llvm-project/llvm/test/CodeGen/AMDGPU/shl.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1728 lines
66 KiB
LLVM
Raw Normal View History

2020-01-12 22:34:36 +08:00
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -amdgpu-scalarize-global-loads=false -march=amdgcn -mtriple=amdgcn-- -mcpu=verde -verify-machineinstrs | FileCheck %s -allow-deprecated-dag-overlap -check-prefixes=FUNC,GCN,SI
; XUN: llc < %s -march=amdgcn -mtriple=amdgcn-- -mcpu=tonga -mattr=-flat-for-global -verify-machineinstrs | FileCheck %s -check-prefixes=FUNC,GCN,VI
; RUN: llc < %s -amdgpu-scalarize-global-loads=false -march=r600 -mtriple=r600-- -mcpu=redwood -verify-machineinstrs | FileCheck %s -allow-deprecated-dag-overlap -check-prefixes=FUNC,EG
declare i32 @llvm.amdgcn.workitem.id.x() #0
declare i32 @llvm.amdgcn.workgroup.id.x() #0
define amdgpu_kernel void @shl_v2i32(<2 x i32> addrspace(1)* %out, <2 x i32> addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_v2i32:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dwordx4 v[0:3], off, s[8:11], 0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b32_e32 v1, v1, v3
; GCN-NEXT: v_lshl_b32_e32 v0, v0, v2
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_v2i32:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @10, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 1 @6
; EG-NEXT: ALU 3, @11, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_64 T1.XY, T0.X, 8, #1
; EG-NEXT: VTX_READ_64 T0.XY, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 10:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 11:
; EG-NEXT: LSHL * T0.Y, T0.Y, T1.Y,
; EG-NEXT: LSHL T0.X, T0.X, T1.X,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b_ptr = getelementptr <2 x i32>, <2 x i32> addrspace(1)* %in, i32 1
%a = load <2 x i32>, <2 x i32> addrspace(1)* %in
%b = load <2 x i32>, <2 x i32> addrspace(1)* %b_ptr
%result = shl <2 x i32> %a, %b
store <2 x i32> %result, <2 x i32> addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_v4i32:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dwordx4 v[0:3], off, s[8:11], 0
; GCN-NEXT: buffer_load_dwordx4 v[4:7], off, s[8:11], 0 offset:16
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b32_e32 v3, v3, v7
; GCN-NEXT: v_lshl_b32_e32 v2, v2, v6
; GCN-NEXT: v_lshl_b32_e32 v1, v1, v5
; GCN-NEXT: v_lshl_b32_e32 v0, v0, v4
; GCN-NEXT: buffer_store_dwordx4 v[0:3], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_v4i32:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @10, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 1 @6
; EG-NEXT: ALU 5, @11, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XYZW, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_128 T1.XYZW, T0.X, 16, #1
; EG-NEXT: VTX_READ_128 T0.XYZW, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 10:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 11:
; EG-NEXT: LSHL * T0.W, T0.W, T1.W,
; EG-NEXT: LSHL * T0.Z, T0.Z, T1.Z,
; EG-NEXT: LSHL * T0.Y, T0.Y, T1.Y,
; EG-NEXT: LSHL T0.X, T0.X, T1.X,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b_ptr = getelementptr <4 x i32>, <4 x i32> addrspace(1)* %in, i32 1
%a = load <4 x i32>, <4 x i32> addrspace(1)* %in
%b = load <4 x i32>, <4 x i32> addrspace(1)* %b_ptr
%result = shl <4 x i32> %a, %b
store <4 x i32> %result, <4 x i32> addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_i16(i16 addrspace(1)* %out, i16 addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_i16:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_mov_b32 s4, s6
; GCN-NEXT: s_mov_b32 s5, s7
; GCN-NEXT: s_mov_b32 s6, s2
; GCN-NEXT: s_mov_b32 s7, s3
; GCN-NEXT: buffer_load_ushort v0, off, s[4:7], 0
; GCN-NEXT: buffer_load_ushort v1, off, s[4:7], 0 offset:2
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshlrev_b32_e32 v0, v1, v0
; GCN-NEXT: buffer_store_short v0, off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_i16:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @10, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 1 @6
; EG-NEXT: ALU 12, @11, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT MSKOR T0.XW, T1.X
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_16 T1.X, T0.X, 2, #1
; EG-NEXT: VTX_READ_16 T0.X, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 10:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 11:
; EG-NEXT: AND_INT T0.W, KC0[2].Y, literal.x,
; EG-NEXT: LSHL * T1.W, T0.X, T1.X,
; EG-NEXT: 3(4.203895e-45), 0(0.000000e+00)
; EG-NEXT: AND_INT T1.W, PS, literal.x,
; EG-NEXT: LSHL * T0.W, PV.W, literal.y,
; EG-NEXT: 65535(9.183409e-41), 3(4.203895e-45)
; EG-NEXT: LSHL T0.X, PV.W, PS,
; EG-NEXT: LSHL * T0.W, literal.x, PS,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: MOV T0.Y, 0.0,
; EG-NEXT: MOV * T0.Z, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%b_ptr = getelementptr i16, i16 addrspace(1)* %in, i16 1
%a = load i16, i16 addrspace(1)* %in
%b = load i16, i16 addrspace(1)* %b_ptr
%result = shl i16 %a, %b
store i16 %result, i16 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_i16_v_s(i16 addrspace(1)* %out, i16 addrspace(1)* %in, i16 %b) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_i16_v_s:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_load_dword s8, s[0:1], 0xd
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_mov_b32 s4, s6
; GCN-NEXT: s_mov_b32 s5, s7
; GCN-NEXT: s_mov_b32 s6, s2
; GCN-NEXT: s_mov_b32 s7, s3
; GCN-NEXT: buffer_load_ushort v0, off, s[4:7], 0
; GCN-NEXT: s_and_b32 s8, s8, 0xffff
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshlrev_b32_e32 v0, s8, v0
; GCN-NEXT: buffer_store_short v0, off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_i16_v_s:
; EG: ; %bb.0:
; EG-NEXT: ALU 1, @10, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 1 @6
; EG-NEXT: ALU 12, @12, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT MSKOR T0.XW, T1.X
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_16 T1.X, T1.X, 0, #1
; EG-NEXT: VTX_READ_16 T0.X, T0.X, 44, #3
; EG-NEXT: ALU clause starting at 10:
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: MOV * T1.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 12:
; EG-NEXT: AND_INT T0.W, KC0[2].Y, literal.x,
; EG-NEXT: LSHL * T1.W, T1.X, T0.X,
; EG-NEXT: 3(4.203895e-45), 0(0.000000e+00)
; EG-NEXT: AND_INT T1.W, PS, literal.x,
; EG-NEXT: LSHL * T0.W, PV.W, literal.y,
; EG-NEXT: 65535(9.183409e-41), 3(4.203895e-45)
; EG-NEXT: LSHL T0.X, PV.W, PS,
; EG-NEXT: LSHL * T0.W, literal.x, PS,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: MOV T0.Y, 0.0,
; EG-NEXT: MOV * T0.Z, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%a = load i16, i16 addrspace(1)* %in
%result = shl i16 %a, %b
store i16 %result, i16 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_i16_v_compute_s(i16 addrspace(1)* %out, i16 addrspace(1)* %in, i16 %b) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_i16_v_compute_s:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_load_dword s8, s[0:1], 0xd
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_mov_b32 s4, s6
; GCN-NEXT: s_mov_b32 s5, s7
; GCN-NEXT: s_mov_b32 s6, s2
; GCN-NEXT: s_mov_b32 s7, s3
; GCN-NEXT: buffer_load_ushort v0, off, s[4:7], 0
; GCN-NEXT: s_add_i32 s8, s8, 3
; GCN-NEXT: s_and_b32 s4, s8, 0xffff
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshlrev_b32_e32 v0, s4, v0
; GCN-NEXT: buffer_store_short v0, off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_i16_v_compute_s:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @12, KC0[], KC1[]
; EG-NEXT: TEX 0 @8
; EG-NEXT: ALU 0, @13, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @10
; EG-NEXT: ALU 15, @14, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT MSKOR T0.XW, T1.X
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 8:
; EG-NEXT: VTX_READ_16 T0.X, T0.X, 44, #3
; EG-NEXT: Fetch clause starting at 10:
; EG-NEXT: VTX_READ_16 T1.X, T1.X, 0, #1
; EG-NEXT: ALU clause starting at 12:
; EG-NEXT: MOV * T0.X, 0.0,
; EG-NEXT: ALU clause starting at 13:
; EG-NEXT: MOV * T1.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 14:
; EG-NEXT: ADD_INT * T0.W, T0.X, literal.x,
; EG-NEXT: 3(4.203895e-45), 0(0.000000e+00)
; EG-NEXT: AND_INT T0.W, PV.W, literal.x,
; EG-NEXT: AND_INT * T1.W, KC0[2].Y, literal.y,
; EG-NEXT: 65535(9.183409e-41), 3(4.203895e-45)
; EG-NEXT: LSHL * T0.W, T1.X, PV.W,
; EG-NEXT: AND_INT T0.W, PV.W, literal.x,
; EG-NEXT: LSHL * T1.W, T1.W, literal.y,
; EG-NEXT: 65535(9.183409e-41), 3(4.203895e-45)
; EG-NEXT: LSHL T0.X, PV.W, PS,
; EG-NEXT: LSHL * T0.W, literal.x, PS,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: MOV T0.Y, 0.0,
; EG-NEXT: MOV * T0.Z, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%a = load i16, i16 addrspace(1)* %in
%b.add = add i16 %b, 3
%result = shl i16 %a, %b.add
store i16 %result, i16 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_i16_computed_amount(i16 addrspace(1)* %out, i16 addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_i16_computed_amount:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshlrev_b32_e32 v0, 1, v0
; GCN-NEXT: v_mov_b32_e32 v1, 0
; GCN-NEXT: s_mov_b32 s14, 0
; GCN-NEXT: s_mov_b32 s15, s3
; GCN-NEXT: s_mov_b64 s[12:13], s[6:7]
2020-01-12 22:34:36 +08:00
; GCN-NEXT: buffer_load_ushort v2, off, s[8:11], 0
; GCN-NEXT: buffer_load_ushort v0, v[0:1], s[12:15], 0 addr64 offset:2
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_add_i32_e32 v0, vcc, 3, v0
; GCN-NEXT: v_and_b32_e32 v0, 0xffff, v0
; GCN-NEXT: v_lshl_b32_e32 v0, v2, v0
; GCN-NEXT: buffer_store_short v0, off, s[0:3], 0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_i16_computed_amount:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @12, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @8
; EG-NEXT: ALU 1, @13, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @10
; EG-NEXT: ALU 15, @15, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT MSKOR T0.XW, T1.X
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 8:
; EG-NEXT: VTX_READ_16 T1.X, T1.X, 0, #1
; EG-NEXT: Fetch clause starting at 10:
; EG-NEXT: VTX_READ_16 T0.X, T0.X, 2, #1
; EG-NEXT: ALU clause starting at 12:
; EG-NEXT: MOV * T1.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 13:
; EG-NEXT: LSHL * T0.W, T0.X, 1,
; EG-NEXT: ADD_INT * T0.X, KC0[2].Z, PV.W,
; EG-NEXT: ALU clause starting at 15:
; EG-NEXT: ADD_INT * T0.W, T0.X, literal.x,
; EG-NEXT: 3(4.203895e-45), 0(0.000000e+00)
; EG-NEXT: AND_INT T0.W, PV.W, literal.x,
; EG-NEXT: AND_INT * T1.W, KC0[2].Y, literal.y,
; EG-NEXT: 65535(9.183409e-41), 3(4.203895e-45)
; EG-NEXT: LSHL * T0.W, T1.X, PV.W,
; EG-NEXT: AND_INT T0.W, PV.W, literal.x,
; EG-NEXT: LSHL * T1.W, T1.W, literal.y,
; EG-NEXT: 65535(9.183409e-41), 3(4.203895e-45)
; EG-NEXT: LSHL T0.X, PV.W, PS,
; EG-NEXT: LSHL * T0.W, literal.x, PS,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: MOV T0.Y, 0.0,
; EG-NEXT: MOV * T0.Z, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%gep = getelementptr inbounds i16, i16 addrspace(1)* %in, i32 %tid
%gep.out = getelementptr inbounds i16, i16 addrspace(1)* %out, i32 %tid
%b_ptr = getelementptr i16, i16 addrspace(1)* %gep, i16 1
%a = load volatile i16, i16 addrspace(1)* %in
%b = load volatile i16, i16 addrspace(1)* %b_ptr
%b.add = add i16 %b, 3
%result = shl i16 %a, %b.add
store i16 %result, i16 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_i16_i_s(i16 addrspace(1)* %out, i16 zeroext %a) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_i16_i_s:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xb
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b32 s0, s0, 12
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: buffer_store_short v0, off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_i16_i_s:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @8, KC0[], KC1[]
; EG-NEXT: TEX 0 @6
; EG-NEXT: ALU 14, @9, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT MSKOR T0.XW, T1.X
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_16 T0.X, T0.X, 40, #3
; EG-NEXT: ALU clause starting at 8:
; EG-NEXT: MOV * T0.X, 0.0,
; EG-NEXT: ALU clause starting at 9:
; EG-NEXT: BFE_INT T0.W, T0.X, 0.0, literal.x,
; EG-NEXT: AND_INT * T1.W, KC0[2].Y, literal.y,
; EG-NEXT: 16(2.242078e-44), 3(4.203895e-45)
; EG-NEXT: LSHL * T0.W, PV.W, literal.x,
; EG-NEXT: 12(1.681558e-44), 0(0.000000e+00)
; EG-NEXT: AND_INT T0.W, PV.W, literal.x,
; EG-NEXT: LSHL * T1.W, T1.W, literal.y,
; EG-NEXT: 61440(8.609578e-41), 3(4.203895e-45)
; EG-NEXT: LSHL T0.X, PV.W, PS,
; EG-NEXT: LSHL * T0.W, literal.x, PS,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: MOV T0.Y, 0.0,
; EG-NEXT: MOV * T0.Z, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%result = shl i16 %a, 12
store i16 %result, i16 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_v2i16(<2 x i16> addrspace(1)* %out, <2 x i16> addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_v2i16:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; GCN-NEXT: s_mov_b64 s[12:13], s[6:7]
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_mov_b32_e32 v1, 0
; GCN-NEXT: s_mov_b32 s14, 0
; GCN-NEXT: s_mov_b32 s15, s3
; GCN-NEXT: buffer_load_dword v2, off, s[8:11], 0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: buffer_load_dword v0, v[0:1], s[12:15], 0 addr64 offset:4
; GCN-NEXT: s_mov_b32 s6, 0xffff
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt vmcnt(1)
; GCN-NEXT: v_lshrrev_b32_e32 v1, 16, v2
; GCN-NEXT: s_waitcnt vmcnt(0)
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshrrev_b32_e32 v3, 16, v0
; GCN-NEXT: v_and_b32_e32 v0, s6, v0
; GCN-NEXT: v_lshl_b32_e32 v0, v2, v0
; GCN-NEXT: v_lshl_b32_e32 v1, v1, v3
; GCN-NEXT: v_and_b32_e32 v0, s6, v0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshlrev_b32_e32 v1, 16, v1
; GCN-NEXT: v_or_b32_e32 v0, v0, v1
; GCN-NEXT: buffer_store_dword v0, off, s[0:3], 0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_v2i16:
; EG: ; %bb.0:
; EG-NEXT: ALU 2, @12, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @8
; EG-NEXT: ALU 0, @15, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @10
; EG-NEXT: ALU 12, @16, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.X, T7.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 8:
; EG-NEXT: VTX_READ_32 T0.X, T0.X, 4, #1
; EG-NEXT: Fetch clause starting at 10:
; EG-NEXT: VTX_READ_32 T7.X, T7.X, 0, #1
; EG-NEXT: ALU clause starting at 12:
; EG-NEXT: LSHL * T0.W, T0.X, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
; EG-NEXT: ADD_INT * T0.X, KC0[2].Z, PV.W,
; EG-NEXT: ALU clause starting at 15:
; EG-NEXT: MOV * T7.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 16:
; EG-NEXT: AND_INT T0.Y, T0.X, literal.x,
; EG-NEXT: AND_INT T0.Z, T7.X, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: LSHR T0.W, T0.X, literal.y,
; EG-NEXT: LSHR * T1.W, T7.X, literal.y,
; EG-NEXT: 65535(9.183409e-41), 16(2.242078e-44)
; EG-NEXT: LSHL T0.W, PS, PV.W,
; EG-NEXT: LSHL * T1.W, PV.Z, PV.Y,
; EG-NEXT: AND_INT T1.W, PS, literal.x,
; EG-NEXT: LSHL * T0.W, PV.W, literal.y,
; EG-NEXT: 65535(9.183409e-41), 16(2.242078e-44)
; EG-NEXT: OR_INT T0.X, PV.W, PS,
; EG-NEXT: LSHR * T7.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%gep = getelementptr inbounds <2 x i16>, <2 x i16> addrspace(1)* %in, i32 %tid
%gep.out = getelementptr inbounds <2 x i16>, <2 x i16> addrspace(1)* %out, i32 %tid
%b_ptr = getelementptr <2 x i16>, <2 x i16> addrspace(1)* %gep, i16 1
%a = load <2 x i16>, <2 x i16> addrspace(1)* %in
%b = load <2 x i16>, <2 x i16> addrspace(1)* %b_ptr
%result = shl <2 x i16> %a, %b
store <2 x i16> %result, <2 x i16> addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_v4i16(<4 x i16> addrspace(1)* %out, <4 x i16> addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_v4i16:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, 0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshlrev_b32_e32 v0, 3, v0
; GCN-NEXT: v_mov_b32_e32 v1, 0
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b64 s[0:1], s[6:7]
; GCN-NEXT: buffer_load_dwordx2 v[2:3], v[0:1], s[0:3], 0 addr64
; GCN-NEXT: buffer_load_dwordx2 v[4:5], v[0:1], s[0:3], 0 addr64 offset:8
; GCN-NEXT: s_mov_b32 s0, 0xffff
; GCN-NEXT: s_mov_b64 s[6:7], s[2:3]
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt vmcnt(1)
; GCN-NEXT: v_lshrrev_b32_e32 v6, 16, v2
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_and_b32_e32 v8, s0, v4
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshrrev_b32_e32 v4, 16, v4
; GCN-NEXT: v_and_b32_e32 v9, s0, v5
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshrrev_b32_e32 v7, 16, v3
; GCN-NEXT: v_lshrrev_b32_e32 v5, 16, v5
; GCN-NEXT: v_lshl_b32_e32 v5, v7, v5
; GCN-NEXT: v_lshl_b32_e32 v3, v3, v9
; GCN-NEXT: v_lshl_b32_e32 v4, v6, v4
; GCN-NEXT: v_lshl_b32_e32 v2, v2, v8
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshlrev_b32_e32 v5, 16, v5
; GCN-NEXT: v_and_b32_e32 v3, s0, v3
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshlrev_b32_e32 v4, 16, v4
; GCN-NEXT: v_and_b32_e32 v2, s0, v2
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_or_b32_e32 v3, v3, v5
; GCN-NEXT: v_or_b32_e32 v2, v2, v4
; GCN-NEXT: buffer_store_dwordx2 v[2:3], v[0:1], s[4:7], 0 addr64
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_v4i16:
; EG: ; %bb.0:
; EG-NEXT: ALU 2, @12, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @8
; EG-NEXT: ALU 3, @15, KC0[], KC1[]
; EG-NEXT: TEX 0 @10
; EG-NEXT: ALU 49, @19, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T10.XY, T0.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 8:
; EG-NEXT: VTX_READ_64 T10.XY, T0.X, 0, #1
; EG-NEXT: Fetch clause starting at 10:
; EG-NEXT: VTX_READ_64 T10.XY, T0.X, 8, #1
; EG-NEXT: ALU clause starting at 12:
; EG-NEXT: LSHL * T0.W, T0.X, literal.x,
; EG-NEXT: 3(4.203895e-45), 0(0.000000e+00)
; EG-NEXT: ADD_INT * T0.X, KC0[2].Z, PV.W,
; EG-NEXT: ALU clause starting at 15:
; EG-NEXT: MOV T4.X, T10.X,
; EG-NEXT: MOV * T5.X, T10.Y,
; EG-NEXT: MOV T0.Y, PV.X,
; EG-NEXT: MOV * T0.Z, PS,
; EG-NEXT: ALU clause starting at 19:
; EG-NEXT: MOV T2.X, T10.X,
; EG-NEXT: MOV * T3.X, T10.Y,
; EG-NEXT: MOV T0.X, T6.X,
; EG-NEXT: MOV * T1.Y, PV.X,
; EG-NEXT: AND_INT T1.W, PV.Y, literal.x,
; EG-NEXT: AND_INT * T2.W, T0.Y, literal.x,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: LSHL * T1.W, PS, PV.W,
; EG-NEXT: AND_INT T1.W, PV.W, literal.x,
; EG-NEXT: AND_INT * T2.W, T0.X, literal.y,
; EG-NEXT: 65535(9.183409e-41), -65536(nan)
; EG-NEXT: OR_INT * T1.W, PS, PV.W,
; EG-NEXT: MOV T0.X, T3.X,
; EG-NEXT: MOV * T6.X, PV.W,
; EG-NEXT: MOV T1.Z, PS,
; EG-NEXT: LSHR T1.W, T1.Y, literal.x,
; EG-NEXT: LSHR * T2.W, T0.Y, literal.x,
; EG-NEXT: 16(2.242078e-44), 0(0.000000e+00)
; EG-NEXT: LSHL T1.W, PS, PV.W,
; EG-NEXT: AND_INT * T2.W, PV.Z, literal.x,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: LSHL * T1.W, PV.W, literal.x,
; EG-NEXT: 16(2.242078e-44), 0(0.000000e+00)
; EG-NEXT: OR_INT * T1.W, T2.W, PV.W,
; EG-NEXT: MOV T6.X, PV.W,
; EG-NEXT: MOV T0.Y, T7.X,
; EG-NEXT: AND_INT T1.W, T0.X, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: AND_INT * T2.W, T0.Z, literal.x,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: LSHL T1.W, PS, PV.W,
; EG-NEXT: AND_INT * T2.W, PV.Y, literal.x,
; EG-NEXT: -65536(nan), 0(0.000000e+00)
; EG-NEXT: AND_INT * T1.W, PV.W, literal.x,
; EG-NEXT: 65535(9.183409e-41), 0(0.000000e+00)
; EG-NEXT: OR_INT * T1.W, T2.W, PV.W,
; EG-NEXT: MOV * T7.X, PV.W,
; EG-NEXT: MOV T0.Y, PV.X,
; EG-NEXT: LSHR T1.W, T0.X, literal.x,
; EG-NEXT: LSHR * T2.W, T0.Z, literal.x,
; EG-NEXT: 16(2.242078e-44), 0(0.000000e+00)
; EG-NEXT: LSHL * T1.W, PS, PV.W,
; EG-NEXT: AND_INT T0.Z, T0.Y, literal.x,
; EG-NEXT: LSHL T1.W, PV.W, literal.y,
; EG-NEXT: ADD_INT * T0.W, KC0[2].Y, T0.W,
; EG-NEXT: 65535(9.183409e-41), 16(2.242078e-44)
; EG-NEXT: LSHR T0.X, PS, literal.x,
; EG-NEXT: OR_INT * T10.Y, PV.Z, PV.W,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
; EG-NEXT: MOV T7.X, PV.Y,
; EG-NEXT: MOV * T10.X, T6.X,
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%gep = getelementptr inbounds <4 x i16>, <4 x i16> addrspace(1)* %in, i32 %tid
%gep.out = getelementptr inbounds <4 x i16>, <4 x i16> addrspace(1)* %out, i32 %tid
%b_ptr = getelementptr <4 x i16>, <4 x i16> addrspace(1)* %gep, i16 1
%a = load <4 x i16>, <4 x i16> addrspace(1)* %gep
%b = load <4 x i16>, <4 x i16> addrspace(1)* %b_ptr
%result = shl <4 x i16> %a, %b
store <4 x i16> %result, <4 x i16> addrspace(1)* %gep.out
ret void
}
define amdgpu_kernel void @shl_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dwordx4 v[0:3], off, s[8:11], 0
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b64 v[0:1], v[0:1], v2
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @8, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @6
; EG-NEXT: ALU 15, @9, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_128 T0.XYZW, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 8:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 9:
; EG-NEXT: SUB_INT * T0.W, literal.x, T0.Z,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR * T0.W, T0.X, PV.W,
; EG-NEXT: ADD_INT T1.Z, T0.Z, literal.x,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, T0.Y, T0.Z,
; EG-NEXT: -32(nan), 0(0.000000e+00)
; EG-NEXT: OR_INT T2.Z, PS, PV.W,
; EG-NEXT: LSHL T0.W, T0.X, PV.Z,
; EG-NEXT: SETGT_UINT * T1.W, T0.Z, literal.x,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.Z, PV.W,
; EG-NEXT: LSHL * T0.W, T0.X, T0.Z,
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b_ptr = getelementptr i64, i64 addrspace(1)* %in, i64 1
%a = load i64, i64 addrspace(1)* %in
%b = load i64, i64 addrspace(1)* %b_ptr
%result = shl i64 %a, %b
store i64 %result, i64 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_v2i64(<2 x i64> addrspace(1)* %out, <2 x i64> addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_v2i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dwordx4 v[0:3], off, s[8:11], 0
; GCN-NEXT: buffer_load_dwordx4 v[4:7], off, s[8:11], 0 offset:16
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b64 v[2:3], v[2:3], v6
; GCN-NEXT: v_lshl_b64 v[0:1], v[0:1], v4
; GCN-NEXT: buffer_store_dwordx4 v[0:3], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_v2i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @10, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 1 @6
; EG-NEXT: ALU 28, @11, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T2.XYZW, T0.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_128 T1.XYZW, T0.X, 16, #1
; EG-NEXT: VTX_READ_128 T0.XYZW, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 10:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 11:
; EG-NEXT: SUB_INT * T1.W, literal.x, T1.Z,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR * T1.W, T0.Z, PV.W,
; EG-NEXT: SUB_INT T2.Z, literal.x, T1.X,
; EG-NEXT: LSHR T1.W, PV.W, 1,
; EG-NEXT: LSHL * T0.W, T0.W, T1.Z,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: OR_INT T3.Z, PS, PV.W,
; EG-NEXT: LSHR T0.W, T0.X, PV.Z,
; EG-NEXT: ADD_INT * T1.W, T1.Z, literal.x,
; EG-NEXT: -32(nan), 0(0.000000e+00)
; EG-NEXT: LSHL T2.X, T0.Z, PS,
; EG-NEXT: SETGT_UINT T1.Y, T1.Z, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: ADD_INT T2.Z, T1.X, literal.y,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, T0.Y, T1.X,
; EG-NEXT: 31(4.344025e-44), -32(nan)
; EG-NEXT: OR_INT T0.Y, PS, PV.W,
; EG-NEXT: LSHL T2.Z, T0.X, PV.Z,
; EG-NEXT: SETGT_UINT T0.W, T1.X, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: CNDE_INT * T2.W, PV.Y, T3.Z, PV.X,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T2.Y, PV.W, PV.Y, PV.Z,
; EG-NEXT: LSHL * T1.W, T0.Z, T1.Z,
; EG-NEXT: CNDE_INT T2.Z, T1.Y, PV.W, 0.0,
; EG-NEXT: LSHL * T1.W, T0.X, T1.X,
; EG-NEXT: CNDE_INT T2.X, T0.W, PV.W, 0.0,
; EG-NEXT: LSHR * T0.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b_ptr = getelementptr <2 x i64>, <2 x i64> addrspace(1)* %in, i64 1
%a = load <2 x i64>, <2 x i64> addrspace(1)* %in
%b = load <2 x i64>, <2 x i64> addrspace(1)* %b_ptr
%result = shl <2 x i64> %a, %b
store <2 x i64> %result, <2 x i64> addrspace(1)* %out
ret void
}
define amdgpu_kernel void @shl_v4i64(<4 x i64> addrspace(1)* %out, <4 x i64> addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_v4i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dwordx4 v[0:3], off, s[8:11], 0
; GCN-NEXT: buffer_load_dwordx4 v[4:7], off, s[8:11], 0 offset:16
; GCN-NEXT: buffer_load_dwordx4 v[8:11], off, s[8:11], 0 offset:32
; GCN-NEXT: buffer_load_dwordx4 v[11:14], off, s[8:11], 0 offset:48
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(1)
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_lshl_b64 v[2:3], v[2:3], v10
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b64 v[6:7], v[6:7], v13
; GCN-NEXT: v_lshl_b64 v[4:5], v[4:5], v11
; GCN-NEXT: v_lshl_b64 v[0:1], v[0:1], v8
; GCN-NEXT: buffer_store_dwordx4 v[4:7], off, s[0:3], 0 offset:16
; GCN-NEXT: buffer_store_dwordx4 v[0:3], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: shl_v4i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @14, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 3 @6
; EG-NEXT: ALU 58, @15, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T1.XYZW, T0.X, 0
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T3.XYZW, T4.X, 1
; EG-NEXT: CF_END
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_128 T1.XYZW, T0.X, 48, #1
; EG-NEXT: VTX_READ_128 T2.XYZW, T0.X, 0, #1
; EG-NEXT: VTX_READ_128 T3.XYZW, T0.X, 16, #1
; EG-NEXT: VTX_READ_128 T0.XYZW, T0.X, 32, #1
; EG-NEXT: ALU clause starting at 14:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 15:
; EG-NEXT: SUB_INT * T0.W, literal.x, T1.Z,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: SUB_INT T4.Z, literal.x, T0.Z,
; EG-NEXT: SUB_INT T1.W, literal.x, T0.X,
; EG-NEXT: LSHR * T0.W, T3.Z, PV.W,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: SUB_INT T0.Y, literal.x, T1.X,
; EG-NEXT: LSHR T5.Z, PS, 1,
; EG-NEXT: LSHR T0.W, T2.X, PV.W,
; EG-NEXT: LSHR * T1.W, T2.Z, PV.Z,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHL T4.X, T3.W, T1.Z,
; EG-NEXT: LSHR T1.Y, PS, 1,
; EG-NEXT: LSHL T4.Z, T2.W, T0.Z, BS:VEC_120/SCL_212
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, T2.Y, T0.X,
; EG-NEXT: OR_INT T5.X, PS, PV.W,
; EG-NEXT: OR_INT T1.Y, PV.Z, PV.Y,
; EG-NEXT: OR_INT T4.Z, PV.X, T5.Z,
; EG-NEXT: LSHR T0.W, T3.X, T0.Y,
; EG-NEXT: ADD_INT * T1.W, T1.Z, literal.x,
; EG-NEXT: -32(nan), 0(0.000000e+00)
; EG-NEXT: LSHL T4.X, T3.Z, PS,
; EG-NEXT: SETGT_UINT T0.Y, T1.Z, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: ADD_INT T5.Z, T1.X, literal.y,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, T3.Y, T1.X,
; EG-NEXT: 31(4.344025e-44), -32(nan)
; EG-NEXT: OR_INT T6.X, PS, PV.W,
; EG-NEXT: LSHL T2.Y, T3.X, PV.Z,
; EG-NEXT: SETGT_UINT T5.Z, T1.X, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: ADD_INT T0.W, T0.Z, literal.y,
; EG-NEXT: CNDE_INT * T3.W, PV.Y, T4.Z, PV.X,
; EG-NEXT: 31(4.344025e-44), -32(nan)
; EG-NEXT: LSHL T4.X, T2.Z, PV.W,
; EG-NEXT: CNDE_INT T3.Y, PV.Z, PV.X, PV.Y,
; EG-NEXT: SETGT_UINT * T4.Z, T0.Z, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHL T0.W, T3.Z, T1.Z,
; EG-NEXT: ADD_INT * T1.W, T0.X, literal.x,
; EG-NEXT: -32(nan), 0(0.000000e+00)
; EG-NEXT: LSHL T6.X, T2.X, PS,
; EG-NEXT: SETGT_UINT T2.Y, T0.X, literal.x, BS:VEC_120/SCL_212
; EG-NEXT: CNDE_INT * T3.Z, T0.Y, PV.W, 0.0,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHL T0.W, T3.X, T1.X, BS:VEC_120/SCL_212
; EG-NEXT: CNDE_INT * T1.W, T4.Z, T1.Y, T4.X,
; EG-NEXT: CNDE_INT T3.X, T5.Z, PV.W, 0.0,
; EG-NEXT: CNDE_INT T1.Y, T2.Y, T5.X, T6.X,
; EG-NEXT: LSHL T0.W, T2.Z, T0.Z, BS:VEC_120/SCL_212
; EG-NEXT: ADD_INT * T2.W, KC0[2].Y, literal.x,
; EG-NEXT: 16(2.242078e-44), 0(0.000000e+00)
; EG-NEXT: LSHR T4.X, PS, literal.x,
; EG-NEXT: CNDE_INT T1.Z, T4.Z, PV.W, 0.0,
; EG-NEXT: LSHL * T0.W, T2.X, T0.X,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T1.X, T2.Y, PV.W, 0.0,
; EG-NEXT: LSHR * T0.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b_ptr = getelementptr <4 x i64>, <4 x i64> addrspace(1)* %in, i64 1
%a = load <4 x i64>, <4 x i64> addrspace(1)* %in
%b = load <4 x i64>, <4 x i64> addrspace(1)* %b_ptr
%result = shl <4 x i64> %a, %b
store <4 x i64> %result, <4 x i64> addrspace(1)* %out
ret void
}
; Make sure load width gets reduced to i32 load.
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @s_shl_32_i64(i64 addrspace(1)* %out, [8 x i32], i64 %a) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: s_shl_32_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0x13
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: v_mov_b32_e32 v0, 0
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: v_mov_b32_e32 v1, s0
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_32_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 3, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: MOV * T0.Y, KC0[4].W,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%result = shl i64 %a, 32
store i64 %result, i64 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @v_shl_32_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: v_shl_32_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[8:11], s[0:1], 0x9
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_ashr_i32 s3, s2, 31
; GCN-NEXT: s_lshl_b64 s[0:1], s[2:3], 3
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, 0
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b64 s[4:5], s[10:11]
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_load_dword v3, v[0:1], s[4:7], 0 addr64
; GCN-NEXT: s_mov_b64 s[10:11], s[6:7]
2020-01-12 22:34:36 +08:00
; GCN-NEXT: v_mov_b32_e32 v2, 0
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: buffer_store_dwordx2 v[2:3], v[0:1], s[8:11], 0 addr64
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_endpgm
;
; EG-LABEL: v_shl_32_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 2, @8, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @6
; EG-NEXT: ALU 4, @11, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T1.XY, T2.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_32 T0.X, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 8:
; EG-NEXT: LSHL * T0.W, T1.X, literal.x,
; EG-NEXT: 3(4.203895e-45), 0(0.000000e+00)
; EG-NEXT: ADD_INT * T0.X, KC0[2].Z, PV.W,
; EG-NEXT: ALU clause starting at 11:
; EG-NEXT: MOV T1.X, 0.0,
; EG-NEXT: ADD_INT * T0.W, KC0[2].Y, T0.W,
; EG-NEXT: LSHR T2.X, PV.W, literal.x,
; EG-NEXT: MOV * T1.Y, T0.X,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%tid = call i32 @llvm.amdgcn.workgroup.id.x() #0
%gep.in = getelementptr i64, i64 addrspace(1)* %in, i32 %tid
%gep.out = getelementptr i64, i64 addrspace(1)* %out, i32 %tid
%a = load i64, i64 addrspace(1)* %gep.in
%result = shl i64 %a, 32
store i64 %result, i64 addrspace(1)* %gep.out
ret void
}
define amdgpu_kernel void @s_shl_constant_i64(i64 addrspace(1)* %out, i64 %a) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: s_shl_constant_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s9, 0xffff
; GCN-NEXT: s_mov_b32 s8, s2
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_lshl_b64 s[4:5], s[8:9], s6
; GCN-NEXT: v_mov_b32_e32 v0, s4
; GCN-NEXT: v_mov_b32_e32 v1, s5
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_constant_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 17, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SUB_INT * T0.W, literal.x, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR * T0.W, literal.x, PV.W,
; EG-NEXT: -1(nan), 0(0.000000e+00)
; EG-NEXT: ADD_INT T0.Z, KC0[2].W, literal.x,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: -32(nan), 65535(9.183409e-41)
; EG-NEXT: OR_INT T1.Z, PS, PV.W,
; EG-NEXT: LSHL T0.W, literal.x, PV.Z,
; EG-NEXT: SETGT_UINT * T1.W, KC0[2].W, literal.y,
; EG-NEXT: -1(nan), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.Z, PV.W,
; EG-NEXT: LSHL * T0.W, literal.x, KC0[2].W,
; EG-NEXT: -1(nan), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 281474976710655, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @v_shl_constant_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: v_shl_constant_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dword v0, off, s[8:11], 0
; GCN-NEXT: s_movk_i32 s7, 0x11e
; GCN-NEXT: s_mov_b32 s6, 0xab19b207
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b64 v[0:1], s[6:7], v0
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: v_shl_constant_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @8, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @6
; EG-NEXT: ALU 17, @9, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_32 T0.X, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 8:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 9:
; EG-NEXT: SUB_INT * T0.W, literal.x, T0.X,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR * T0.W, literal.x, PV.W,
; EG-NEXT: -1424379385(-5.460358e-13), 0(0.000000e+00)
; EG-NEXT: ADD_INT T0.Z, T0.X, literal.x,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, literal.y, T0.X,
; EG-NEXT: -32(nan), 286(4.007714e-43)
; EG-NEXT: OR_INT T1.Z, PS, PV.W,
; EG-NEXT: SETGT_UINT T0.W, T0.X, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, PV.Z,
; EG-NEXT: 31(4.344025e-44), -1424379385(-5.460358e-13)
; EG-NEXT: CNDE_INT T0.Y, PV.W, PV.Z, PS,
; EG-NEXT: LSHL * T1.W, literal.x, T0.X,
; EG-NEXT: -1424379385(-5.460358e-13), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T0.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%a = load i64, i64 addrspace(1)* %aptr, align 8
%shl = shl i64 1231231234567, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @v_shl_i64_32_bit_constant(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: v_shl_i64_32_bit_constant:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dword v0, off, s[8:11], 0
; GCN-NEXT: s_mov_b32 s7, 0
; GCN-NEXT: s_mov_b32 s6, 0x12d687
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b64 v[0:1], s[6:7], v0
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: v_shl_i64_32_bit_constant:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @8, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @6
; EG-NEXT: ALU 14, @9, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_32 T0.X, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 8:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 9:
; EG-NEXT: SUB_INT T0.W, literal.x, T0.X,
; EG-NEXT: ADD_INT * T1.W, T0.X, literal.y,
; EG-NEXT: 31(4.344025e-44), -32(nan)
; EG-NEXT: LSHR * T0.W, literal.x, PV.W,
; EG-NEXT: 1234567(1.729997e-39), 0(0.000000e+00)
; EG-NEXT: LSHR T0.Z, PV.W, 1,
; EG-NEXT: LSHL T0.W, literal.x, T1.W,
; EG-NEXT: SETGT_UINT * T1.W, T0.X, literal.y,
; EG-NEXT: 1234567(1.729997e-39), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.Z, PV.W,
; EG-NEXT: LSHL * T0.W, literal.x, T0.X,
; EG-NEXT: 1234567(1.729997e-39), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%a = load i64, i64 addrspace(1)* %aptr, align 8
%shl = shl i64 1234567, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @v_shl_inline_imm_64_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: v_shl_inline_imm_64_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_mov_b32 s10, s2
; GCN-NEXT: s_mov_b32 s11, s3
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s8, s6
; GCN-NEXT: s_mov_b32 s9, s7
; GCN-NEXT: buffer_load_dword v0, off, s[8:11], 0
; GCN-NEXT: s_mov_b32 s0, s4
; GCN-NEXT: s_mov_b32 s1, s5
; GCN-NEXT: s_waitcnt vmcnt(0)
; GCN-NEXT: v_lshl_b64 v[0:1], 64, v0
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: v_shl_inline_imm_64_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 0, @8, KC0[CB0:0-32], KC1[]
; EG-NEXT: TEX 0 @6
; EG-NEXT: ALU 14, @9, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: Fetch clause starting at 6:
; EG-NEXT: VTX_READ_32 T0.X, T0.X, 0, #1
; EG-NEXT: ALU clause starting at 8:
; EG-NEXT: MOV * T0.X, KC0[2].Z,
; EG-NEXT: ALU clause starting at 9:
; EG-NEXT: SUB_INT T0.W, literal.x, T0.X,
; EG-NEXT: ADD_INT * T1.W, T0.X, literal.y,
; EG-NEXT: 31(4.344025e-44), -32(nan)
; EG-NEXT: LSHR * T0.W, literal.x, PV.W,
; EG-NEXT: 64(8.968310e-44), 0(0.000000e+00)
; EG-NEXT: LSHR T0.Z, PV.W, 1,
; EG-NEXT: LSHL T0.W, literal.x, T1.W,
; EG-NEXT: SETGT_UINT * T1.W, T0.X, literal.y,
; EG-NEXT: 64(8.968310e-44), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.Z, PV.W,
; EG-NEXT: LSHL * T0.W, literal.x, T0.X,
; EG-NEXT: 64(8.968310e-44), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%a = load i64, i64 addrspace(1)* %aptr, align 8
%shl = shl i64 64, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @s_shl_inline_imm_64_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: s_shl_inline_imm_64_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], 64, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_64_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 14, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SUB_INT * T0.W, literal.x, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR T0.W, literal.x, PV.W,
; EG-NEXT: ADD_INT * T1.W, KC0[2].W, literal.y,
; EG-NEXT: 64(8.968310e-44), -32(nan)
; EG-NEXT: LSHL T0.Z, literal.x, PS,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: SETGT_UINT * T1.W, KC0[2].W, literal.y,
; EG-NEXT: 64(8.968310e-44), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.W, PV.Z,
; EG-NEXT: LSHL * T0.W, literal.x, KC0[2].W,
; EG-NEXT: 64(8.968310e-44), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 64, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @s_shl_inline_imm_1_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: s_shl_inline_imm_1_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], 1, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_1_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 8, @4, KC0[CB0:0-32], KC1[]
2020-01-12 22:34:36 +08:00
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: ADD_INT T0.Z, KC0[2].W, literal.x,
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.y,
; EG-NEXT: LSHL * T1.W, 1, KC0[2].W,
; EG-NEXT: -32(nan), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.X, PV.W, PS, 0.0,
; EG-NEXT: LSHL T1.W, 1, PV.Z,
2020-01-12 22:34:36 +08:00
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
; EG-NEXT: CNDE_INT * T0.Y, T0.W, 0.0, PV.W,
%shl = shl i64 1, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_1_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_1_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], 1.0, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_1_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 1072693248(1.875000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 4607182418800017408, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_neg_1_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_neg_1_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], -1.0, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_neg_1_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), -1074790400(-1.875000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 13830554455654793216, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_0_5_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_0_5_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], 0.5, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_0_5_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 1071644672(1.750000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 4602678819172646912, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_neg_0_5_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_neg_0_5_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], -0.5, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_neg_0_5_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), -1075838976(-1.750000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 13826050856027422720, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_2_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_2_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], 2.0, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_2_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 1073741824(2.000000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 4611686018427387904, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_neg_2_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_neg_2_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], -2.0, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_neg_2_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), -1073741824(-2.000000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 13835058055282163712, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_4_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_4_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], 4.0, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_4_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 1074790400(2.250000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 4616189618054758400, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_neg_4_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_neg_4_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s0, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], -4.0, s0
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_neg_4_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), -1072693248(-2.250000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 13839561654909534208, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
; Test with the 64-bit integer bitpattern for a 32-bit float in the
; low 32-bits, which is not a valid 64-bit inline immmediate.
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_f32_4_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_f32_4_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s2, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s1, 0
; GCN-NEXT: s_mov_b32 s0, 4.0
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], s[0:1], s2
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_f32_4_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 14, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SUB_INT * T0.W, literal.x, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR T0.W, literal.x, PV.W,
; EG-NEXT: ADD_INT * T1.W, KC0[2].W, literal.y,
; EG-NEXT: 1082130432(4.000000e+00), -32(nan)
; EG-NEXT: LSHL T0.Z, literal.x, PS,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: SETGT_UINT * T1.W, KC0[2].W, literal.y,
; EG-NEXT: 1082130432(4.000000e+00), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.W, PV.Z,
; EG-NEXT: LSHL * T0.W, literal.x, KC0[2].W,
; EG-NEXT: 1082130432(4.000000e+00), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 1082130432, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
; FIXME: Copy of -1 register
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_imm_f32_neg_4_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_imm_f32_neg_4_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s2, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_mov_b32 s0, -4.0
; GCN-NEXT: s_mov_b32 s1, s6
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], s[0:1], s2
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_imm_f32_neg_4_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 17, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SUB_INT * T0.W, literal.x, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 0(0.000000e+00)
; EG-NEXT: LSHR * T0.W, literal.x, PV.W,
; EG-NEXT: -1065353216(-4.000000e+00), 0(0.000000e+00)
; EG-NEXT: ADD_INT T0.Z, KC0[2].W, literal.x,
; EG-NEXT: LSHR T0.W, PV.W, 1,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: -32(nan), -1(nan)
; EG-NEXT: OR_INT T1.Z, PS, PV.W,
; EG-NEXT: LSHL T0.W, literal.x, PV.Z,
; EG-NEXT: SETGT_UINT * T1.W, KC0[2].W, literal.y,
; EG-NEXT: -1065353216(-4.000000e+00), 31(4.344025e-44)
; EG-NEXT: CNDE_INT T0.Y, PS, PV.Z, PV.W,
; EG-NEXT: LSHL * T0.W, literal.x, KC0[2].W,
; EG-NEXT: -1065353216(-4.000000e+00), 0(0.000000e+00)
; EG-NEXT: CNDE_INT T0.X, T1.W, PV.W, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 -1065353216, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_high_imm_f32_4_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_high_imm_f32_4_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s2, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s1, 4.0
; GCN-NEXT: s_mov_b32 s0, 0
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], s[0:1], s2
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_high_imm_f32_4_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), 1082130432(4.000000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 4647714815446351872, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
2020-01-12 22:34:36 +08:00
define amdgpu_kernel void @s_shl_inline_high_imm_f32_neg_4_0_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr, i64 %a) {
; GCN-LABEL: s_shl_inline_high_imm_f32_neg_4_0_i64:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; GCN-NEXT: s_load_dword s2, s[0:1], 0xd
; GCN-NEXT: s_mov_b32 s1, -4.0
; GCN-NEXT: s_mov_b32 s0, 0
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s6, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b64 s[0:1], s[0:1], s2
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: v_mov_b32_e32 v1, s1
; GCN-NEXT: buffer_store_dwordx2 v[0:1], off, s[4:7], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: s_shl_inline_high_imm_f32_neg_4_0_i64:
; EG: ; %bb.0:
; EG-NEXT: ALU 6, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.XY, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: SETGT_UINT T0.W, KC0[2].W, literal.x,
; EG-NEXT: LSHL * T1.W, literal.y, KC0[2].W,
; EG-NEXT: 31(4.344025e-44), -1065353216(-4.000000e+00)
; EG-NEXT: CNDE_INT * T0.Y, PV.W, PS, 0.0,
; EG-NEXT: MOV T0.X, 0.0,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%shl = shl i64 13871086852301127680, %a
store i64 %shl, i64 addrspace(1)* %out, align 8
ret void
}
define amdgpu_kernel void @test_mul2(i32 %p) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: test_mul2:
; GCN: ; %bb.0:
; GCN-NEXT: s_load_dword s0, s[0:1], 0x9
; GCN-NEXT: s_mov_b32 s3, 0xf000
; GCN-NEXT: s_mov_b32 s2, -1
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: s_lshl_b32 s0, s0, 1
; GCN-NEXT: v_mov_b32_e32 v0, s0
; GCN-NEXT: buffer_store_dword v0, off, s[0:3], 0
; GCN-NEXT: s_endpgm
;
; EG-LABEL: test_mul2:
; EG: ; %bb.0:
; EG-NEXT: ALU 2, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T1.X, T0.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: MOV T0.X, literal.x,
; EG-NEXT: LSHL * T1.X, KC0[2].Y, 1,
; EG-NEXT: 0(0.000000e+00), 0(0.000000e+00)
%i = mul i32 %p, 2
store volatile i32 %i, i32 addrspace(1)* undef
ret void
}
define void @shl_or_k(i32 addrspace(1)* %out, i32 %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_or_k:
; GCN: ; %bb.0:
; GCN-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s6, 0
; GCN-NEXT: v_lshlrev_b32_e32 v2, 2, v2
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s4, s6
; GCN-NEXT: s_mov_b32 s5, s6
; GCN-NEXT: v_or_b32_e32 v2, 4, v2
; GCN-NEXT: buffer_store_dword v2, v[0:1], s[4:7], 0 addr64
; GCN-NEXT: s_waitcnt vmcnt(0) expcnt(0)
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_setpc_b64 s[30:31]
;
; EG-LABEL: shl_or_k:
; EG: ; %bb.0:
; EG-NEXT: ALU 4, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T0.X, T1.X, 1
; EG-NEXT: CF_END
; EG-NEXT: PAD
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: LSHL * T0.W, KC0[2].Z, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
; EG-NEXT: OR_INT T0.X, PV.W, literal.x,
; EG-NEXT: LSHR * T1.X, KC0[2].Y, literal.y,
; EG-NEXT: 4(5.605194e-45), 2(2.802597e-45)
%tmp0 = or i32 %in, 1
%tmp2 = shl i32 %tmp0, 2
store i32 %tmp2, i32 addrspace(1)* %out
ret void
}
define void @shl_or_k_two_uses(i32 addrspace(1)* %out0, i32 addrspace(1)* %out1, i32 %in) {
2020-01-12 22:34:36 +08:00
; GCN-LABEL: shl_or_k_two_uses:
; GCN: ; %bb.0:
; GCN-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GCN-NEXT: s_mov_b32 s6, 0
; GCN-NEXT: v_or_b32_e32 v4, 1, v4
; GCN-NEXT: s_mov_b32 s7, 0xf000
; GCN-NEXT: s_mov_b32 s4, s6
; GCN-NEXT: s_mov_b32 s5, s6
; GCN-NEXT: v_lshlrev_b32_e32 v5, 2, v4
; GCN-NEXT: buffer_store_dword v5, v[0:1], s[4:7], 0 addr64
; GCN-NEXT: buffer_store_dword v4, v[2:3], s[4:7], 0 addr64
; GCN-NEXT: s_waitcnt vmcnt(0) expcnt(0)
2020-01-12 22:34:36 +08:00
; GCN-NEXT: s_setpc_b64 s[30:31]
;
; EG-LABEL: shl_or_k_two_uses:
; EG: ; %bb.0:
; EG-NEXT: ALU 5, @4, KC0[CB0:0-32], KC1[]
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T2.X, T3.X, 0
; EG-NEXT: MEM_RAT_CACHELESS STORE_RAW T1.X, T0.X, 1
; EG-NEXT: CF_END
; EG-NEXT: ALU clause starting at 4:
; EG-NEXT: LSHR T0.X, KC0[2].Z, literal.x,
; EG-NEXT: OR_INT * T1.X, KC0[2].W, 1,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
; EG-NEXT: LSHL T2.X, PS, literal.x,
; EG-NEXT: LSHR * T3.X, KC0[2].Y, literal.x,
; EG-NEXT: 2(2.802597e-45), 0(0.000000e+00)
%tmp0 = or i32 %in, 1
%tmp2 = shl i32 %tmp0, 2
store i32 %tmp2, i32 addrspace(1)* %out0
store i32 %tmp0, i32 addrspace(1)* %out1
ret void
}
attributes #0 = { nounwind readnone }