llvm-project/llvm/lib/IR/LLVMContextImpl.h

1141 lines
41 KiB
C
Raw Normal View History

//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#define LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#include "AttributeImpl.h"
#include "ConstantsContext.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Dwarf.h"
#include <vector>
namespace llvm {
class ConstantInt;
class ConstantFP;
class DiagnosticInfoOptimizationRemark;
class DiagnosticInfoOptimizationRemarkMissed;
class DiagnosticInfoOptimizationRemarkAnalysis;
class GCStrategy;
class LLVMContext;
class Type;
class Value;
struct DenseMapAPIntKeyInfo {
static inline APInt getEmptyKey() {
APInt V(nullptr, 0);
V.VAL = 0;
return V;
}
static inline APInt getTombstoneKey() {
APInt V(nullptr, 0);
V.VAL = 1;
return V;
}
static unsigned getHashValue(const APInt &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APInt &LHS, const APInt &RHS) {
return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
}
};
struct DenseMapAPFloatKeyInfo {
static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus, 1); }
static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus, 2); }
static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APFloat &LHS, const APFloat &RHS) {
return LHS.bitwiseIsEqual(RHS);
}
};
struct AnonStructTypeKeyInfo {
struct KeyTy {
ArrayRef<Type*> ETypes;
bool isPacked;
KeyTy(const ArrayRef<Type*>& E, bool P) :
ETypes(E), isPacked(P) {}
KeyTy(const StructType *ST)
: ETypes(ST->elements()), isPacked(ST->isPacked()) {}
bool operator==(const KeyTy& that) const {
if (isPacked != that.isPacked)
return false;
if (ETypes != that.ETypes)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline StructType* getEmptyKey() {
return DenseMapInfo<StructType*>::getEmptyKey();
}
static inline StructType* getTombstoneKey() {
return DenseMapInfo<StructType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
Rewrite LLVM's generalized support library for hashing to follow the API of the proposed standard hashing interfaces (N3333), and to use a modified and tuned version of the CityHash algorithm. Some of the highlights of this change: -- Significantly higher quality hashing algorithm with very well distributed results, and extremely few collisions. Should be close to a checksum for up to 64-bit keys. Very little clustering or clumping of hash codes, to better distribute load on probed hash tables. -- Built-in support for reserved values. -- Simplified API that composes cleanly with other C++ idioms and APIs. -- Better scaling performance as keys grow. This is the fastest algorithm I've found and measured for moderately sized keys (such as show up in some of the uniquing and folding use cases) -- Support for enabling per-execution seeds to prevent table ordering or other artifacts of hashing algorithms to impact the output of LLVM. The seeding would make each run different and highlight these problems during bootstrap. This implementation was tested extensively using the SMHasher test suite, and pased with flying colors, doing better than the original CityHash algorithm even. I've included a unittest, although it is somewhat minimal at the moment. I've also added (or refactored into the proper location) type traits necessary to implement this, and converted users of GeneralHash over. My only immediate concerns with this implementation is the performance of hashing small keys. I've already started working to improve this, and will continue to do so. Currently, the only algorithms faster produce lower quality results, but it is likely there is a better compromise than the current one. Many thanks to Jeffrey Yasskin who did most of the work on the N3333 paper, pair-programmed some of this code, and reviewed much of it. Many thanks also go to Geoff Pike Pike and Jyrki Alakuijala, the original authors of CityHash on which this is heavily based, and Austin Appleby who created MurmurHash and the SMHasher test suite. Also thanks to Nadav, Tobias, Howard, Jay, Nick, Ahmed, and Duncan for all of the review comments! If there are further comments or concerns, please let me know and I'll jump on 'em. llvm-svn: 151822
2012-03-02 02:55:25 +08:00
return hash_combine(hash_combine_range(Key.ETypes.begin(),
Key.ETypes.end()),
Key.isPacked);
}
static unsigned getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
static bool isEqual(const KeyTy& LHS, const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const StructType *LHS, const StructType *RHS) {
return LHS == RHS;
}
};
struct FunctionTypeKeyInfo {
struct KeyTy {
const Type *ReturnType;
ArrayRef<Type*> Params;
bool isVarArg;
KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) :
ReturnType(R), Params(P), isVarArg(V) {}
KeyTy(const FunctionType *FT)
: ReturnType(FT->getReturnType()), Params(FT->params()),
isVarArg(FT->isVarArg()) {}
bool operator==(const KeyTy& that) const {
if (ReturnType != that.ReturnType)
return false;
if (isVarArg != that.isVarArg)
return false;
if (Params != that.Params)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline FunctionType* getEmptyKey() {
return DenseMapInfo<FunctionType*>::getEmptyKey();
}
static inline FunctionType* getTombstoneKey() {
return DenseMapInfo<FunctionType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
Rewrite LLVM's generalized support library for hashing to follow the API of the proposed standard hashing interfaces (N3333), and to use a modified and tuned version of the CityHash algorithm. Some of the highlights of this change: -- Significantly higher quality hashing algorithm with very well distributed results, and extremely few collisions. Should be close to a checksum for up to 64-bit keys. Very little clustering or clumping of hash codes, to better distribute load on probed hash tables. -- Built-in support for reserved values. -- Simplified API that composes cleanly with other C++ idioms and APIs. -- Better scaling performance as keys grow. This is the fastest algorithm I've found and measured for moderately sized keys (such as show up in some of the uniquing and folding use cases) -- Support for enabling per-execution seeds to prevent table ordering or other artifacts of hashing algorithms to impact the output of LLVM. The seeding would make each run different and highlight these problems during bootstrap. This implementation was tested extensively using the SMHasher test suite, and pased with flying colors, doing better than the original CityHash algorithm even. I've included a unittest, although it is somewhat minimal at the moment. I've also added (or refactored into the proper location) type traits necessary to implement this, and converted users of GeneralHash over. My only immediate concerns with this implementation is the performance of hashing small keys. I've already started working to improve this, and will continue to do so. Currently, the only algorithms faster produce lower quality results, but it is likely there is a better compromise than the current one. Many thanks to Jeffrey Yasskin who did most of the work on the N3333 paper, pair-programmed some of this code, and reviewed much of it. Many thanks also go to Geoff Pike Pike and Jyrki Alakuijala, the original authors of CityHash on which this is heavily based, and Austin Appleby who created MurmurHash and the SMHasher test suite. Also thanks to Nadav, Tobias, Howard, Jay, Nick, Ahmed, and Duncan for all of the review comments! If there are further comments or concerns, please let me know and I'll jump on 'em. llvm-svn: 151822
2012-03-02 02:55:25 +08:00
return hash_combine(Key.ReturnType,
hash_combine_range(Key.Params.begin(),
Key.Params.end()),
Key.isVarArg);
}
static unsigned getHashValue(const FunctionType *FT) {
return getHashValue(KeyTy(FT));
}
static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
return LHS == RHS;
}
};
/// \brief Structure for hashing arbitrary MDNode operands.
class MDNodeOpsKey {
ArrayRef<Metadata *> RawOps;
ArrayRef<MDOperand> Ops;
unsigned Hash;
protected:
MDNodeOpsKey(ArrayRef<Metadata *> Ops)
: RawOps(Ops), Hash(calculateHash(Ops)) {}
template <class NodeTy>
MDNodeOpsKey(const NodeTy *N, unsigned Offset = 0)
: Ops(N->op_begin() + Offset, N->op_end()), Hash(N->getHash()) {}
template <class NodeTy>
bool compareOps(const NodeTy *RHS, unsigned Offset = 0) const {
if (getHash() != RHS->getHash())
return false;
assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?");
return RawOps.empty() ? compareOps(Ops, RHS, Offset)
: compareOps(RawOps, RHS, Offset);
}
static unsigned calculateHash(MDNode *N, unsigned Offset = 0);
private:
template <class T>
static bool compareOps(ArrayRef<T> Ops, const MDNode *RHS, unsigned Offset) {
if (Ops.size() != RHS->getNumOperands() - Offset)
return false;
return std::equal(Ops.begin(), Ops.end(), RHS->op_begin() + Offset);
}
static unsigned calculateHash(ArrayRef<Metadata *> Ops);
public:
unsigned getHash() const { return Hash; }
};
template <class NodeTy> struct MDNodeKeyImpl;
template <class NodeTy> struct MDNodeInfo;
/// Configuration point for MDNodeInfo::isEqual().
template <class NodeTy> struct MDNodeSubsetEqualImpl {
typedef MDNodeKeyImpl<NodeTy> KeyTy;
static bool isSubsetEqual(const KeyTy &LHS, const NodeTy *RHS) {
return false;
}
static bool isSubsetEqual(const NodeTy *LHS, const NodeTy *RHS) {
return false;
}
};
/// \brief DenseMapInfo for MDTuple.
///
/// Note that we don't need the is-function-local bit, since that's implicit in
/// the operands.
template <> struct MDNodeKeyImpl<MDTuple> : MDNodeOpsKey {
MDNodeKeyImpl(ArrayRef<Metadata *> Ops) : MDNodeOpsKey(Ops) {}
MDNodeKeyImpl(const MDTuple *N) : MDNodeOpsKey(N) {}
bool isKeyOf(const MDTuple *RHS) const { return compareOps(RHS); }
unsigned getHashValue() const { return getHash(); }
static unsigned calculateHash(MDTuple *N) {
return MDNodeOpsKey::calculateHash(N);
}
};
/// \brief DenseMapInfo for DILocation.
template <> struct MDNodeKeyImpl<DILocation> {
unsigned Line;
unsigned Column;
Metadata *Scope;
Metadata *InlinedAt;
MDNodeKeyImpl(unsigned Line, unsigned Column, Metadata *Scope,
Metadata *InlinedAt)
: Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt) {}
MDNodeKeyImpl(const DILocation *L)
: Line(L->getLine()), Column(L->getColumn()), Scope(L->getRawScope()),
InlinedAt(L->getRawInlinedAt()) {}
bool isKeyOf(const DILocation *RHS) const {
return Line == RHS->getLine() && Column == RHS->getColumn() &&
Scope == RHS->getRawScope() && InlinedAt == RHS->getRawInlinedAt();
}
unsigned getHashValue() const {
return hash_combine(Line, Column, Scope, InlinedAt);
}
};
/// \brief DenseMapInfo for GenericDINode.
template <> struct MDNodeKeyImpl<GenericDINode> : MDNodeOpsKey {
unsigned Tag;
MDString *Header;
MDNodeKeyImpl(unsigned Tag, MDString *Header, ArrayRef<Metadata *> DwarfOps)
: MDNodeOpsKey(DwarfOps), Tag(Tag), Header(Header) {}
MDNodeKeyImpl(const GenericDINode *N)
: MDNodeOpsKey(N, 1), Tag(N->getTag()), Header(N->getRawHeader()) {}
bool isKeyOf(const GenericDINode *RHS) const {
return Tag == RHS->getTag() && Header == RHS->getRawHeader() &&
compareOps(RHS, 1);
}
unsigned getHashValue() const { return hash_combine(getHash(), Tag, Header); }
static unsigned calculateHash(GenericDINode *N) {
return MDNodeOpsKey::calculateHash(N, 1);
}
};
template <> struct MDNodeKeyImpl<DISubrange> {
int64_t Count;
int64_t LowerBound;
MDNodeKeyImpl(int64_t Count, int64_t LowerBound)
: Count(Count), LowerBound(LowerBound) {}
MDNodeKeyImpl(const DISubrange *N)
: Count(N->getCount()), LowerBound(N->getLowerBound()) {}
bool isKeyOf(const DISubrange *RHS) const {
return Count == RHS->getCount() && LowerBound == RHS->getLowerBound();
}
unsigned getHashValue() const { return hash_combine(Count, LowerBound); }
};
template <> struct MDNodeKeyImpl<DIEnumerator> {
int64_t Value;
MDString *Name;
MDNodeKeyImpl(int64_t Value, MDString *Name) : Value(Value), Name(Name) {}
MDNodeKeyImpl(const DIEnumerator *N)
: Value(N->getValue()), Name(N->getRawName()) {}
bool isKeyOf(const DIEnumerator *RHS) const {
return Value == RHS->getValue() && Name == RHS->getRawName();
}
unsigned getHashValue() const { return hash_combine(Value, Name); }
};
template <> struct MDNodeKeyImpl<DIBasicType> {
unsigned Tag;
MDString *Name;
uint64_t SizeInBits;
uint64_t AlignInBits;
unsigned Encoding;
MDNodeKeyImpl(unsigned Tag, MDString *Name, uint64_t SizeInBits,
uint64_t AlignInBits, unsigned Encoding)
: Tag(Tag), Name(Name), SizeInBits(SizeInBits), AlignInBits(AlignInBits),
Encoding(Encoding) {}
MDNodeKeyImpl(const DIBasicType *N)
: Tag(N->getTag()), Name(N->getRawName()), SizeInBits(N->getSizeInBits()),
AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()) {}
bool isKeyOf(const DIBasicType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
Encoding == RHS->getEncoding();
}
unsigned getHashValue() const {
return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding);
}
};
template <> struct MDNodeKeyImpl<DIDerivedType> {
unsigned Tag;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Scope;
Metadata *BaseType;
uint64_t SizeInBits;
uint64_t AlignInBits;
uint64_t OffsetInBits;
unsigned Flags;
Metadata *ExtraData;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line,
Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint64_t AlignInBits, uint64_t OffsetInBits, unsigned Flags,
Metadata *ExtraData)
: Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope),
BaseType(BaseType), SizeInBits(SizeInBits), AlignInBits(AlignInBits),
OffsetInBits(OffsetInBits), Flags(Flags), ExtraData(ExtraData) {}
MDNodeKeyImpl(const DIDerivedType *N)
: Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Scope(N->getRawScope()),
BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()),
AlignInBits(N->getAlignInBits()), OffsetInBits(N->getOffsetInBits()),
Flags(N->getFlags()), ExtraData(N->getRawExtraData()) {}
bool isKeyOf(const DIDerivedType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
OffsetInBits == RHS->getOffsetInBits() && Flags == RHS->getFlags() &&
ExtraData == RHS->getRawExtraData();
}
unsigned getHashValue() const {
// If this is a member inside an ODR type, only hash the type and the name.
// Otherwise the hash will be stronger than
// MDNodeSubsetEqualImpl::isODRMember().
if (Tag == dwarf::DW_TAG_member && Name && Scope && isa<MDString>(Scope))
return hash_combine(Name, Scope);
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Tag, Name, File, Line, Scope, BaseType, Flags);
}
};
template <> struct MDNodeSubsetEqualImpl<DIDerivedType> {
typedef MDNodeKeyImpl<DIDerivedType> KeyTy;
static bool isSubsetEqual(const KeyTy &LHS, const DIDerivedType *RHS) {
return isODRMember(LHS.Tag, LHS.Scope, LHS.Name, RHS);
}
static bool isSubsetEqual(const DIDerivedType *LHS, const DIDerivedType *RHS) {
return isODRMember(LHS->getTag(), LHS->getRawScope(), LHS->getRawName(),
RHS);
}
/// Subprograms compare equal if they declare the same function in an ODR
/// type.
static bool isODRMember(unsigned Tag, const Metadata *Scope,
const MDString *Name, const DIDerivedType *RHS) {
// Check whether the LHS is eligible.
if (Tag != dwarf::DW_TAG_member || !Name || !Scope || !isa<MDString>(Scope))
return false;
// Compare to the RHS.
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
Scope == RHS->getRawScope();
}
};
template <> struct MDNodeKeyImpl<DICompositeType> {
unsigned Tag;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Scope;
Metadata *BaseType;
uint64_t SizeInBits;
uint64_t AlignInBits;
uint64_t OffsetInBits;
unsigned Flags;
Metadata *Elements;
unsigned RuntimeLang;
Metadata *VTableHolder;
Metadata *TemplateParams;
MDString *Identifier;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line,
Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint64_t AlignInBits, uint64_t OffsetInBits, unsigned Flags,
Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams,
MDString *Identifier)
: Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope),
BaseType(BaseType), SizeInBits(SizeInBits), AlignInBits(AlignInBits),
OffsetInBits(OffsetInBits), Flags(Flags), Elements(Elements),
RuntimeLang(RuntimeLang), VTableHolder(VTableHolder),
TemplateParams(TemplateParams), Identifier(Identifier) {}
MDNodeKeyImpl(const DICompositeType *N)
: Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Scope(N->getRawScope()),
BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()),
AlignInBits(N->getAlignInBits()), OffsetInBits(N->getOffsetInBits()),
Flags(N->getFlags()), Elements(N->getRawElements()),
RuntimeLang(N->getRuntimeLang()), VTableHolder(N->getRawVTableHolder()),
TemplateParams(N->getRawTemplateParams()),
Identifier(N->getRawIdentifier()) {}
bool isKeyOf(const DICompositeType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
OffsetInBits == RHS->getOffsetInBits() && Flags == RHS->getFlags() &&
Elements == RHS->getRawElements() &&
RuntimeLang == RHS->getRuntimeLang() &&
VTableHolder == RHS->getRawVTableHolder() &&
TemplateParams == RHS->getRawTemplateParams() &&
Identifier == RHS->getRawIdentifier();
}
unsigned getHashValue() const {
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Name, File, Line, BaseType, Scope, Elements,
TemplateParams);
}
};
template <> struct MDNodeKeyImpl<DISubroutineType> {
unsigned Flags;
Metadata *TypeArray;
MDNodeKeyImpl(int64_t Flags, Metadata *TypeArray)
: Flags(Flags), TypeArray(TypeArray) {}
MDNodeKeyImpl(const DISubroutineType *N)
: Flags(N->getFlags()), TypeArray(N->getRawTypeArray()) {}
bool isKeyOf(const DISubroutineType *RHS) const {
return Flags == RHS->getFlags() && TypeArray == RHS->getRawTypeArray();
}
unsigned getHashValue() const { return hash_combine(Flags, TypeArray); }
};
template <> struct MDNodeKeyImpl<DIFile> {
MDString *Filename;
MDString *Directory;
MDNodeKeyImpl(MDString *Filename, MDString *Directory)
: Filename(Filename), Directory(Directory) {}
MDNodeKeyImpl(const DIFile *N)
: Filename(N->getRawFilename()), Directory(N->getRawDirectory()) {}
bool isKeyOf(const DIFile *RHS) const {
return Filename == RHS->getRawFilename() &&
Directory == RHS->getRawDirectory();
}
unsigned getHashValue() const { return hash_combine(Filename, Directory); }
};
template <> struct MDNodeKeyImpl<DISubprogram> {
Metadata *Scope;
MDString *Name;
MDString *LinkageName;
Metadata *File;
unsigned Line;
Metadata *Type;
bool IsLocalToUnit;
bool IsDefinition;
unsigned ScopeLine;
Metadata *ContainingType;
unsigned Virtuality;
unsigned VirtualIndex;
unsigned Flags;
bool IsOptimized;
Metadata *Unit;
Metadata *TemplateParams;
Metadata *Declaration;
Metadata *Variables;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName,
Metadata *File, unsigned Line, Metadata *Type,
bool IsLocalToUnit, bool IsDefinition, unsigned ScopeLine,
Metadata *ContainingType, unsigned Virtuality,
unsigned VirtualIndex, unsigned Flags, bool IsOptimized,
Metadata *Unit, Metadata *TemplateParams, Metadata *Declaration,
Metadata *Variables)
: Scope(Scope), Name(Name), LinkageName(LinkageName), File(File),
Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit),
IsDefinition(IsDefinition), ScopeLine(ScopeLine),
ContainingType(ContainingType), Virtuality(Virtuality),
VirtualIndex(VirtualIndex), Flags(Flags), IsOptimized(IsOptimized),
Unit(Unit), TemplateParams(TemplateParams), Declaration(Declaration),
Variables(Variables) {}
MDNodeKeyImpl(const DISubprogram *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
LinkageName(N->getRawLinkageName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()),
IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()),
ScopeLine(N->getScopeLine()), ContainingType(N->getRawContainingType()),
Virtuality(N->getVirtuality()), VirtualIndex(N->getVirtualIndex()),
Flags(N->getFlags()), IsOptimized(N->isOptimized()),
Unit(N->getRawUnit()), TemplateParams(N->getRawTemplateParams()),
Declaration(N->getRawDeclaration()), Variables(N->getRawVariables()) {}
bool isKeyOf(const DISubprogram *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
LinkageName == RHS->getRawLinkageName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() &&
IsDefinition == RHS->isDefinition() &&
ScopeLine == RHS->getScopeLine() &&
ContainingType == RHS->getRawContainingType() &&
Virtuality == RHS->getVirtuality() &&
VirtualIndex == RHS->getVirtualIndex() && Flags == RHS->getFlags() &&
IsOptimized == RHS->isOptimized() && Unit == RHS->getUnit() &&
TemplateParams == RHS->getRawTemplateParams() &&
Declaration == RHS->getRawDeclaration() &&
Variables == RHS->getRawVariables();
}
unsigned getHashValue() const {
// If this is a declaration inside an ODR type, only hash the type and the
// name. Otherwise the hash will be stronger than
// MDNodeSubsetEqualImpl::isDeclarationOfODRMember().
if (!IsDefinition && LinkageName && Scope && isa<MDString>(Scope))
return hash_combine(LinkageName, Scope);
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Name, Scope, File, Type, Line);
}
};
template <> struct MDNodeSubsetEqualImpl<DISubprogram> {
typedef MDNodeKeyImpl<DISubprogram> KeyTy;
static bool isSubsetEqual(const KeyTy &LHS, const DISubprogram *RHS) {
return isDeclarationOfODRMember(LHS.IsDefinition, LHS.Scope,
LHS.LinkageName, RHS);
}
static bool isSubsetEqual(const DISubprogram *LHS, const DISubprogram *RHS) {
return isDeclarationOfODRMember(LHS->isDefinition(), LHS->getRawScope(),
LHS->getRawLinkageName(), RHS);
}
/// Subprograms compare equal if they declare the same function in an ODR
/// type.
static bool isDeclarationOfODRMember(bool IsDefinition, const Metadata *Scope,
const MDString *LinkageName,
const DISubprogram *RHS) {
// Check whether the LHS is eligible.
if (IsDefinition || !Scope || !LinkageName || !Scope ||
!isa<MDString>(Scope))
return false;
// Compare to the RHS.
return IsDefinition == RHS->isDefinition() && Scope == RHS->getRawScope() &&
LinkageName == RHS->getRawLinkageName();
}
};
template <> struct MDNodeKeyImpl<DILexicalBlock> {
Metadata *Scope;
Metadata *File;
unsigned Line;
unsigned Column;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Line, unsigned Column)
: Scope(Scope), File(File), Line(Line), Column(Column) {}
MDNodeKeyImpl(const DILexicalBlock *N)
: Scope(N->getRawScope()), File(N->getRawFile()), Line(N->getLine()),
Column(N->getColumn()) {}
bool isKeyOf(const DILexicalBlock *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Line == RHS->getLine() && Column == RHS->getColumn();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Line, Column);
}
};
template <> struct MDNodeKeyImpl<DILexicalBlockFile> {
Metadata *Scope;
Metadata *File;
unsigned Discriminator;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Discriminator)
: Scope(Scope), File(File), Discriminator(Discriminator) {}
MDNodeKeyImpl(const DILexicalBlockFile *N)
: Scope(N->getRawScope()), File(N->getRawFile()),
Discriminator(N->getDiscriminator()) {}
bool isKeyOf(const DILexicalBlockFile *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Discriminator == RHS->getDiscriminator();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Discriminator);
}
};
template <> struct MDNodeKeyImpl<DINamespace> {
Metadata *Scope;
Metadata *File;
MDString *Name;
unsigned Line;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, MDString *Name, unsigned Line)
: Scope(Scope), File(File), Name(Name), Line(Line) {}
MDNodeKeyImpl(const DINamespace *N)
: Scope(N->getRawScope()), File(N->getRawFile()), Name(N->getRawName()),
Line(N->getLine()) {}
bool isKeyOf(const DINamespace *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Name == RHS->getRawName() && Line == RHS->getLine();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Name, Line);
}
};
template <> struct MDNodeKeyImpl<DIModule> {
Metadata *Scope;
MDString *Name;
MDString *ConfigurationMacros;
MDString *IncludePath;
MDString *ISysRoot;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *ConfigurationMacros,
MDString *IncludePath, MDString *ISysRoot)
: Scope(Scope), Name(Name), ConfigurationMacros(ConfigurationMacros),
IncludePath(IncludePath), ISysRoot(ISysRoot) {}
MDNodeKeyImpl(const DIModule *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
ConfigurationMacros(N->getRawConfigurationMacros()),
IncludePath(N->getRawIncludePath()), ISysRoot(N->getRawISysRoot()) {}
bool isKeyOf(const DIModule *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
ConfigurationMacros == RHS->getRawConfigurationMacros() &&
IncludePath == RHS->getRawIncludePath() &&
ISysRoot == RHS->getRawISysRoot();
}
unsigned getHashValue() const {
return hash_combine(Scope, Name,
ConfigurationMacros, IncludePath, ISysRoot);
}
};
template <> struct MDNodeKeyImpl<DITemplateTypeParameter> {
MDString *Name;
Metadata *Type;
MDNodeKeyImpl(MDString *Name, Metadata *Type) : Name(Name), Type(Type) {}
MDNodeKeyImpl(const DITemplateTypeParameter *N)
: Name(N->getRawName()), Type(N->getRawType()) {}
bool isKeyOf(const DITemplateTypeParameter *RHS) const {
return Name == RHS->getRawName() && Type == RHS->getRawType();
}
unsigned getHashValue() const { return hash_combine(Name, Type); }
};
template <> struct MDNodeKeyImpl<DITemplateValueParameter> {
unsigned Tag;
MDString *Name;
Metadata *Type;
Metadata *Value;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *Type, Metadata *Value)
: Tag(Tag), Name(Name), Type(Type), Value(Value) {}
MDNodeKeyImpl(const DITemplateValueParameter *N)
: Tag(N->getTag()), Name(N->getRawName()), Type(N->getRawType()),
Value(N->getValue()) {}
bool isKeyOf(const DITemplateValueParameter *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
Type == RHS->getRawType() && Value == RHS->getValue();
}
unsigned getHashValue() const { return hash_combine(Tag, Name, Type, Value); }
};
template <> struct MDNodeKeyImpl<DIGlobalVariable> {
Metadata *Scope;
MDString *Name;
MDString *LinkageName;
Metadata *File;
unsigned Line;
Metadata *Type;
bool IsLocalToUnit;
bool IsDefinition;
Metadata *Variable;
Metadata *StaticDataMemberDeclaration;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName,
Metadata *File, unsigned Line, Metadata *Type,
bool IsLocalToUnit, bool IsDefinition, Metadata *Variable,
Metadata *StaticDataMemberDeclaration)
: Scope(Scope), Name(Name), LinkageName(LinkageName), File(File),
Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit),
IsDefinition(IsDefinition), Variable(Variable),
StaticDataMemberDeclaration(StaticDataMemberDeclaration) {}
MDNodeKeyImpl(const DIGlobalVariable *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
LinkageName(N->getRawLinkageName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()),
IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()),
Variable(N->getRawVariable()),
StaticDataMemberDeclaration(N->getRawStaticDataMemberDeclaration()) {}
bool isKeyOf(const DIGlobalVariable *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
LinkageName == RHS->getRawLinkageName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() &&
IsDefinition == RHS->isDefinition() &&
Variable == RHS->getRawVariable() &&
StaticDataMemberDeclaration ==
RHS->getRawStaticDataMemberDeclaration();
}
unsigned getHashValue() const {
return hash_combine(Scope, Name, LinkageName, File, Line, Type,
IsLocalToUnit, IsDefinition, Variable,
StaticDataMemberDeclaration);
}
};
template <> struct MDNodeKeyImpl<DILocalVariable> {
Metadata *Scope;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Type;
unsigned Arg;
unsigned Flags;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line,
Metadata *Type, unsigned Arg, unsigned Flags)
: Scope(Scope), Name(Name), File(File), Line(Line), Type(Type), Arg(Arg),
Flags(Flags) {}
MDNodeKeyImpl(const DILocalVariable *N)
: Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()), Arg(N->getArg()),
Flags(N->getFlags()) {}
bool isKeyOf(const DILocalVariable *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && Arg == RHS->getArg() &&
Flags == RHS->getFlags();
}
unsigned getHashValue() const {
return hash_combine(Scope, Name, File, Line, Type, Arg, Flags);
}
};
template <> struct MDNodeKeyImpl<DIExpression> {
ArrayRef<uint64_t> Elements;
MDNodeKeyImpl(ArrayRef<uint64_t> Elements) : Elements(Elements) {}
MDNodeKeyImpl(const DIExpression *N) : Elements(N->getElements()) {}
bool isKeyOf(const DIExpression *RHS) const {
return Elements == RHS->getElements();
}
unsigned getHashValue() const {
return hash_combine_range(Elements.begin(), Elements.end());
}
};
template <> struct MDNodeKeyImpl<DIObjCProperty> {
MDString *Name;
Metadata *File;
unsigned Line;
MDString *GetterName;
MDString *SetterName;
unsigned Attributes;
Metadata *Type;
MDNodeKeyImpl(MDString *Name, Metadata *File, unsigned Line,
MDString *GetterName, MDString *SetterName, unsigned Attributes,
Metadata *Type)
: Name(Name), File(File), Line(Line), GetterName(GetterName),
SetterName(SetterName), Attributes(Attributes), Type(Type) {}
MDNodeKeyImpl(const DIObjCProperty *N)
: Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()),
GetterName(N->getRawGetterName()), SetterName(N->getRawSetterName()),
Attributes(N->getAttributes()), Type(N->getRawType()) {}
bool isKeyOf(const DIObjCProperty *RHS) const {
return Name == RHS->getRawName() && File == RHS->getRawFile() &&
Line == RHS->getLine() && GetterName == RHS->getRawGetterName() &&
SetterName == RHS->getRawSetterName() &&
Attributes == RHS->getAttributes() && Type == RHS->getRawType();
}
unsigned getHashValue() const {
return hash_combine(Name, File, Line, GetterName, SetterName, Attributes,
Type);
}
};
template <> struct MDNodeKeyImpl<DIImportedEntity> {
unsigned Tag;
Metadata *Scope;
Metadata *Entity;
unsigned Line;
MDString *Name;
MDNodeKeyImpl(unsigned Tag, Metadata *Scope, Metadata *Entity, unsigned Line,
MDString *Name)
: Tag(Tag), Scope(Scope), Entity(Entity), Line(Line), Name(Name) {}
MDNodeKeyImpl(const DIImportedEntity *N)
: Tag(N->getTag()), Scope(N->getRawScope()), Entity(N->getRawEntity()),
Line(N->getLine()), Name(N->getRawName()) {}
bool isKeyOf(const DIImportedEntity *RHS) const {
return Tag == RHS->getTag() && Scope == RHS->getRawScope() &&
Entity == RHS->getRawEntity() && Line == RHS->getLine() &&
Name == RHS->getRawName();
}
unsigned getHashValue() const {
return hash_combine(Tag, Scope, Entity, Line, Name);
}
};
template <> struct MDNodeKeyImpl<DIMacro> {
unsigned MIType;
unsigned Line;
MDString *Name;
MDString *Value;
MDNodeKeyImpl(unsigned MIType, unsigned Line, MDString *Name, MDString *Value)
: MIType(MIType), Line(Line), Name(Name), Value(Value) {}
MDNodeKeyImpl(const DIMacro *N)
: MIType(N->getMacinfoType()), Line(N->getLine()), Name(N->getRawName()),
Value(N->getRawValue()) {}
bool isKeyOf(const DIMacro *RHS) const {
return MIType == RHS->getMacinfoType() && Line == RHS->getLine() &&
Name == RHS->getRawName() && Value == RHS->getRawValue();
}
unsigned getHashValue() const {
return hash_combine(MIType, Line, Name, Value);
}
};
template <> struct MDNodeKeyImpl<DIMacroFile> {
unsigned MIType;
unsigned Line;
Metadata *File;
Metadata *Elements;
MDNodeKeyImpl(unsigned MIType, unsigned Line, Metadata *File,
Metadata *Elements)
: MIType(MIType), Line(Line), File(File), Elements(Elements) {}
MDNodeKeyImpl(const DIMacroFile *N)
: MIType(N->getMacinfoType()), Line(N->getLine()), File(N->getRawFile()),
Elements(N->getRawElements()) {}
bool isKeyOf(const DIMacroFile *RHS) const {
return MIType == RHS->getMacinfoType() && Line == RHS->getLine() &&
File == RHS->getRawFile() && File == RHS->getRawElements();
}
unsigned getHashValue() const {
return hash_combine(MIType, Line, File, Elements);
}
};
/// \brief DenseMapInfo for MDNode subclasses.
template <class NodeTy> struct MDNodeInfo {
typedef MDNodeKeyImpl<NodeTy> KeyTy;
typedef MDNodeSubsetEqualImpl<NodeTy> SubsetEqualTy;
static inline NodeTy *getEmptyKey() {
return DenseMapInfo<NodeTy *>::getEmptyKey();
}
static inline NodeTy *getTombstoneKey() {
return DenseMapInfo<NodeTy *>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy &Key) { return Key.getHashValue(); }
static unsigned getHashValue(const NodeTy *N) {
return KeyTy(N).getHashValue();
}
static bool isEqual(const KeyTy &LHS, const NodeTy *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return SubsetEqualTy::isSubsetEqual(LHS, RHS) || LHS.isKeyOf(RHS);
}
static bool isEqual(const NodeTy *LHS, const NodeTy *RHS) {
if (LHS == RHS)
return true;
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return SubsetEqualTy::isSubsetEqual(LHS, RHS);
}
};
#define HANDLE_MDNODE_LEAF(CLASS) typedef MDNodeInfo<CLASS> CLASS##Info;
#include "llvm/IR/Metadata.def"
/// \brief Map-like storage for metadata attachments.
class MDAttachmentMap {
SmallVector<std::pair<unsigned, TrackingMDNodeRef>, 2> Attachments;
public:
bool empty() const { return Attachments.empty(); }
size_t size() const { return Attachments.size(); }
/// \brief Get a particular attachment (if any).
MDNode *lookup(unsigned ID) const;
/// \brief Set an attachment to a particular node.
///
/// Set the \c ID attachment to \c MD, replacing the current attachment at \c
/// ID (if anyway).
void set(unsigned ID, MDNode &MD);
/// \brief Remove an attachment.
///
/// Remove the attachment at \c ID, if any.
void erase(unsigned ID);
/// \brief Copy out all the attachments.
///
/// Copies all the current attachments into \c Result, sorting by attachment
/// ID. This function does \em not clear \c Result.
void getAll(SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const;
/// \brief Erase matching attachments.
///
/// Erases all attachments matching the \c shouldRemove predicate.
template <class PredTy> void remove_if(PredTy shouldRemove) {
Attachments.erase(
std::remove_if(Attachments.begin(), Attachments.end(), shouldRemove),
Attachments.end());
}
};
class LLVMContextImpl {
public:
/// OwnedModules - The set of modules instantiated in this context, and which
/// will be automatically deleted if this context is deleted.
SmallPtrSet<Module*, 4> OwnedModules;
LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler;
void *InlineAsmDiagContext;
LLVMContext::DiagnosticHandlerTy DiagnosticHandler;
void *DiagnosticContext;
bool RespectDiagnosticFilters;
LLVMContext::YieldCallbackTy YieldCallback;
void *YieldOpaqueHandle;
typedef DenseMap<APInt, ConstantInt *, DenseMapAPIntKeyInfo> IntMapTy;
IntMapTy IntConstants;
2014-12-06 13:57:06 +08:00
typedef DenseMap<APFloat, ConstantFP *, DenseMapAPFloatKeyInfo> FPMapTy;
FPMapTy FPConstants;
FoldingSet<AttributeImpl> AttrsSet;
FoldingSet<AttributeSetImpl> AttrsLists;
FoldingSet<AttributeSetNode> AttrsSetNodes;
StringMap<MDString, BumpPtrAllocator> MDStringCache;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
DenseMap<Value *, ValueAsMetadata *> ValuesAsMetadata;
DenseMap<Metadata *, MetadataAsValue *> MetadataAsValues;
DenseMap<const Value*, ValueName*> ValueNames;
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
DenseSet<CLASS *, CLASS##Info> CLASS##s;
#include "llvm/IR/Metadata.def"
// Optional map for looking up composite types by identifier.
Optional<DenseMap<const MDString *, DICompositeType *>> DITypeMap;
// MDNodes may be uniqued or not uniqued. When they're not uniqued, they
// aren't in the MDNodeSet, but they're still shared between objects, so no
// one object can destroy them. Keep track of them here so we can delete
// them on context teardown.
std::vector<MDNode *> DistinctMDNodes;
DenseMap<Type*, ConstantAggregateZero*> CAZConstants;
typedef ConstantUniqueMap<ConstantArray> ArrayConstantsTy;
ArrayConstantsTy ArrayConstants;
typedef ConstantUniqueMap<ConstantStruct> StructConstantsTy;
StructConstantsTy StructConstants;
typedef ConstantUniqueMap<ConstantVector> VectorConstantsTy;
VectorConstantsTy VectorConstants;
DenseMap<PointerType*, ConstantPointerNull*> CPNConstants;
DenseMap<Type*, UndefValue*> UVConstants;
StringMap<ConstantDataSequential*> CDSConstants;
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
ConstantUniqueMap<ConstantExpr> ExprConstants;
ConstantUniqueMap<InlineAsm> InlineAsms;
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
std::unique_ptr<ConstantTokenNone> TheNoneToken;
// Basic type instances.
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 llvm-svn: 245029
2015-08-14 13:09:07 +08:00
Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy, TokenTy;
Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy;
IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty, Int128Ty;
/// TypeAllocator - All dynamically allocated types are allocated from this.
/// They live forever until the context is torn down.
BumpPtrAllocator TypeAllocator;
DenseMap<unsigned, IntegerType*> IntegerTypes;
typedef DenseSet<FunctionType *, FunctionTypeKeyInfo> FunctionTypeSet;
FunctionTypeSet FunctionTypes;
typedef DenseSet<StructType *, AnonStructTypeKeyInfo> StructTypeSet;
StructTypeSet AnonStructTypes;
StringMap<StructType*> NamedStructTypes;
unsigned NamedStructTypesUniqueID;
DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes;
DenseMap<std::pair<Type *, unsigned>, VectorType*> VectorTypes;
DenseMap<Type*, PointerType*> PointerTypes; // Pointers in AddrSpace = 0
DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes;
/// ValueHandles - This map keeps track of all of the value handles that are
/// watching a Value*. The Value::HasValueHandle bit is used to know
/// whether or not a value has an entry in this map.
typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
ValueHandlesTy ValueHandles;
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
/// Collection of per-instruction metadata used in this context.
DenseMap<const Instruction *, MDAttachmentMap> InstructionMetadata;
/// Collection of per-function metadata used in this context.
DenseMap<const Function *, MDAttachmentMap> FunctionMetadata;
/// DiscriminatorTable - This table maps file:line locations to an
/// integer representing the next DWARF path discriminator to assign to
/// instructions in different blocks at the same location.
DenseMap<std::pair<const char *, unsigned>, unsigned> DiscriminatorTable;
int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx);
int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx);
/// \brief A set of interned tags for operand bundles. The StringMap maps
/// bundle tags to their IDs.
///
/// \see LLVMContext::getOperandBundleTagID
StringMap<uint32_t> BundleTagCache;
StringMapEntry<uint32_t> *getOrInsertBundleTag(StringRef Tag);
void getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const;
uint32_t getOperandBundleTagID(StringRef Tag) const;
/// Maintain the GC name for each function.
///
/// This saves allocating an additional word in Function for programs which
/// do not use GC (i.e., most programs) at the cost of increased overhead for
/// clients which do use GC.
DenseMap<const Function*, std::string> GCNames;
/// Flag to indicate if Value (other than GlobalValue) retains their name or
/// not.
bool DiscardValueNames = false;
LLVMContextImpl(LLVMContext &C);
~LLVMContextImpl();
/// Destroy the ConstantArrays if they are not used.
void dropTriviallyDeadConstantArrays();
};
}
#endif