llvm-project/clang/utils/TableGen/TableGenBackends.h

77 lines
3.2 KiB
C
Raw Normal View History

//===- TableGenBackends.h - Declarations for Clang TableGen Backends ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations for all of the Clang TableGen
// backends. A "TableGen backend" is just a function. See
// "$LLVM_ROOT/utils/TableGen/TableGenBackends.h" for more info.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_UTILS_TABLEGEN_TABLEGENBACKENDS_H
#define LLVM_CLANG_UTILS_TABLEGEN_TABLEGENBACKENDS_H
#include <string>
namespace llvm {
class raw_ostream;
class RecordKeeper;
}
using llvm::raw_ostream;
using llvm::RecordKeeper;
namespace clang {
void EmitClangDeclContext(RecordKeeper &RK, raw_ostream &OS);
void EmitClangASTNodes(RecordKeeper &RK, raw_ostream &OS,
const std::string &N, const std::string &S);
void EmitClangAttrParserStringSwitches(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS);
void EmitClangDiagsDefs(RecordKeeper &Records, raw_ostream &OS,
const std::string &Component);
void EmitClangDiagGroups(RecordKeeper &Records, raw_ostream &OS);
void EmitClangDiagsIndexName(RecordKeeper &Records, raw_ostream &OS);
void EmitClangSACheckers(RecordKeeper &Records, raw_ostream &OS);
void EmitClangCommentHTMLTags(RecordKeeper &Records, raw_ostream &OS);
void EmitClangCommentHTMLTagsProperties(RecordKeeper &Records, raw_ostream &OS);
void EmitClangCommentHTMLNamedCharacterReferences(RecordKeeper &Records, raw_ostream &OS);
Comment AST: TableGen'ize all command lists in CommentCommandTraits.cpp. Now we have a list of all commands. This is a good thing in itself, but it also enables us to easily implement typo correction for command names. With this change we have objects that contain information about each command, so it makes sense to resolve command name just once during lexing (currently we store command names as strings and do a linear search every time some property value is needed). Thus comment token and AST nodes were changed to contain a command ID -- index into a tables of builtin and registered commands. Unknown commands are registered during parsing and thus are also uniformly assigned an ID. Using an ID instead of a StringRef is also a nice memory optimization since ID is a small integer that fits into a common bitfield in Comment class. This change implies that to get any information about a command (even a command name) we need a CommandTraits object to resolve the command ID to CommandInfo*. Currently a fresh temporary CommandTraits object is created whenever it is needed since it does not have any state. But with this change it has state -- new commands can be registered, so a CommandTraits object was added to ASTContext. Also, in libclang CXComment has to be expanded to include a CXTranslationUnit so that all functions working on comment AST nodes can get a CommandTraits object. This breaks binary compatibility of CXComment APIs. Now clang_FullComment_getAsXML(CXTranslationUnit TU, CXComment CXC) doesn't need TU parameter anymore, so it was removed. This is a source-incompatible change for this C API. llvm-svn: 163540
2012-09-11 04:32:42 +08:00
void EmitClangCommentCommandInfo(RecordKeeper &Records, raw_ostream &OS);
void EmitClangCommentCommandList(RecordKeeper &Records, raw_ostream &OS);
Comment AST: TableGen'ize all command lists in CommentCommandTraits.cpp. Now we have a list of all commands. This is a good thing in itself, but it also enables us to easily implement typo correction for command names. With this change we have objects that contain information about each command, so it makes sense to resolve command name just once during lexing (currently we store command names as strings and do a linear search every time some property value is needed). Thus comment token and AST nodes were changed to contain a command ID -- index into a tables of builtin and registered commands. Unknown commands are registered during parsing and thus are also uniformly assigned an ID. Using an ID instead of a StringRef is also a nice memory optimization since ID is a small integer that fits into a common bitfield in Comment class. This change implies that to get any information about a command (even a command name) we need a CommandTraits object to resolve the command ID to CommandInfo*. Currently a fresh temporary CommandTraits object is created whenever it is needed since it does not have any state. But with this change it has state -- new commands can be registered, so a CommandTraits object was added to ASTContext. Also, in libclang CXComment has to be expanded to include a CXTranslationUnit so that all functions working on comment AST nodes can get a CommandTraits object. This breaks binary compatibility of CXComment APIs. Now clang_FullComment_getAsXML(CXTranslationUnit TU, CXComment CXC) doesn't need TU parameter anymore, so it was removed. This is a source-incompatible change for this C API. llvm-svn: 163540
2012-09-11 04:32:42 +08:00
void EmitNeon(RecordKeeper &Records, raw_ostream &OS);
void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS);
void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS);
Rewrite ARM NEON intrinsic emission completely. There comes a time in the life of any amateur code generator when dumb string concatenation just won't cut it any more. For NeonEmitter.cpp, that time has come. There were a bunch of magic type codes which meant different things depending on the context. There were a bunch of special cases that really had no reason to be there but the whole thing was so creaky that removing them would cause something weird to fall over. There was a 1000 line switch statement for code generation involving string concatenation, which actually did lexical scoping to an extent (!!) with a bunch of semi-repeated cases. I tried to refactor this three times in three different ways without success. The only way forward was to rewrite the entire thing. Luckily the testing coverage on this stuff is absolutely massive, both with regression tests and the "emperor" random test case generator. The main change is that previously, in arm_neon.td a bunch of "Operation"s were defined with special names. NeonEmitter.cpp knew about these Operations and would emit code based on a huge switch. Actually this doesn't make much sense - the type information was held as strings, so type checking was impossible. Also TableGen's DAG type actually suits this sort of code generation very well (surprising that...) So now every operation is defined in terms of TableGen DAGs. There are a bunch of operators to use, including "op" (a generic unary or binary operator), "call" (to call other intrinsics) and "shuffle" (take a guess...). One of the main advantages of this apart from making it more obvious what is going on, is that we have proper type inference. This has two obvious advantages: 1) TableGen can error on bad intrinsic definitions easier, instead of just generating wrong code. 2) Calls to other intrinsics are typechecked too. So we no longer need to work out whether the thing we call needs to be the Q-lane version or the D-lane version - TableGen knows that itself! Here's an example: before: case OpAbdl: { std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)"; if (typestr[0] != 'U') { // vabd results are always unsigned and must be zero-extended. std::string utype = "U" + typestr.str(); s += "(" + TypeString(proto[0], typestr) + ")"; abd = "(" + TypeString('d', utype) + ")" + abd; s += Extend(utype, abd) + ";"; } else { s += Extend(typestr, abd) + ";"; } break; } after: def OP_ABDL : Op<(cast "R", (call "vmovl", (cast $p0, "U", (call "vabd", $p0, $p1))))>; As an example of what happens if you do something wrong now, here's what happens if you make $p0 unsigned before the call to "vabd" - that is, $p0 -> (cast "U", $p0): arm_neon.td:574:1: error: No compatible intrinsic found - looking up intrinsic 'vabd(uint8x8_t, int8x8_t)' Available overloads: - float64x2_t vabdq_v(float64x2_t, float64x2_t) - float64x1_t vabd_v(float64x1_t, float64x1_t) - float64_t vabdd_f64(float64_t, float64_t) - float32_t vabds_f32(float32_t, float32_t) ... snip ... This makes it seriously easy to work out what you've done wrong in fairly nasty intrinsics. As part of this I've massively beefed up the documentation in arm_neon.td too. Things still to do / on the radar: - Testcase generation. This was implemented in the previous version and not in the new one, because - Autogenerated tests are not being run. The testcase in test/ differs from the autogenerated version. - There were a whole slew of special cases in the testcase generation that just felt (and looked) like hacks. If someone really feels strongly about this, I can try and reimplement it too. - Big endian. That's coming soon and should be a very small diff on top of this one. llvm-svn: 211101
2014-06-17 21:11:27 +08:00
void EmitNeon2(RecordKeeper &Records, raw_ostream &OS);
void EmitNeonSema2(RecordKeeper &Records, raw_ostream &OS);
void EmitNeonTest2(RecordKeeper &Records, raw_ostream &OS);
void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS);
void EmitClangDiagDocs(RecordKeeper &Records, raw_ostream &OS);
} // end namespace clang
#endif