%1 = llvm.extractvalue %0[0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%2 = llvm.extractvalue %0[1] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%3 = llvm.extractvalue %0[2] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%4 = llvm.extractvalue %0[3, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
%5 = llvm.extractvalue %0[4, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
// Pass individual values to the callee.
llvm.call @foo(%1, %2, %3, %4, %5) : (!llvm<"float*">, !llvm<"float*">, !llvm.i64, !llvm.i64, !llvm.i64) -> ()
llvm.return
}
```
For **unranked** memrefs, the list of function arguments always contains two
elements, same as the unranked memref descriptor: an integer rank, and a
type-erased (`!llvm<"i8*">`) pointer to the ranked memref descriptor. Note that
while the _calling convention_ does not require stack allocation, _casting_ to
unranked memref does since one cannot take an address of an SSA value containing
the ranked memref. The caller is in charge of ensuring the thread safety and
eventually removing unnecessary stack allocations in cast operations.
Example
```mlir
llvm.func @foo(%arg0: memref<*xf32>) -> () {
"use"(%arg0) : (memref<*xf32>) -> ()
return
}
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
// Gets converted to the following.
llvm.func @foo(%arg0: !llvm.i64 // Rank.
%arg1: !llvm<"i8*">) { // Type-erased pointer to descriptor.
// Pack the unranked memref descriptor.
%0 = llvm.mlir.undef : !llvm<"{ i64, i8* }">
%1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ i64, i8* }">
%2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ i64, i8* }">
"use"(%2) : (!llvm<"{ i64, i8* }">) -> ()
llvm.return
}
```
```mlir
llvm.func @bar() {
%0 = "get"() : () -> (memref<*xf32>)
call @foo(%0): (memref<*xf32>) -> ()
return
}
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
// Gets converted to the following.
llvm.func @bar() {
%0 = "get"() : () -> (!llvm<"{ i64, i8* }">)
// Unpack the memref descriptor.
%1 = llvm.extractvalue %0[0] : !llvm<"{ i64, i8* }">
%2 = llvm.extractvalue %0[1] : !llvm<"{ i64, i8* }">
// Pass individual values to the callee.
llvm.call @foo(%1, %2) : (!llvm.i64, !llvm<"i8*">)
llvm.return
}
```
*This convention may or may not apply if the conversion of MemRef types is
overridden by the user.*
[mlir] use unpacked memref descriptors at function boundaries The existing (default) calling convention for memrefs in standard-to-LLVM conversion was motivated by interfacing with LLVM IR produced from C sources. In particular, it passes a pointer to the memref descriptor structure when calling the function. Therefore, the descriptor is allocated on stack before the call. This convention leads to several problems. PR44644 indicates a problem with stack exhaustion when calling functions with memref-typed arguments in a loop. Allocating outside of the loop may lead to concurrent access problems in case the loop is parallel. When targeting GPUs, the contents of the stack-allocated memory for the descriptor (passed by pointer) needs to be explicitly copied to the device. Using an aggregate type makes it impossible to attach pointer-specific argument attributes pertaining to alignment and aliasing in the LLVM dialect. Change the default calling convention for memrefs in standard-to-LLVM conversion to transform a memref into a list of arguments, each of primitive type, that are comprised in the memref descriptor. This avoids stack allocation for ranked memrefs (and thus stack exhaustion and potential concurrent access problems) and simplifies the device function invocation on GPUs. Provide an option in the standard-to-LLVM conversion to generate auxiliary wrapper function with the same interface as the previous calling convention, compatible with LLVM IR porduced from C sources. These auxiliary functions pack the individual values into a descriptor structure or unpack it. They also handle descriptor stack allocation if necessary, serving as an allocation scope: the memory reserved by `alloca` will be freed on exiting the auxiliary function. The effect of this change on MLIR-generated only LLVM IR is minimal. When interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration only needs to require auxiliary functions and change the function name to call the wrapper function instead of the original function. This also opens the door to forwarding aliasing and alignment information from memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
2020-02-10 21:12:47 +08:00
### C-compatible wrapper emission
In practical cases, it may be desirable to have externally-facing functions
with a single attribute corresponding to a MemRef argument. When interfacing
with LLVM IR produced from C, the code needs to respect the corresponding
calling convention. The conversion to the LLVM dialect provides an option to
generate wrapper functions that take memref descriptors as pointers-to-struct
compatible with data types produced by Clang when compiling C sources.
More specifically, a memref argument is converted into a pointer-to-struct
argument of type `{T*, T*, i64, i64[N], i64[N]}*` in the wrapper function, where
`T` is the converted element type and `N` is the memref rank. This type is
compatible with that produced by Clang for the following C++ structure template
instantiations or their equivalents in C.
```cpp
template<typename T, size_t N>
struct MemRefDescriptor {
T *allocated;
T *aligned;
intptr_t offset;
intptr_t sizes[N];
intptr_t stides[N];
};
```
If enabled, the option will do the following. For _external_ functions declared
in the MLIR module.
1. Declare a new function `_mlir_ciface_<original name>` where memref arguments
are converted to pointer-to-struct and the remaining arguments are converted
as usual.
1. Add a body to the original function (making it non-external) that
1. allocates a memref descriptor,
1. populates it, and
1. passes the pointer to it into the newly declared interface function
1. collects the result of the call and returns it to the caller.
For (non-external) functions defined in the MLIR module.
1. Define a new function `_mlir_ciface_<original name>` where memref arguments
are converted to pointer-to-struct and the remaining arguments are converted
as usual.
1. Populate the body of the newly defined function with IR that
1. loads descriptors from pointers;
1. unpacks descriptor into individual non-aggregate values;
1. passes these values into the original function;
1. collects the result of the call and returns it to the caller.
Examples:
```mlir
func @qux(%arg0: memref<?x?xf32>)
// Gets converted into the following.
// Function with unpacked arguments.
llvm.func @qux(%arg0: !llvm<"float*">, %arg1: !llvm<"float*">, %arg2: !llvm.i64,
%arg3: !llvm.i64, %arg4: !llvm.i64, %arg5: !llvm.i64,
%arg6: !llvm.i64) {
// Populate memref descriptor (as per calling convention).
%0 = llvm.mlir.undef : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%3 = llvm.insertvalue %arg2, %2[2] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%4 = llvm.insertvalue %arg3, %3[3, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%5 = llvm.insertvalue %arg5, %4[4, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%6 = llvm.insertvalue %arg4, %5[3, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%7 = llvm.insertvalue %arg6, %6[4, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
// Store the descriptor in a stack-allocated space.
%8 = llvm.mlir.constant(1 : index) : !llvm.i64
%9 = llvm.alloca %8 x !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
: (!llvm.i64) -> !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">
llvm.store %7, %9 : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">
// Call the interface function.
llvm.call @_mlir_ciface_qux(%9) : (!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) -> ()
// The stored descriptor will be freed on return.
llvm.return
}
// Interface function.
llvm.func @_mlir_ciface_qux(!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">)
```
```mlir
func @foo(%arg0: memref<?x?xf32>) {
return
}
// Gets converted into the following.
// Function with unpacked arguments.
llvm.func @foo(%arg0: !llvm<"float*">, %arg1: !llvm<"float*">, %arg2: !llvm.i64,
%arg3: !llvm.i64, %arg4: !llvm.i64, %arg5: !llvm.i64,
%arg6: !llvm.i64) {
llvm.return
}
// Interface function callable from C.
llvm.func @_mlir_ciface_foo(%arg0: !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) {
// Load the descriptor.
%0 = llvm.load %arg0 : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">
// Unpack the descriptor as per calling convention.
%1 = llvm.extractvalue %0[0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%2 = llvm.extractvalue %0[1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%3 = llvm.extractvalue %0[2] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%4 = llvm.extractvalue %0[3, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%5 = llvm.extractvalue %0[3, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%6 = llvm.extractvalue %0[4, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
%7 = llvm.extractvalue %0[4, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
llvm.call @foo(%1, %2, %3, %4, %5, %6, %7)
: (!llvm<"float*">, !llvm<"float*">, !llvm.i64, !llvm.i64, !llvm.i64,
!llvm.i64, !llvm.i64) -> ()
llvm.return
}
```
Rationale: Introducing auxiliary functions for C-compatible interfaces is
preferred to modifying the calling convention since it will minimize the effect
of C compatibility on intra-module calls or calls between MLIR-generated
functions. In particular, when calling external functions from an MLIR module in
a (parallel) loop, the fact of storing a memref descriptor on stack can lead to
stack exhaustion and/or concurrent access to the same address. Auxiliary
interface function serves as an allocation scope in this case. Furthermore, when
targeting accelerators with separate memory spaces such as GPUs, stack-allocated
descriptors passed by pointer would have to be transferred to the device memory,
which introduces significant overhead. In such situations, auxiliary interface
functions are executed on host and only pass the values through device function
invocation mechanism.
## Repeated Successor Removal
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the dialect
and the conversion procedure must account for the differences between block
arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI nodes with
different values coming from the same source. Therefore, the LLVM IR dialect
disallows operations that have identical successors accepting arguments, which
would lead to invalid PHI nodes. The conversion process resolves the potential
PHI source ambiguity by injecting dummy blocks if the same block is used more
than once as a successor in an instruction. These dummy blocks branch
unconditionally to the original successors, pass them the original operands
(available in the dummy block because it is dominated by the original block) and
are used instead of them in the original terminator operation.
Example:
```mlir
cond_br %0, ^bb1(%1 : i32), ^bb1(%2 : i32)
^bb1(%3 : i32)
"use"(%3) : (i32) -> ()
```
leads to a new basic block being inserted,
```mlir
cond_br %0, ^bb1(%1 : i32), ^dummy
^bb1(%3 : i32):
"use"(%3) : (i32) -> ()
^dummy:
br ^bb1(%4 : i32)
```
before the conversion to the LLVM IR dialect:
```mlir
llvm.cond_br %0, ^bb1(%1 : !llvm.i32), ^dummy
^bb1(%3 : !llvm<"i32">):
"use"(%3) : (!llvm.i32) -> ()
^dummy:
llvm.br ^bb1(%2 : !llvm.i32)
```
## Default Memref Model
### Memref Descriptor
Within a converted function, a `memref`-typed value is represented by a memref
_descriptor_, the type of which is the structure type obtained by converting
from the memref type. This descriptor holds all the necessary information to
produce an address of a specific element. In particular, it holds dynamic values
for static sizes, and they are expected to match at all times.
It is created by the allocation operation and is updated by the conversion
operations that may change static dimensions into dynamic and vice versa.
**Note**: LLVM IR conversion does not support `memref`s with layouts that are
not amenable to the strided form.
### Index Linearization
Accesses to a memref element are transformed into an access to an element of the
buffer pointed to by the descriptor. The position of the element in the buffer
is calculated by linearizing memref indices in row-major order (lexically first
index is the slowest varying, similar to C, but accounting for strides). The
computation of the linear address is emitted as arithmetic operation in the LLVM
IR dialect. Strides are extracted from the memref descriptor.
Accesses to zero-dimensional memref (that are interpreted as pointers to the
elemental type) are directly converted into `llvm.load` or `llvm.store` without
any pointer manipulations.
Examples:
An access to a zero-dimensional memref is converted into a plain load:
```mlir
// before
%0 = load %m[] : memref<f32>
// after
%0 = llvm.load %m : !llvm<"float*">
```
An access to a memref with indices:
```mlir
%0 = load %m[1,2,3,4] : memref<10x?x13x?xf32>
```
is transformed into the equivalent of the following code:
```mlir
// Compute the linearized index from strides. Each block below extracts one
// stride from the descriptor, multiplies it with the index and accumulates
// the total offset.
%stride1 = llvm.extractvalue[4, 0] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx1 = llvm.mlir.constant(1 : index) !llvm.i64
%addr1 = muli %stride1, %idx1 : !llvm.i64
%stride2 = llvm.extractvalue[4, 1] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx2 = llvm.mlir.constant(2 : index) !llvm.i64
%addr2 = muli %stride2, %idx2 : !llvm.i64
%addr3 = addi %addr1, %addr2 : !llvm.i64
%stride3 = llvm.extractvalue[4, 2] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx3 = llvm.mlir.constant(3 : index) !llvm.i64
%addr4 = muli %stride3, %idx3 : !llvm.i64
%addr5 = addi %addr3, %addr4 : !llvm.i64
%stride4 = llvm.extractvalue[4, 3] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx4 = llvm.mlir.constant(4 : index) !llvm.i64
%addr6 = muli %stride4, %idx4 : !llvm.i64
%addr7 = addi %addr5, %addr6 : !llvm.i64
// Add the linear offset to the address.
%offset = llvm.extractvalue[2] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%addr8 = addi %addr7, %offset : !llvm.i64
// Obtain the aligned pointer.
%aligned = llvm.extractvalue[1] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
// Get the address of the data pointer.
%ptr = llvm.getelementptr %aligned[%addr8]
: !llvm<"{float*, float*, i64, i64[4], i64[4]}"> -> !llvm<"float*">
// Perform the actual load.
%0 = llvm.load %ptr : !llvm<"float*">
```
For stores, the address computation code is identical and only the actual store
operation is different.
Note: the conversion does not perform any sort of common subexpression
elimination when emitting memref accesses.