2016-07-01 07:11:38 +08:00
|
|
|
//===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
|
|
#include "llvm/ADT/MapVector.h"
|
|
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
#include "llvm/ADT/Triple.h"
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
|
|
#include "llvm/IR/IRBuilder.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "llvm/IR/Type.h"
|
|
|
|
#include "llvm/IR/Value.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "load-store-vectorizer"
|
|
|
|
STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
|
|
|
|
STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// TODO: Remove this
|
|
|
|
static const unsigned TargetBaseAlign = 4;
|
|
|
|
|
|
|
|
class Vectorizer {
|
|
|
|
typedef SmallVector<Value *, 8> ValueList;
|
|
|
|
typedef MapVector<Value *, ValueList> ValueListMap;
|
|
|
|
|
|
|
|
Function &F;
|
|
|
|
AliasAnalysis &AA;
|
|
|
|
DominatorTree &DT;
|
|
|
|
ScalarEvolution &SE;
|
|
|
|
const DataLayout &DL;
|
|
|
|
IRBuilder<> Builder;
|
|
|
|
ValueListMap StoreRefs;
|
|
|
|
ValueListMap LoadRefs;
|
|
|
|
unsigned VecRegSize;
|
|
|
|
|
|
|
|
public:
|
|
|
|
Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
|
|
|
|
ScalarEvolution &SE, unsigned VecRegSize)
|
|
|
|
: F(F), AA(AA), DT(DT), SE(SE), DL(F.getParent()->getDataLayout()),
|
|
|
|
Builder(SE.getContext()), VecRegSize(VecRegSize) {}
|
|
|
|
|
|
|
|
bool run();
|
|
|
|
|
|
|
|
private:
|
|
|
|
Value *getPointerOperand(Value *I);
|
|
|
|
|
|
|
|
unsigned getPointerAddressSpace(Value *I);
|
|
|
|
|
|
|
|
bool isConsecutiveAccess(Value *A, Value *B);
|
|
|
|
|
|
|
|
/// Reorders the users of I after vectorization to ensure that I dominates its
|
|
|
|
/// users.
|
|
|
|
void reorder(Instruction *I);
|
|
|
|
|
|
|
|
/// Returns the first and the last instructions in Chain.
|
|
|
|
std::pair<BasicBlock::iterator, BasicBlock::iterator>
|
|
|
|
getBoundaryInstrs(ArrayRef<Value *> Chain);
|
|
|
|
|
|
|
|
/// Erases the original instructions after vectorizing.
|
|
|
|
void eraseInstructions(ArrayRef<Value *> Chain);
|
|
|
|
|
|
|
|
/// "Legalize" the vector type that would be produced by combining \p
|
|
|
|
/// ElementSizeBits elements in \p Chain. Break into two pieces such that the
|
|
|
|
/// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
|
|
|
|
/// expected to have more than 4 elements.
|
|
|
|
std::pair<ArrayRef<Value *>, ArrayRef<Value *>>
|
|
|
|
splitOddVectorElts(ArrayRef<Value *> Chain, unsigned ElementSizeBits);
|
|
|
|
|
|
|
|
/// Checks if there are any instructions which may affect the memory accessed
|
|
|
|
/// in the chain between \p From and \p To. The elements of \p Chain should be
|
|
|
|
/// all loads or all stores.
|
|
|
|
bool isVectorizable(ArrayRef<Value *> Chain, BasicBlock::iterator From,
|
|
|
|
BasicBlock::iterator To);
|
|
|
|
|
|
|
|
/// Collects load and store instructions to vectorize.
|
|
|
|
void collectInstructions(BasicBlock *BB);
|
|
|
|
|
|
|
|
/// Processes the collected instructions, the \p Map. The elements of \p Map
|
|
|
|
/// should be all loads or all stores.
|
|
|
|
bool vectorizeChains(ValueListMap &Map);
|
|
|
|
|
|
|
|
/// Finds the load/stores to consecutive memory addresses and vectorizes them.
|
|
|
|
bool vectorizeInstructions(ArrayRef<Value *> Instrs);
|
|
|
|
|
|
|
|
/// Vectorizes the load instructions in Chain.
|
|
|
|
bool vectorizeLoadChain(ArrayRef<Value *> Chain);
|
|
|
|
|
|
|
|
/// Vectorizes the store instructions in Chain.
|
|
|
|
bool vectorizeStoreChain(ArrayRef<Value *> Chain);
|
|
|
|
};
|
|
|
|
|
|
|
|
class LoadStoreVectorizer : public FunctionPass {
|
|
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
unsigned VecRegSize;
|
|
|
|
|
|
|
|
LoadStoreVectorizer(unsigned VecRegSize = 128) : FunctionPass(ID),
|
|
|
|
VecRegSize(VecRegSize) {
|
|
|
|
initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
|
|
|
|
const char *getPassName() const override {
|
|
|
|
return "GPU Load and Store Vectorizer";
|
|
|
|
}
|
|
|
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
|
|
AU.setPreservesCFG();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE,
|
|
|
|
"Vectorize load and Store instructions", false, false);
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
|
|
INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE,
|
|
|
|
"Vectorize load and store instructions", false, false);
|
|
|
|
|
|
|
|
char LoadStoreVectorizer::ID = 0;
|
|
|
|
|
|
|
|
Pass *llvm::createLoadStoreVectorizerPass(unsigned VecRegSize) {
|
|
|
|
return new LoadStoreVectorizer(VecRegSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LoadStoreVectorizer::runOnFunction(Function &F) {
|
2016-07-01 07:50:18 +08:00
|
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
|
|
if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
|
|
return false;
|
|
|
|
|
2016-07-01 07:11:38 +08:00
|
|
|
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
|
|
|
|
|
|
Vectorizer V(F, AA, DT, SE, VecRegSize);
|
|
|
|
return V.run();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Vectorizer Implementation
|
|
|
|
bool Vectorizer::run() {
|
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
// Scan the blocks in the function in post order.
|
|
|
|
for (BasicBlock *BB : post_order(&F)) {
|
|
|
|
collectInstructions(BB);
|
|
|
|
Changed |= vectorizeChains(LoadRefs);
|
|
|
|
Changed |= vectorizeChains(StoreRefs);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *Vectorizer::getPointerOperand(Value *I) {
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
|
|
return LI->getPointerOperand();
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
|
|
return SI->getPointerOperand();
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned Vectorizer::getPointerAddressSpace(Value *I) {
|
|
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I))
|
|
|
|
return L->getPointerAddressSpace();
|
|
|
|
if (StoreInst *S = dyn_cast<StoreInst>(I))
|
|
|
|
return S->getPointerAddressSpace();
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: Merge with llvm::isConsecutiveAccess
|
|
|
|
bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
|
|
|
|
Value *PtrA = getPointerOperand(A);
|
|
|
|
Value *PtrB = getPointerOperand(B);
|
|
|
|
unsigned ASA = getPointerAddressSpace(A);
|
|
|
|
unsigned ASB = getPointerAddressSpace(B);
|
|
|
|
|
|
|
|
// Check that the address spaces match and that the pointers are valid.
|
|
|
|
if (!PtrA || !PtrB || (ASA != ASB))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Make sure that A and B are different pointers of the same size type.
|
|
|
|
unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
|
|
|
|
Type *PtrATy = PtrA->getType()->getPointerElementType();
|
|
|
|
Type *PtrBTy = PtrB->getType()->getPointerElementType();
|
|
|
|
if (PtrA == PtrB ||
|
|
|
|
DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
|
|
|
|
DL.getTypeStoreSize(PtrATy->getScalarType()) !=
|
|
|
|
DL.getTypeStoreSize(PtrBTy->getScalarType()))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
|
|
|
|
|
|
|
|
APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
|
|
|
|
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
|
|
|
|
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
|
|
|
|
|
|
|
|
APInt OffsetDelta = OffsetB - OffsetA;
|
|
|
|
|
|
|
|
// Check if they are based on the same pointer. That makes the offsets
|
|
|
|
// sufficient.
|
|
|
|
if (PtrA == PtrB)
|
|
|
|
return OffsetDelta == Size;
|
|
|
|
|
|
|
|
// Compute the necessary base pointer delta to have the necessary final delta
|
|
|
|
// equal to the size.
|
|
|
|
APInt BaseDelta = Size - OffsetDelta;
|
|
|
|
|
|
|
|
// Compute the distance with SCEV between the base pointers.
|
|
|
|
const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
|
|
|
|
const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
|
|
|
|
const SCEV *C = SE.getConstant(BaseDelta);
|
|
|
|
const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
|
|
|
|
if (X == PtrSCEVB)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Sometimes even this doesn't work, because SCEV can't always see through
|
|
|
|
// patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
|
|
|
|
// things the hard way.
|
|
|
|
|
|
|
|
// Look through GEPs after checking they're the same except for the last
|
|
|
|
// index.
|
|
|
|
GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A));
|
|
|
|
GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B));
|
|
|
|
if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands())
|
|
|
|
return false;
|
|
|
|
unsigned FinalIndex = GEPA->getNumOperands() - 1;
|
|
|
|
for (unsigned i = 0; i < FinalIndex; i++)
|
|
|
|
if (GEPA->getOperand(i) != GEPB->getOperand(i))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex));
|
|
|
|
Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex));
|
|
|
|
if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
|
|
|
|
OpA->getType() != OpB->getType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Only look through a ZExt/SExt.
|
|
|
|
if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
OpA = dyn_cast<Instruction>(OpA->getOperand(0));
|
|
|
|
OpB = dyn_cast<Instruction>(OpB->getOperand(0));
|
|
|
|
if (!OpA || !OpB || OpA->getType() != OpB->getType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Now we need to prove that adding 1 to OpA won't overflow.
|
|
|
|
unsigned BitWidth = OpA->getType()->getScalarSizeInBits();
|
|
|
|
APInt KnownZero = APInt(BitWidth, 0);
|
|
|
|
APInt KnownOne = APInt(BitWidth, 0);
|
|
|
|
computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT);
|
|
|
|
// If any bits are known to be zero other than the sign bit in OpA, we can
|
|
|
|
// add 1 to it while guaranteeing no overflow of any sort.
|
|
|
|
KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1);
|
|
|
|
if (KnownZero == 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
const SCEV *OffsetSCEVA = SE.getSCEV(OpA);
|
|
|
|
const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
|
|
|
|
const SCEV *One = SE.getConstant(APInt(BitWidth, 1));
|
|
|
|
const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One);
|
|
|
|
return X2 == OffsetSCEVB;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Vectorizer::reorder(Instruction *I) {
|
|
|
|
for (User *U : I->users()) {
|
|
|
|
Instruction *User = dyn_cast<Instruction>(U);
|
|
|
|
if (!User || User->getOpcode() == Instruction::PHI)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!DT.dominates(I, User)) {
|
|
|
|
User->removeFromParent();
|
|
|
|
User->insertAfter(I);
|
|
|
|
reorder(User);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::pair<BasicBlock::iterator, BasicBlock::iterator>
|
|
|
|
Vectorizer::getBoundaryInstrs(ArrayRef<Value *> Chain) {
|
|
|
|
Instruction *C0 = cast<Instruction>(Chain[0]);
|
|
|
|
BasicBlock::iterator FirstInstr = C0->getIterator();
|
|
|
|
BasicBlock::iterator LastInstr = C0->getIterator();
|
|
|
|
|
|
|
|
BasicBlock *BB = C0->getParent();
|
|
|
|
unsigned NumFound = 0;
|
|
|
|
for (Instruction &I : *BB) {
|
|
|
|
if (!is_contained(Chain, &I))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
++NumFound;
|
|
|
|
if (NumFound == 1) {
|
|
|
|
FirstInstr = I.getIterator();
|
|
|
|
} else if (NumFound == Chain.size()) {
|
|
|
|
LastInstr = I.getIterator();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return std::make_pair(FirstInstr, LastInstr);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Vectorizer::eraseInstructions(ArrayRef<Value *> Chain) {
|
|
|
|
SmallVector<Instruction *, 16> Instrs;
|
|
|
|
for (Value *V : Chain) {
|
|
|
|
Value *PtrOperand = getPointerOperand(V);
|
|
|
|
assert(PtrOperand && "Instruction must have a pointer operand.");
|
|
|
|
Instrs.push_back(cast<Instruction>(V));
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
|
|
|
|
Instrs.push_back(GEP);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Erase instructions.
|
|
|
|
for (Value *V : Instrs) {
|
|
|
|
Instruction *Instr = cast<Instruction>(V);
|
|
|
|
if (Instr->use_empty())
|
|
|
|
Instr->eraseFromParent();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::pair<ArrayRef<Value *>, ArrayRef<Value *>>
|
|
|
|
Vectorizer::splitOddVectorElts(ArrayRef<Value *> Chain,
|
|
|
|
unsigned ElementSizeBits) {
|
|
|
|
unsigned ElemSizeInBytes = ElementSizeBits / 8;
|
|
|
|
unsigned SizeInBytes = ElemSizeInBytes * Chain.size();
|
|
|
|
unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes;
|
|
|
|
unsigned NumLeft = Chain.size() - NumRight;
|
|
|
|
return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vectorizer::isVectorizable(ArrayRef<Value *> Chain,
|
|
|
|
BasicBlock::iterator From,
|
|
|
|
BasicBlock::iterator To) {
|
|
|
|
SmallVector<std::pair<Value *, unsigned>, 16> MemoryInstrs;
|
|
|
|
SmallVector<std::pair<Value *, unsigned>, 16> ChainInstrs;
|
|
|
|
|
|
|
|
unsigned Idx = 0;
|
|
|
|
for (auto I = From, E = To; I != E; ++I, ++Idx) {
|
|
|
|
if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
|
|
|
|
if (!is_contained(Chain, &*I))
|
|
|
|
MemoryInstrs.push_back({ &*I, Idx });
|
|
|
|
else
|
|
|
|
ChainInstrs.push_back({ &*I, Idx });
|
|
|
|
} else if (I->mayHaveSideEffects()) {
|
|
|
|
DEBUG(dbgs() << "LSV: Found side-effecting operation: " << *I << '\n');
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto EntryMem : MemoryInstrs) {
|
|
|
|
Value *V = EntryMem.first;
|
|
|
|
unsigned VIdx = EntryMem.second;
|
|
|
|
for (auto EntryChain : ChainInstrs) {
|
|
|
|
Value *VV = EntryChain.first;
|
|
|
|
unsigned VVIdx = EntryChain.second;
|
|
|
|
if (isa<LoadInst>(V) && isa<LoadInst>(VV))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// We can ignore the alias as long as the load comes before the store,
|
|
|
|
// because that means we won't be moving the load past the store to
|
|
|
|
// vectorize it (the vectorized load is inserted at the location of the
|
|
|
|
// first load in the chain).
|
|
|
|
if (isa<StoreInst>(V) && isa<LoadInst>(VV) && VVIdx < VIdx)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Same case, but in reverse.
|
|
|
|
if (isa<LoadInst>(V) && isa<StoreInst>(VV) && VVIdx > VIdx)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
Instruction *M0 = cast<Instruction>(V);
|
|
|
|
Instruction *M1 = cast<Instruction>(VV);
|
|
|
|
Value *Ptr0 = getPointerOperand(M0);
|
|
|
|
Value *Ptr1 = getPointerOperand(M1);
|
|
|
|
unsigned S0 =
|
|
|
|
DL.getTypeStoreSize(Ptr0->getType()->getPointerElementType());
|
|
|
|
unsigned S1 =
|
|
|
|
DL.getTypeStoreSize(Ptr1->getType()->getPointerElementType());
|
|
|
|
|
|
|
|
if (AA.alias(MemoryLocation(Ptr0, S0), MemoryLocation(Ptr1, S1))) {
|
|
|
|
DEBUG(
|
|
|
|
dbgs() << "LSV: Found alias.\n"
|
|
|
|
" Aliasing instruction and pointer:\n"
|
|
|
|
<< *V << " aliases " << *Ptr0 << '\n'
|
|
|
|
<< " Aliased instruction and pointer:\n"
|
|
|
|
<< *VV << " aliases " << *Ptr1 << '\n'
|
|
|
|
);
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Vectorizer::collectInstructions(BasicBlock *BB) {
|
|
|
|
LoadRefs.clear();
|
|
|
|
StoreRefs.clear();
|
|
|
|
|
|
|
|
for (Instruction &I : *BB) {
|
|
|
|
if (!I.mayReadOrWriteMemory())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
|
|
if (!LI->isSimple())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
Type *Ty = LI->getType();
|
|
|
|
if (!VectorType::isValidElementType(Ty->getScalarType()))
|
|
|
|
continue;
|
|
|
|
|
2016-07-01 08:36:54 +08:00
|
|
|
// Skip weird non-byte sizes. They probably aren't worth the effort of
|
|
|
|
// handling correctly.
|
|
|
|
unsigned TySize = DL.getTypeSizeInBits(Ty);
|
|
|
|
if (TySize < 8)
|
|
|
|
continue;
|
|
|
|
|
2016-07-01 07:11:38 +08:00
|
|
|
// No point in looking at these if they're too big to vectorize.
|
2016-07-01 08:36:54 +08:00
|
|
|
if (TySize > VecRegSize / 2)
|
2016-07-01 07:11:38 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// Make sure all the users of a vector are constant-index extracts.
|
|
|
|
if (isa<VectorType>(Ty) &&
|
|
|
|
!all_of(LI->users(), [LI](const User *U) {
|
|
|
|
const Instruction *UI = cast<Instruction>(U);
|
|
|
|
return isa<ExtractElementInst>(UI) &&
|
|
|
|
isa<ConstantInt>(UI->getOperand(1));
|
|
|
|
}))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// TODO: Target hook to filter types.
|
|
|
|
|
|
|
|
// Save the load locations.
|
|
|
|
Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
|
|
|
|
LoadRefs[Ptr].push_back(LI);
|
|
|
|
|
|
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
|
|
if (!SI->isSimple())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
Type *Ty = SI->getValueOperand()->getType();
|
|
|
|
if (!VectorType::isValidElementType(Ty->getScalarType()))
|
|
|
|
continue;
|
|
|
|
|
2016-07-01 08:36:54 +08:00
|
|
|
// Skip weird non-byte sizes. They probably aren't worth the effort of
|
|
|
|
// handling correctly.
|
|
|
|
unsigned TySize = DL.getTypeSizeInBits(Ty);
|
|
|
|
if (TySize < 8)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (TySize > VecRegSize / 2)
|
2016-07-01 07:11:38 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (isa<VectorType>(Ty) &&
|
|
|
|
!all_of(SI->users(), [SI](const User *U) {
|
|
|
|
const Instruction *UI = cast<Instruction>(U);
|
|
|
|
return isa<ExtractElementInst>(UI) &&
|
|
|
|
isa<ConstantInt>(UI->getOperand(1));
|
|
|
|
}))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Save store location.
|
|
|
|
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
|
|
|
|
StoreRefs[Ptr].push_back(SI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vectorizer::vectorizeChains(ValueListMap &Map) {
|
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
for (const std::pair<Value *, ValueList> &Chain : Map) {
|
|
|
|
unsigned Size = Chain.second.size();
|
|
|
|
if (Size < 2)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
|
|
|
|
|
|
|
|
// Process the stores in chunks of 64.
|
|
|
|
for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
|
|
|
|
unsigned Len = std::min<unsigned>(CE - CI, 64);
|
|
|
|
ArrayRef<Value *> Chunk(&Chain.second[CI], Len);
|
|
|
|
Changed |= vectorizeInstructions(Chunk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vectorizer::vectorizeInstructions(ArrayRef<Value *> Instrs) {
|
|
|
|
DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n");
|
|
|
|
SmallSetVector<int, 16> Heads, Tails;
|
|
|
|
int ConsecutiveChain[64];
|
|
|
|
|
|
|
|
// Do a quadratic search on all of the given stores and find all of the pairs
|
|
|
|
// of stores that follow each other.
|
|
|
|
for (int i = 0, e = Instrs.size(); i < e; ++i) {
|
|
|
|
ConsecutiveChain[i] = -1;
|
|
|
|
for (int j = e - 1; j >= 0; --j) {
|
|
|
|
if (i == j)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
|
|
|
|
if (ConsecutiveChain[i] != -1) {
|
|
|
|
int CurDistance = std::abs(ConsecutiveChain[i] - i);
|
|
|
|
int NewDistance = std::abs(ConsecutiveChain[i] - j);
|
|
|
|
if (j < i || NewDistance > CurDistance)
|
|
|
|
continue; // Should not insert.
|
|
|
|
}
|
|
|
|
|
|
|
|
Tails.insert(j);
|
|
|
|
Heads.insert(i);
|
|
|
|
ConsecutiveChain[i] = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Changed = false;
|
|
|
|
SmallPtrSet<Value *, 16> VectorizedValues;
|
|
|
|
|
|
|
|
for (int Head : Heads) {
|
|
|
|
if (Tails.count(Head))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// We found an instr that starts a chain. Now follow the chain and try to
|
|
|
|
// vectorize it.
|
|
|
|
SmallVector<Value *, 16> Operands;
|
|
|
|
int I = Head;
|
|
|
|
while (I != -1 && (Tails.count(I) || Heads.count(I))) {
|
|
|
|
if (VectorizedValues.count(Instrs[I]))
|
|
|
|
break;
|
|
|
|
|
|
|
|
Operands.push_back(Instrs[I]);
|
|
|
|
I = ConsecutiveChain[I];
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vectorized = false;
|
|
|
|
if (isa<LoadInst>(*Operands.begin()))
|
|
|
|
Vectorized = vectorizeLoadChain(Operands);
|
|
|
|
else
|
|
|
|
Vectorized = vectorizeStoreChain(Operands);
|
|
|
|
|
|
|
|
// Mark the vectorized instructions so that we don't vectorize them again.
|
|
|
|
if (Vectorized)
|
|
|
|
VectorizedValues.insert(Operands.begin(), Operands.end());
|
|
|
|
Changed |= Vectorized;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain) {
|
|
|
|
StoreInst *S0 = cast<StoreInst>(Chain[0]);
|
2016-07-01 08:37:01 +08:00
|
|
|
|
|
|
|
// If the vector has an int element, default to int for the whole load.
|
|
|
|
Type *StoreTy;
|
|
|
|
for (const auto &V : Chain) {
|
|
|
|
StoreTy = cast<StoreInst>(V)->getValueOperand()->getType();
|
|
|
|
if (StoreTy->isIntOrIntVectorTy())
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2016-07-01 07:11:38 +08:00
|
|
|
unsigned Sz = DL.getTypeSizeInBits(StoreTy);
|
|
|
|
unsigned VF = VecRegSize / Sz;
|
|
|
|
unsigned ChainSize = Chain.size();
|
|
|
|
|
|
|
|
if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Store size should be 1B, 2B or multiple of 4B.
|
|
|
|
// TODO: Target hook for size constraint?
|
|
|
|
unsigned SzInBytes = (Sz / 8) * ChainSize;
|
|
|
|
if (SzInBytes > 2 && SzInBytes % 4 != 0) {
|
|
|
|
DEBUG(dbgs() << "LSV: Size should be 1B, 2B "
|
|
|
|
"or multiple of 4B. Splitting.\n");
|
|
|
|
if (SzInBytes == 3)
|
|
|
|
return vectorizeStoreChain(Chain.slice(0, ChainSize - 1));
|
|
|
|
|
|
|
|
auto Chains = splitOddVectorElts(Chain, Sz);
|
|
|
|
return vectorizeStoreChain(Chains.first) |
|
|
|
|
vectorizeStoreChain(Chains.second);
|
|
|
|
}
|
|
|
|
|
|
|
|
VectorType *VecTy;
|
|
|
|
VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
|
|
|
|
if (VecStoreTy)
|
|
|
|
VecTy = VectorType::get(StoreTy->getScalarType(),
|
|
|
|
Chain.size() * VecStoreTy->getNumElements());
|
|
|
|
else
|
|
|
|
VecTy = VectorType::get(StoreTy, Chain.size());
|
|
|
|
|
|
|
|
// If it's more than the max vector size, break it into two pieces.
|
|
|
|
// TODO: Target hook to control types to split to.
|
|
|
|
if (ChainSize > VF) {
|
|
|
|
DEBUG(dbgs() << "LSV: Vector factor is too big."
|
|
|
|
" Creating two separate arrays.\n");
|
|
|
|
return vectorizeStoreChain(Chain.slice(0, VF)) |
|
|
|
|
vectorizeStoreChain(Chain.slice(VF));
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG(
|
|
|
|
dbgs() << "LSV: Stores to vectorize:\n";
|
|
|
|
for (Value *V : Chain)
|
|
|
|
V->dump();
|
|
|
|
);
|
|
|
|
|
|
|
|
// Check alignment restrictions.
|
|
|
|
unsigned Alignment = S0->getAlignment();
|
|
|
|
|
|
|
|
// If the store is going to be misaligned, don't vectorize it.
|
|
|
|
// TODO: Check TLI.allowsMisalignedMemoryAccess
|
|
|
|
if ((Alignment % SzInBytes) != 0 && (Alignment % TargetBaseAlign) != 0) {
|
|
|
|
if (S0->getPointerAddressSpace() == 0) {
|
|
|
|
// If we're storing to an object on the stack, we control its alignment,
|
|
|
|
// so we can cheat and change it!
|
|
|
|
Value *V = GetUnderlyingObject(S0->getPointerOperand(), DL);
|
|
|
|
if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) {
|
|
|
|
AI->setAlignment(TargetBaseAlign);
|
|
|
|
Alignment = TargetBaseAlign;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
BasicBlock::iterator First, Last;
|
|
|
|
std::tie(First, Last) = getBoundaryInstrs(Chain);
|
|
|
|
|
|
|
|
if (!isVectorizable(Chain, First, Last))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Set insert point.
|
|
|
|
Builder.SetInsertPoint(&*Last);
|
|
|
|
unsigned AS = S0->getPointerAddressSpace();
|
|
|
|
|
|
|
|
Value *Vec = UndefValue::get(VecTy);
|
|
|
|
|
|
|
|
if (VecStoreTy) {
|
|
|
|
unsigned VecWidth = VecStoreTy->getNumElements();
|
|
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
|
|
StoreInst *Store = cast<StoreInst>(Chain[I]);
|
|
|
|
for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
|
|
|
|
unsigned NewIdx = J + I * VecWidth;
|
|
|
|
Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
|
|
|
|
Builder.getInt32(J));
|
|
|
|
if (Extract->getType() != StoreTy->getScalarType())
|
|
|
|
Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
|
|
|
|
|
|
|
|
Value *Insert = Builder.CreateInsertElement(Vec, Extract,
|
|
|
|
Builder.getInt32(NewIdx));
|
|
|
|
Vec = Insert;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
|
|
StoreInst *Store = cast<StoreInst>(Chain[I]);
|
|
|
|
Value *Extract = Store->getValueOperand();
|
|
|
|
if (Extract->getType() != StoreTy->getScalarType())
|
|
|
|
Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
|
|
|
|
|
|
|
|
Value *Insert = Builder.CreateInsertElement(Vec, Extract,
|
|
|
|
Builder.getInt32(I));
|
|
|
|
Vec = Insert;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *Bitcast =
|
|
|
|
Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS));
|
|
|
|
StoreInst *SI = cast<StoreInst>(Builder.CreateStore(Vec, Bitcast));
|
|
|
|
propagateMetadata(SI, Chain);
|
|
|
|
SI->setAlignment(Alignment);
|
|
|
|
|
|
|
|
eraseInstructions(Chain);
|
|
|
|
++NumVectorInstructions;
|
|
|
|
NumScalarsVectorized += Chain.size();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vectorizer::vectorizeLoadChain(ArrayRef<Value *> Chain) {
|
|
|
|
LoadInst *L0 = cast<LoadInst>(Chain[0]);
|
2016-07-01 08:37:01 +08:00
|
|
|
|
|
|
|
// If the vector has an int element, default to int for the whole load.
|
|
|
|
Type *LoadTy;
|
|
|
|
for (const auto &V : Chain) {
|
|
|
|
LoadTy = cast<LoadInst>(V)->getType();
|
|
|
|
if (LoadTy->isIntOrIntVectorTy())
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2016-07-01 07:11:38 +08:00
|
|
|
unsigned Sz = DL.getTypeSizeInBits(LoadTy);
|
|
|
|
unsigned VF = VecRegSize / Sz;
|
|
|
|
unsigned ChainSize = Chain.size();
|
|
|
|
|
|
|
|
if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Load size should be 1B, 2B or multiple of 4B.
|
|
|
|
// TODO: Should size constraint be a target hook?
|
|
|
|
unsigned SzInBytes = (Sz / 8) * ChainSize;
|
|
|
|
if (SzInBytes > 2 && SzInBytes % 4 != 0) {
|
|
|
|
DEBUG(dbgs() << "LSV: Size should be 1B, 2B or multiple of 4B. Splitting.\n");
|
|
|
|
if (SzInBytes == 3)
|
|
|
|
return vectorizeLoadChain(Chain.slice(0, ChainSize - 1));
|
|
|
|
auto Chains = splitOddVectorElts(Chain, Sz);
|
|
|
|
return vectorizeLoadChain(Chains.first) | vectorizeLoadChain(Chains.second);
|
|
|
|
}
|
|
|
|
|
|
|
|
VectorType *VecTy;
|
|
|
|
VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
|
|
|
|
if (VecLoadTy)
|
|
|
|
VecTy = VectorType::get(LoadTy->getScalarType(),
|
|
|
|
Chain.size() * VecLoadTy->getNumElements());
|
|
|
|
else
|
|
|
|
VecTy = VectorType::get(LoadTy, Chain.size());
|
|
|
|
|
|
|
|
// If it's more than the max vector size, break it into two pieces.
|
|
|
|
// TODO: Target hook to control types to split to.
|
|
|
|
if (ChainSize > VF) {
|
|
|
|
DEBUG(dbgs() << "LSV: Vector factor is too big. "
|
|
|
|
"Creating two separate arrays.\n");
|
|
|
|
return vectorizeLoadChain(Chain.slice(0, VF)) |
|
|
|
|
vectorizeLoadChain(Chain.slice(VF));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check alignment restrictions.
|
|
|
|
unsigned Alignment = L0->getAlignment();
|
|
|
|
|
|
|
|
// If the load is going to be misaligned, don't vectorize it.
|
|
|
|
// TODO: Check TLI.allowsMisalignedMemoryAccess and remove TargetBaseAlign.
|
|
|
|
if ((Alignment % SzInBytes) != 0 && (Alignment % TargetBaseAlign) != 0) {
|
|
|
|
if (L0->getPointerAddressSpace() == 0) {
|
|
|
|
// If we're loading from an object on the stack, we control its alignment,
|
|
|
|
// so we can cheat and change it!
|
|
|
|
Value *V = GetUnderlyingObject(L0->getPointerOperand(), DL);
|
|
|
|
if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) {
|
|
|
|
AI->setAlignment(TargetBaseAlign);
|
|
|
|
Alignment = TargetBaseAlign;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG(
|
|
|
|
dbgs() << "LSV: Loads to vectorize:\n";
|
|
|
|
for (Value *V : Chain)
|
|
|
|
V->dump();
|
|
|
|
);
|
|
|
|
|
|
|
|
BasicBlock::iterator First, Last;
|
|
|
|
std::tie(First, Last) = getBoundaryInstrs(Chain);
|
|
|
|
|
|
|
|
if (!isVectorizable(Chain, First, Last))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Set insert point.
|
|
|
|
Builder.SetInsertPoint(&*Last);
|
|
|
|
|
|
|
|
unsigned AS = L0->getPointerAddressSpace();
|
|
|
|
Value *Bitcast =
|
|
|
|
Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
|
|
|
|
|
|
|
|
LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast));
|
|
|
|
propagateMetadata(LI, Chain);
|
|
|
|
LI->setAlignment(Alignment);
|
|
|
|
|
|
|
|
if (VecLoadTy) {
|
|
|
|
SmallVector<Instruction *, 16> InstrsToErase;
|
|
|
|
SmallVector<Instruction *, 16> InstrsToReorder;
|
|
|
|
|
|
|
|
unsigned VecWidth = VecLoadTy->getNumElements();
|
|
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
|
|
for (auto Use : Chain[I]->users()) {
|
|
|
|
Instruction *UI = cast<Instruction>(Use);
|
|
|
|
unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
|
|
|
|
unsigned NewIdx = Idx + I * VecWidth;
|
|
|
|
Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx));
|
|
|
|
Instruction *Extracted = cast<Instruction>(V);
|
|
|
|
if (Extracted->getType() != UI->getType())
|
|
|
|
Extracted =
|
|
|
|
cast<Instruction>(Builder.CreateBitCast(Extracted, UI->getType()));
|
|
|
|
|
|
|
|
// Replace the old instruction.
|
|
|
|
UI->replaceAllUsesWith(Extracted);
|
|
|
|
InstrsToReorder.push_back(Extracted);
|
|
|
|
InstrsToErase.push_back(UI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Instruction *ModUser : InstrsToReorder)
|
|
|
|
reorder(ModUser);
|
|
|
|
|
|
|
|
for (auto I : InstrsToErase)
|
|
|
|
I->eraseFromParent();
|
|
|
|
} else {
|
|
|
|
SmallVector<Instruction *, 16> InstrsToReorder;
|
|
|
|
|
|
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
|
|
Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I));
|
|
|
|
Instruction *Extracted = cast<Instruction>(V);
|
|
|
|
Instruction *UI = cast<Instruction>(Chain[I]);
|
|
|
|
if (Extracted->getType() != UI->getType())
|
|
|
|
Extracted =
|
|
|
|
cast<Instruction>(Builder.CreateBitCast(Extracted, UI->getType()));
|
|
|
|
|
|
|
|
// Replace the old instruction.
|
|
|
|
UI->replaceAllUsesWith(Extracted);
|
|
|
|
InstrsToReorder.push_back(Extracted);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Instruction *ModUser : InstrsToReorder)
|
|
|
|
reorder(ModUser);
|
|
|
|
}
|
|
|
|
|
|
|
|
eraseInstructions(Chain);
|
|
|
|
|
|
|
|
++NumVectorInstructions;
|
|
|
|
NumScalarsVectorized += Chain.size();
|
|
|
|
return true;
|
|
|
|
}
|