llvm-project/clang/test/CXX/drs/dr4xx.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1242 lines
32 KiB
C++
Raw Normal View History

// RUN: env ASAN_OPTIONS=detect_stack_use_after_return=0 %clang_cc1 -std=c++98 %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// RUN: env ASAN_OPTIONS=detect_stack_use_after_return=0 %clang_cc1 -std=c++11 %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// RUN: env ASAN_OPTIONS=detect_stack_use_after_return=0 %clang_cc1 -std=c++14 %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// RUN: env ASAN_OPTIONS=detect_stack_use_after_return=0 %clang_cc1 -std=c++17 %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// RUN: env ASAN_OPTIONS=detect_stack_use_after_return=0 %clang_cc1 -std=c++20 %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// FIXME: __SIZE_TYPE__ expands to 'long long' on some targets.
__extension__ typedef __SIZE_TYPE__ size_t;
namespace std { struct type_info; }
2014-03-17 16:20:10 +08:00
namespace dr400 { // dr400: yes
struct A { int a; struct a {}; }; // expected-note 2{{conflicting}} expected-note {{ambiguous}}
struct B { int a; struct a {}; }; // expected-note 2{{target}} expected-note {{ambiguous}}
struct C : A, B { using A::a; struct a b; };
struct D : A, B { using A::a; using B::a; struct a b; }; // expected-error 2{{conflicts}}
struct E : A, B { struct a b; }; // expected-error {{found in multiple base classes}}
}
namespace dr401 { // dr401: yes
template<class T, class U = typename T::type> class A : public T {}; // expected-error {{protected}} expected-error 2{{private}}
class B {
protected:
typedef int type; // expected-note {{protected}}
#if __cplusplus == 199711L
// expected-note@-2 {{protected}}
#endif
2014-03-17 16:20:10 +08:00
};
class C {
typedef int type; // expected-note {{private}}
friend class A<C>; // expected-note {{default argument}}
};
class D {
typedef int type; // expected-note {{private}}
friend class A<D, int>;
};
A<B> *b; // expected-note {{default argument}}
A<D> *d; // expected-note {{in instantiation of default argument}}
2014-03-17 16:20:10 +08:00
struct E {
template<class T, class U = typename T::type> class A : public T {};
};
class F {
typedef int type;
friend class E;
};
E::A<F> eaf; // ok, default argument is in befriended context
// FIXME: Why do we get different diagnostics in C++11 onwards here? We seem
// to not treat the default template argument as a SFINAE context in C++98.
template<class T, class U = typename T::type> void f(T) {}
void g(B b) { f(b); }
#if __cplusplus < 201103L
// expected-error@-3 0-1{{extension}} expected-error@-3 {{protected}} expected-note@-3 {{instantiation}}
// expected-note@-3 {{substituting}}
2014-03-17 16:20:10 +08:00
#else
// expected-error@-5 {{no matching}} expected-note@-6 {{protected}}
#endif
}
namespace dr403 { // dr403: yes
namespace A {
struct S {};
int f(void*);
}
template<typename T> struct X {};
typedef struct X<A::S>::X XS;
XS *p;
int k = f(p); // ok, finds A::f, even though type XS is a typedef-name
// referring to an elaborated-type-specifier naming a
// injected-class-name, which is about as far from a
// template-id as we can make it.
}
// dr404: na
// (NB: also sup 594)
namespace dr406 { // dr406: yes
typedef struct {
static int n; // expected-error {{static data member 'n' not allowed in anonymous struct}}
} A;
typedef union {
static int n; // expected-error {{static data member 'n' not allowed in anonymous union}}
} B;
2014-03-17 16:20:10 +08:00
}
namespace dr407 { // dr407: 3.8
2014-03-17 16:20:10 +08:00
struct S;
typedef struct S S;
void f() {
struct S *p;
{
typedef struct S S; // expected-note {{here}}
struct S *p; // expected-error {{typedef 'S' cannot be referenced with a struct specifier}}
2014-03-17 16:20:10 +08:00
}
}
struct S {};
namespace UsingDir {
namespace A {
struct S {}; // expected-note {{found}}
}
namespace B {
typedef int S; // expected-note {{found}}
}
namespace C {
using namespace A;
using namespace B;
struct S s; // expected-error {{ambiguous}}
}
namespace D {
using A::S;
typedef struct S S;
struct S s;
2014-03-17 16:20:10 +08:00
}
namespace E {
// The standard doesn't say whether this is valid. We interpret
// DR407 as meaning "if lookup finds both a tag and a typedef with the
// same type, then it's OK in an elaborated-type-specifier".
2014-03-17 16:20:10 +08:00
typedef A::S S;
using A::S;
struct S s;
}
namespace F {
typedef A::S S;
2014-03-17 16:20:10 +08:00
}
// The standard doesn't say what to do in these cases either.
2014-03-17 16:20:10 +08:00
namespace G {
using namespace A;
using namespace F;
struct S s;
}
namespace H {
using namespace F;
using namespace A;
struct S s;
2014-03-17 16:20:10 +08:00
}
}
}
namespace dr408 { // dr408: 3.4
template<int N> void g() { int arr[N != 1 ? 1 : -1]; }
template<> void g<2>() { }
template<typename T> struct S {
static int i[];
void f();
};
template<typename T> int S<T>::i[] = { 1 };
template<typename T> void S<T>::f() {
g<sizeof (i) / sizeof (int)>();
}
template<> int S<int>::i[] = { 1, 2 };
template void S<int>::f(); // uses g<2>(), not g<1>().
template<typename T> struct R {
static int arr[];
void f();
};
template<typename T> int R<T>::arr[1];
template<typename T> void R<T>::f() {
int arr[sizeof(arr) != sizeof(int) ? 1 : -1];
}
template<> int R<int>::arr[2];
template void R<int>::f();
}
2014-03-17 16:20:10 +08:00
namespace dr409 { // dr409: yes
template<typename T> struct A {
typedef int B;
B b1;
A::B b2;
A<T>::B b3;
A<T*>::B b4;
#if __cplusplus <= 201703L
// expected-error@-2 {{implicit 'typename' is a C++20 extension}}
#endif
2014-03-17 16:20:10 +08:00
};
}
namespace dr410 { // dr410: no
template<class T> void f(T);
void g(int);
namespace M {
template<class T> void h(T);
template<class T> void i(T);
struct A {
friend void f<>(int);
friend void h<>(int);
friend void g(int);
template<class T> void i(T);
friend void i<>(int);
private:
static void z(); // expected-note {{private}}
};
template<> void h(int) { A::z(); }
// FIXME: This should be ill-formed. The member A::i<> is befriended,
// not this function.
template<> void i(int) { A::z(); }
}
template<> void f(int) { M::A::z(); }
void g(int) { M::A::z(); } // expected-error {{private}}
}
// dr412 is in its own file.
namespace dr413 { // dr413: yes
struct S {
int a;
int : 17;
int b;
};
S s = { 1, 2, 3 }; // expected-error {{excess elements}}
struct E {};
struct T { // expected-note {{here}}
int a;
E e;
int b;
};
T t1 = { 1, {}, 2 };
T t2 = { 1, 2 }; // expected-error {{aggregate with no elements requires explicit braces}}
2014-03-17 16:20:10 +08:00
}
namespace dr414 { // dr414: dup 305
struct X {};
void f() {
X x;
struct X {};
x.~X();
}
}
namespace dr415 { // dr415: yes
template<typename T> void f(T, ...) { T::error; }
void f(int, int);
void g() { f(0, 0); } // ok
}
namespace dr416 { // dr416: yes
extern struct A a;
int &operator+(const A&, const A&);
int &k = a + a;
struct A { float &operator+(A&); };
float &f = a + a;
}
namespace dr417 { // dr417: no
struct A;
struct dr417::A {}; // expected-warning {{extra qualification}}
struct B { struct X; };
struct C : B {};
struct C::X {}; // expected-error {{no struct named 'X' in 'dr417::C'}}
struct B::X { struct Y; };
struct C::X::Y {}; // ok!
namespace N {
struct D;
struct E;
struct F;
struct H;
}
// FIXME: This is ill-formed.
using N::D;
struct dr417::D {}; // expected-warning {{extra qualification}}
using namespace N;
struct dr417::E {}; // expected-warning {{extra qualification}} expected-error {{no struct named 'E'}}
struct N::F {};
struct G;
using N::H;
namespace M {
struct dr417::G {}; // expected-error {{namespace 'M' does not enclose}}
struct dr417::H {}; // expected-error {{namespace 'M' does not enclose}}
}
}
namespace dr420 { // dr420: yes
template<typename T> struct ptr {
T *operator->() const;
T &operator*() const;
};
template<typename T, typename P> void test(P p) {
p->~T();
p->T::~T();
(*p).~T();
(*p).T::~T();
}
struct X {};
template void test<int>(int*);
template void test<int>(ptr<int>);
template void test<X>(X*);
template void test<X>(ptr<X>);
template<typename T>
void test2(T p) {
p->template Y<int>::~Y<int>();
p->~Y<int>();
p->template ~Y<int>(); // expected-error {{'template' keyword not permitted in destructor name}}
2014-03-17 16:20:10 +08:00
}
template<typename T> struct Y {};
template void test2(Y<int>*);
template void test2(ptr<Y<int> >);
2014-03-17 16:20:10 +08:00
void test3(int *p, ptr<int> q) {
typedef int Int;
p->~Int();
q->~Int();
p->Int::~Int();
q->Int::~Int();
}
#if __cplusplus >= 201103L
template<typename T> using id = T;
struct A { template<typename T> using id = T; };
void test4(int *p, ptr<int> q) {
p->~id<int>();
q->~id<int>();
p->id<int>::~id<int>();
q->id<int>::~id<int>();
p->template id<int>::~id<int>(); // OK since dr2292
q->template id<int>::~id<int>(); // OK since dr2292
2014-03-17 16:20:10 +08:00
p->A::template id<int>::~id<int>();
q->A::template id<int>::~id<int>();
}
#endif
}
namespace dr421 { // dr421: yes
struct X { X(); int n; int &r; };
int *p = &X().n; // expected-error-re {{{{taking the address of a temporary|cannot take the address of an rvalue}}}}
2014-03-17 16:20:10 +08:00
int *q = &X().r;
}
namespace dr422 { // dr422: yes
template<typename T, typename U> void f() {
typedef T type; // expected-note {{prev}}
typedef U type; // expected-error {{redef}}
}
template void f<int, int>();
template void f<int, char>(); // expected-note {{instantiation}}
}
namespace dr423 { // dr423: yes
template<typename T> struct X { operator T&(); };
void f(X<int> x) { x += 1; }
}
namespace dr424 { // dr424: yes
struct A {
typedef int N; // expected-note {{previous}}
typedef int N; // expected-error {{redefinition}}
struct X;
typedef X X; // expected-note {{previous}}
struct X {};
struct X *p;
struct A::X *q;
X *r;
typedef X X; // expected-error {{redefinition}}
};
struct B {
typedef int N;
};
struct C : B {
typedef int N; // expected-note {{previous}}
typedef int N; // expected-error {{redefinition}}
};
}
namespace dr425 { // dr425: yes
struct A { template<typename T> operator T() const; } a;
float f = 1.0f * a; // expected-error {{ambiguous}} expected-note 5+{{built-in candidate}}
template<typename T> struct is_float;
template<> struct is_float<float> { typedef void type; };
struct B {
template<typename T, typename U = typename is_float<T>::type> operator T() const; // expected-error 0-1{{extension}}
} b;
float g = 1.0f * b; // ok
}
namespace dr427 { // dr427: yes
struct B {};
struct D : public B {
D(B &) = delete; // expected-error 0-1{{extension}} expected-note {{deleted}}
};
extern D d1;
B &b = d1;
const D &d2 = static_cast<const D&>(b);
const D &d3 = (const D&)b;
const D &d4(b); // expected-error {{deleted}}
}
namespace dr428 { // dr428: yes
template<typename T> T make();
extern struct X x; // expected-note 5{{forward declaration}}
void f() {
throw void(); // expected-error {{cannot throw}}
throw make<void*>();
throw make<const volatile void*>();
throw x; // expected-error {{cannot throw}}
throw make<X&>(); // expected-error {{cannot throw}}
throw make<X*>(); // expected-error {{cannot throw}}
throw make<const volatile X&>(); // expected-error {{cannot throw}}
throw make<const volatile X*>(); // expected-error {{cannot throw}}
}
}
namespace dr429 { // dr429: yes c++11
// FIXME: This rule is obviously intended to apply to C++98 as well.
struct A {
static void *operator new(size_t, size_t);
static void operator delete(void*, size_t);
} *a = new (0) A;
#if __cplusplus >= 201103L
// expected-error@-2 {{'new' expression with placement arguments refers to non-placement 'operator delete'}}
// expected-note@-4 {{here}}
#endif
struct B {
static void *operator new(size_t, size_t);
static void operator delete(void*);
static void operator delete(void*, size_t);
} *b = new (0) B; // ok, second delete is not a non-placement deallocation function
}
namespace dr430 { // dr430: yes c++11
// resolved by n2239
// FIXME: This should apply in C++98 too.
void f(int n) {
int a[] = { n++, n++, n++ };
#if __cplusplus < 201103L
// expected-warning@-2 {{multiple unsequenced modifications to 'n'}}
#endif
}
}
namespace dr431 { // dr431: yes
struct A {
template<typename T> T *get();
template<typename T> struct B {
template<typename U> U *get();
};
};
template<typename T> void f(A a) {
a.get<A>()->get<T>();
a.get<T>()
->get<T>(); // expected-error {{use 'template'}}
a.get<T>()->template get<T>();
a.A::get<T>();
A::B<int> *b = a.get<A::B<int> >();
b->get<int>();
b->A::B<int>::get<int>();
b->A::B<int>::get<T>();
b->A::B<T>::get<int>(); // expected-error {{use 'template'}}
b->A::B<T>::template get<int>();
b->A::B<T>::get<T>(); // expected-error {{use 'template'}}
b->A::B<T>::template get<T>();
A::B<T> *c = a.get<A::B<T> >();
c->get<int>(); // expected-error {{use 'template'}}
c->template get<int>();
}
}
namespace dr432 { // dr432: yes
template<typename T> struct A {};
template<typename T> struct B : A<B> {}; // expected-error {{requires template arguments}} expected-note {{declared}}
template<typename T> struct C : A<C<T> > {};
#if __cplusplus >= 201103L
template<typename T> struct D : decltype(A<D>()) {}; // expected-error {{requires template arguments}} expected-note {{declared}}
#endif
}
namespace dr433 { // dr433: yes
template<class T> struct S {
void f(union U*);
};
U *p;
template<class T> void S<T>::f(union U*) {}
S<int> s;
}
namespace dr434 { // dr434: sup 2352
2014-03-17 16:20:10 +08:00
void f() {
const int ci = 0;
int *pi = 0;
const int *&rpci = pi; // expected-error {{incompatible qualifiers}}
const int * const &rcpci = pi; // OK
2014-03-17 16:20:10 +08:00
rpci = &ci;
*pi = 1;
}
#if __cplusplus >= 201103L
int *pi = 0;
const int * const &rcpci = pi;
static_assert(&rcpci == &pi, "");
#endif
2014-03-17 16:20:10 +08:00
}
// dr435: na
namespace dr436 { // dr436: yes
enum E { f }; // expected-note {{previous}}
void f(); // expected-error {{redefinition}}
}
namespace dr437 { // dr437: sup 1308
2014-03-17 16:20:10 +08:00
// This is superseded by 1308, which is in turn superseded by 1330,
// which restores this rule.
template<typename U> struct T : U {};
struct S {
2014-03-17 16:20:10 +08:00
void f() throw(S);
#if __cplusplus > 201402L
// expected-error@-2 {{ISO C++17 does not allow}} expected-note@-2 {{use 'noexcept}}
#endif
void g() throw(T<S>);
#if __cplusplus > 201402L
// expected-error@-2 {{ISO C++17 does not allow}} expected-note@-2 {{use 'noexcept}}
#endif
struct U;
void h() throw(U);
#if __cplusplus > 201402L
// expected-error@-2 {{ISO C++17 does not allow}} expected-note@-2 {{use 'noexcept}}
#endif
2014-03-17 16:20:10 +08:00
struct U {};
};
}
// dr438 FIXME write a codegen test
// dr439 FIXME write a codegen test
// dr441 FIXME write a codegen test
// dr442: sup 348
// dr443: na
namespace dr444 { // dr444: yes
struct D;
struct B { // expected-note {{candidate function (the implicit copy}} expected-note 0-1 {{implicit move}}
2014-03-17 16:20:10 +08:00
D &operator=(D &) = delete; // expected-error 0-1{{extension}} expected-note {{deleted}}
};
struct D : B { // expected-note {{candidate function (the implicit copy}} expected-note 0-1 {{implicit move}}
2014-03-17 16:20:10 +08:00
using B::operator=;
} extern d;
void f() {
d = d; // expected-error {{deleted}}
}
}
namespace dr445 { // dr445: yes
class A { void f(); }; // expected-note {{private}}
struct B {
friend void A::f(); // expected-error {{private}}
};
}
namespace dr446 { // dr446: yes
struct C;
struct A {
A();
A(const A&) = delete; // expected-error 0-1{{extension}} expected-note +{{deleted}}
A(const C&);
};
struct C : A {};
void f(A a, bool b, C c) {
void(b ? a : a);
b ? A() : a; // expected-error {{deleted}}
b ? a : A(); // expected-error {{deleted}}
b ? A() : A();
#if __cplusplus <= 201402L
// expected-error@-2 {{deleted}}
#endif
2014-03-17 16:20:10 +08:00
void(b ? a : c);
b ? a : C(); // expected-error {{deleted}}
b ? c : A();
#if __cplusplus <= 201402L
// expected-error@-2 {{deleted}}
#endif
b ? A() : C();
#if __cplusplus <= 201402L
// expected-error@-2 {{deleted}}
#endif
2014-03-17 16:20:10 +08:00
}
}
namespace dr447 { // dr447: yes
struct A { int n; int a[4]; };
template<int> struct U {
typedef int type;
template<typename V> static void h();
};
template<typename T> U<sizeof(T)> g(T);
template<typename T, int N> void f(int n) {
// ok, not type dependent
g(__builtin_offsetof(A, n)).h<int>();
g(__builtin_offsetof(T, n)).h<int>();
// value dependent if first argument is a dependent type
U<__builtin_offsetof(A, n)>::type a;
U<__builtin_offsetof(T, n)>::type b; // expected-error +{{}} expected-warning 0+{{}}
// as an extension, we allow the member-designator to include array indices
g(__builtin_offsetof(A, a[0])).h<int>();
g(__builtin_offsetof(A, a[N])).h<int>();
U<__builtin_offsetof(A, a[0])>::type c;
U<__builtin_offsetof(A, a[N])>::type d; // expected-error +{{}} expected-warning 0+{{}}
2014-03-17 16:20:10 +08:00
}
}
namespace dr448 { // dr448: yes
template<typename T = int> void f(int); // expected-error 0-1{{extension}} expected-note {{no known conversion}}
template<typename T> void g(T t) {
f<T>(t); // expected-error {{neither visible in the template definition nor found by argument-dependent lookup}}
dr448::f(t); // expected-error {{no matching function}}
}
template<typename T> void f(T); // expected-note {{should be declared prior to the call site}}
namespace HideFromADL { struct X {}; }
template void g(int); // ok
template void g(HideFromADL::X); // expected-note {{instantiation of}}
}
// dr449: na
namespace dr450 { // dr450: yes
typedef int A[3];
void f1(const A &);
void f2(A &); // expected-note +{{not viable}}
struct S { A n; };
void g() {
f1(S().n);
f2(S().n); // expected-error {{no match}}}
}
#if __cplusplus >= 201103L
void h() {
f1(A{});
f2(A{}); // expected-error {{no match}}
}
#endif
}
2014-03-19 16:04:12 +08:00
namespace dr451 { // dr451: yes
const int a = 1 / 0; // expected-warning {{undefined}}
const int b = 1 / 0; // expected-warning {{undefined}} expected-note {{here}} expected-note 0-1{{division by zero}}
int arr[b]; // expected-error +{{variable length arr}} expected-note {{initializer of 'b' is not a constant}}
2014-03-19 16:04:12 +08:00
}
namespace dr452 { // dr452: yes
struct A {
int a, b, c;
A *p;
int f();
A() : a(f()), b(this->f() + a), c(this->a), p(this) {}
};
}
// dr454 FIXME write a codegen test
namespace dr456 { // dr456: yes
// sup 903 c++11
const int null = 0;
void *p = null;
#if __cplusplus >= 201103L
// expected-error@-2 {{cannot initialize}}
#else
// expected-warning@-4 {{null}}
#endif
const bool f = false;
void *q = f;
#if __cplusplus >= 201103L
// expected-error@-2 {{cannot initialize}}
#else
// expected-warning@-4 {{null}}
#endif
}
namespace dr457 { // dr457: yes
const int a = 1;
const volatile int b = 1;
int ax[a];
int bx[b]; // expected-error +{{variable length array}} expected-note {{read of volatile}}
2014-03-19 16:04:12 +08:00
enum E {
ea = a,
eb = b // expected-error {{constant}} expected-note {{read of volatile-qualified}}
2014-03-19 16:04:12 +08:00
};
}
namespace dr458 { // dr458: 11
2014-03-19 16:04:12 +08:00
struct A {
int T;
int f();
template<typename> int g();
};
template<typename> struct B : A {
int f();
template<typename> int g();
template<typename> int h();
};
int A::f() {
return T;
}
template<typename T> // expected-note {{declared here}}
2014-03-19 16:04:12 +08:00
int A::g() {
return T; // expected-error {{'T' does not refer to a value}}
2014-03-19 16:04:12 +08:00
}
template<typename T>
int B<T>::f() {
return T;
}
template<typename T> template<typename U>
int B<T>::g() {
return T;
}
template<typename U> template<typename T> // expected-note {{declared here}}
2014-03-19 16:04:12 +08:00
int B<U>::h() {
return T; // expected-error {{'T' does not refer to a value}}
2014-03-19 16:04:12 +08:00
}
}
namespace dr460 { // dr460: yes
namespace X { namespace Q { int n; } }
namespace Y {
using X; // expected-error {{requires a qualified name}}
using dr460::X; // expected-error {{cannot refer to a namespace}}
using X::Q; // expected-error {{cannot refer to a namespace}}
2014-03-19 16:04:12 +08:00
}
}
// dr461: na
// dr462 FIXME write a codegen test
// dr463: na
// dr464: na
// dr465: na
namespace dr466 { // dr466: no
typedef int I;
typedef const int CI;
typedef volatile int VI;
void f(int *a, CI *b, VI *c) {
a->~I();
a->~CI();
a->~VI();
a->I::~I();
a->CI::~CI();
a->VI::~VI();
a->CI::~VI(); // FIXME: This is invalid; CI and VI are not the same scalar type.
b->~I();
b->~CI();
b->~VI();
b->I::~I();
b->CI::~CI();
b->VI::~VI();
c->~I();
c->~CI();
c->~VI();
c->I::~I();
c->CI::~CI();
c->VI::~VI();
}
}
namespace dr467 { // dr467: yes
int stuff();
int f() {
static bool done;
if (done)
goto later;
static int k = stuff();
done = true;
later:
return k;
}
int g() {
goto later; // expected-error {{cannot jump}}
2014-03-19 16:04:12 +08:00
int k = stuff(); // expected-note {{bypasses variable initialization}}
later:
return k;
}
}
namespace dr468 { // dr468: yes c++11
// FIXME: Should we allow this in C++98 too?
template<typename> struct A {
template<typename> struct B {
static int C;
};
};
int k = dr468::template A<int>::template B<char>::C;
#if __cplusplus < 201103L
// expected-error@-2 2{{'template' keyword outside of a template}}
#endif
}
namespace dr469 { // dr469: no
template<typename T> struct X; // expected-note {{here}}
2014-03-19 16:04:12 +08:00
template<typename T> struct X<const T> {};
X<int&> x; // expected-error {{undefined}}
}
namespace dr470 { // dr470: yes
template<typename T> struct A {
struct B {};
};
template<typename T> struct C {
};
template struct A<int>; // expected-note {{previous}}
template struct A<int>::B; // expected-error {{duplicate explicit instantiation}}
// ok, instantiating C<char> doesn't instantiate base class members.
template struct A<char>;
template struct C<char>;
}
namespace dr471 { // dr471: yes
struct A { int n; };
struct B : private virtual A {};
struct C : protected virtual A {};
struct D : B, C { int f() { return n; } };
struct E : private virtual A {
using A::n;
};
struct F : E, B { int f() { return n; } };
struct G : virtual A {
private:
using A::n; // expected-note {{here}}
};
struct H : B, G { int f() { return n; } }; // expected-error {{private}}
}
namespace dr474 { // dr474: yes
namespace N {
struct S {
void f();
};
}
void N::S::f() {
void g(); // expected-note {{previous}}
}
int g();
namespace N {
int g(); // expected-error {{cannot be overloaded}}
}
}
// dr475 FIXME write a codegen test
namespace dr477 { // dr477: 3.5
struct A {
explicit A();
virtual void f();
};
struct B {
friend explicit A::A(); // expected-error {{'explicit' is invalid in friend declarations}}
friend virtual void A::f(); // expected-error {{'virtual' is invalid in friend declarations}}
};
explicit A::A() {} // expected-error {{can only be specified inside the class definition}}
virtual void A::f() {} // expected-error {{can only be specified inside the class definition}}
}
namespace dr478 { // dr478: yes
struct A { virtual void f() = 0; }; // expected-note {{unimplemented}}
void f(A *a);
void f(A a[10]); // expected-error {{array of abstract class type}}
}
namespace dr479 { // dr479: yes
struct S {
S();
private:
S(const S&); // expected-note +{{here}}
~S(); // expected-note +{{here}}
};
void f() {
throw S();
[clang] Implement ElaboratedType sugaring for types written bare Without this patch, clang will not wrap in an ElaboratedType node types written without a keyword and nested name qualifier, which goes against the intent that we should produce an AST which retains enough details to recover how things are written. The lack of this sugar is incompatible with the intent of the type printer default policy, which is to print types as written, but to fall back and print them fully qualified when they are desugared. An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still requires pointer alignment due to pre-existing bug in the TypeLoc buffer handling. --- Troubleshooting list to deal with any breakage seen with this patch: 1) The most likely effect one would see by this patch is a change in how a type is printed. The type printer will, by design and default, print types as written. There are customization options there, but not that many, and they mainly apply to how to print a type that we somehow failed to track how it was written. This patch fixes a problem where we failed to distinguish between a type that was written without any elaborated-type qualifiers, such as a 'struct'/'class' tags and name spacifiers such as 'std::', and one that has been stripped of any 'metadata' that identifies such, the so called canonical types. Example: ``` namespace foo { struct A {}; A a; }; ``` If one were to print the type of `foo::a`, prior to this patch, this would result in `foo::A`. This is how the type printer would have, by default, printed the canonical type of A as well. As soon as you add any name qualifiers to A, the type printer would suddenly start accurately printing the type as written. This patch will make it print it accurately even when written without qualifiers, so we will just print `A` for the initial example, as the user did not really write that `foo::` namespace qualifier. 2) This patch could expose a bug in some AST matcher. Matching types is harder to get right when there is sugar involved. For example, if you want to match a type against being a pointer to some type A, then you have to account for getting a type that is sugar for a pointer to A, or being a pointer to sugar to A, or both! Usually you would get the second part wrong, and this would work for a very simple test where you don't use any name qualifiers, but you would discover is broken when you do. The usual fix is to either use the matcher which strips sugar, which is annoying to use as for example if you match an N level pointer, you have to put N+1 such matchers in there, beginning to end and between all those levels. But in a lot of cases, if the property you want to match is present in the canonical type, it's easier and faster to just match on that... This goes with what is said in 1), if you want to match against the name of a type, and you want the name string to be something stable, perhaps matching on the name of the canonical type is the better choice. 3) This patch could expose a bug in how you get the source range of some TypeLoc. For some reason, a lot of code is using getLocalSourceRange(), which only looks at the given TypeLoc node. This patch introduces a new, and more common TypeLoc node which contains no source locations on itself. This is not an inovation here, and some other, more rare TypeLoc nodes could also have this property, but if you use getLocalSourceRange on them, it's not going to return any valid locations, because it doesn't have any. The right fix here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive into the inner TypeLoc to get the source range if it doesn't find it on the top level one. You can use getLocalSourceRange if you are really into micro-optimizations and you have some outside knowledge that the TypeLocs you are dealing with will always include some source location. 4) Exposed a bug somewhere in the use of the normal clang type class API, where you have some type, you want to see if that type is some particular kind, you try a `dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match. Again, like 2), this would usually have been tested poorly with some simple tests with no qualifications, and would have been broken had there been any other kind of type sugar, be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType. The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper into the type. Or use `getAsAdjusted` when dealing with TypeLocs. For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast. 5) It could be a bug in this patch perhaps. Let me know if you need any help! Signed-off-by: Matheus Izvekov <mizvekov@gmail.com> Differential Revision: https://reviews.llvm.org/D112374
2021-10-12 00:15:36 +08:00
// expected-error@-1 {{temporary of type 'S' has private destructor}}
// expected-error@-2 {{exception object of type 'S' has private destructor}}
#if __cplusplus < 201103L
// expected-error@-4 {{C++98 requires an accessible copy constructor}}
#endif
#if __cplusplus <= 201402L
// expected-error@-7 {{calling a private constructor}} (copy ctor)
#endif
}
void g() {
S s; // expected-error {{private destructor}}}
throw s;
// expected-error@-1 {{calling a private constructor}}
[clang] Implement ElaboratedType sugaring for types written bare Without this patch, clang will not wrap in an ElaboratedType node types written without a keyword and nested name qualifier, which goes against the intent that we should produce an AST which retains enough details to recover how things are written. The lack of this sugar is incompatible with the intent of the type printer default policy, which is to print types as written, but to fall back and print them fully qualified when they are desugared. An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still requires pointer alignment due to pre-existing bug in the TypeLoc buffer handling. --- Troubleshooting list to deal with any breakage seen with this patch: 1) The most likely effect one would see by this patch is a change in how a type is printed. The type printer will, by design and default, print types as written. There are customization options there, but not that many, and they mainly apply to how to print a type that we somehow failed to track how it was written. This patch fixes a problem where we failed to distinguish between a type that was written without any elaborated-type qualifiers, such as a 'struct'/'class' tags and name spacifiers such as 'std::', and one that has been stripped of any 'metadata' that identifies such, the so called canonical types. Example: ``` namespace foo { struct A {}; A a; }; ``` If one were to print the type of `foo::a`, prior to this patch, this would result in `foo::A`. This is how the type printer would have, by default, printed the canonical type of A as well. As soon as you add any name qualifiers to A, the type printer would suddenly start accurately printing the type as written. This patch will make it print it accurately even when written without qualifiers, so we will just print `A` for the initial example, as the user did not really write that `foo::` namespace qualifier. 2) This patch could expose a bug in some AST matcher. Matching types is harder to get right when there is sugar involved. For example, if you want to match a type against being a pointer to some type A, then you have to account for getting a type that is sugar for a pointer to A, or being a pointer to sugar to A, or both! Usually you would get the second part wrong, and this would work for a very simple test where you don't use any name qualifiers, but you would discover is broken when you do. The usual fix is to either use the matcher which strips sugar, which is annoying to use as for example if you match an N level pointer, you have to put N+1 such matchers in there, beginning to end and between all those levels. But in a lot of cases, if the property you want to match is present in the canonical type, it's easier and faster to just match on that... This goes with what is said in 1), if you want to match against the name of a type, and you want the name string to be something stable, perhaps matching on the name of the canonical type is the better choice. 3) This patch could expose a bug in how you get the source range of some TypeLoc. For some reason, a lot of code is using getLocalSourceRange(), which only looks at the given TypeLoc node. This patch introduces a new, and more common TypeLoc node which contains no source locations on itself. This is not an inovation here, and some other, more rare TypeLoc nodes could also have this property, but if you use getLocalSourceRange on them, it's not going to return any valid locations, because it doesn't have any. The right fix here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive into the inner TypeLoc to get the source range if it doesn't find it on the top level one. You can use getLocalSourceRange if you are really into micro-optimizations and you have some outside knowledge that the TypeLocs you are dealing with will always include some source location. 4) Exposed a bug somewhere in the use of the normal clang type class API, where you have some type, you want to see if that type is some particular kind, you try a `dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match. Again, like 2), this would usually have been tested poorly with some simple tests with no qualifications, and would have been broken had there been any other kind of type sugar, be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType. The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper into the type. Or use `getAsAdjusted` when dealing with TypeLocs. For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast. 5) It could be a bug in this patch perhaps. Let me know if you need any help! Signed-off-by: Matheus Izvekov <mizvekov@gmail.com> Differential Revision: https://reviews.llvm.org/D112374
2021-10-12 00:15:36 +08:00
// expected-error@-2 {{exception object of type 'S' has private destructor}}
}
void h() {
try {
f();
g();
} catch (S s) {
// expected-error@-1 {{calling a private constructor}}
[clang] Implement ElaboratedType sugaring for types written bare Without this patch, clang will not wrap in an ElaboratedType node types written without a keyword and nested name qualifier, which goes against the intent that we should produce an AST which retains enough details to recover how things are written. The lack of this sugar is incompatible with the intent of the type printer default policy, which is to print types as written, but to fall back and print them fully qualified when they are desugared. An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still requires pointer alignment due to pre-existing bug in the TypeLoc buffer handling. --- Troubleshooting list to deal with any breakage seen with this patch: 1) The most likely effect one would see by this patch is a change in how a type is printed. The type printer will, by design and default, print types as written. There are customization options there, but not that many, and they mainly apply to how to print a type that we somehow failed to track how it was written. This patch fixes a problem where we failed to distinguish between a type that was written without any elaborated-type qualifiers, such as a 'struct'/'class' tags and name spacifiers such as 'std::', and one that has been stripped of any 'metadata' that identifies such, the so called canonical types. Example: ``` namespace foo { struct A {}; A a; }; ``` If one were to print the type of `foo::a`, prior to this patch, this would result in `foo::A`. This is how the type printer would have, by default, printed the canonical type of A as well. As soon as you add any name qualifiers to A, the type printer would suddenly start accurately printing the type as written. This patch will make it print it accurately even when written without qualifiers, so we will just print `A` for the initial example, as the user did not really write that `foo::` namespace qualifier. 2) This patch could expose a bug in some AST matcher. Matching types is harder to get right when there is sugar involved. For example, if you want to match a type against being a pointer to some type A, then you have to account for getting a type that is sugar for a pointer to A, or being a pointer to sugar to A, or both! Usually you would get the second part wrong, and this would work for a very simple test where you don't use any name qualifiers, but you would discover is broken when you do. The usual fix is to either use the matcher which strips sugar, which is annoying to use as for example if you match an N level pointer, you have to put N+1 such matchers in there, beginning to end and between all those levels. But in a lot of cases, if the property you want to match is present in the canonical type, it's easier and faster to just match on that... This goes with what is said in 1), if you want to match against the name of a type, and you want the name string to be something stable, perhaps matching on the name of the canonical type is the better choice. 3) This patch could expose a bug in how you get the source range of some TypeLoc. For some reason, a lot of code is using getLocalSourceRange(), which only looks at the given TypeLoc node. This patch introduces a new, and more common TypeLoc node which contains no source locations on itself. This is not an inovation here, and some other, more rare TypeLoc nodes could also have this property, but if you use getLocalSourceRange on them, it's not going to return any valid locations, because it doesn't have any. The right fix here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive into the inner TypeLoc to get the source range if it doesn't find it on the top level one. You can use getLocalSourceRange if you are really into micro-optimizations and you have some outside knowledge that the TypeLocs you are dealing with will always include some source location. 4) Exposed a bug somewhere in the use of the normal clang type class API, where you have some type, you want to see if that type is some particular kind, you try a `dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match. Again, like 2), this would usually have been tested poorly with some simple tests with no qualifications, and would have been broken had there been any other kind of type sugar, be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType. The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper into the type. Or use `getAsAdjusted` when dealing with TypeLocs. For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast. 5) It could be a bug in this patch perhaps. Let me know if you need any help! Signed-off-by: Matheus Izvekov <mizvekov@gmail.com> Differential Revision: https://reviews.llvm.org/D112374
2021-10-12 00:15:36 +08:00
// expected-error@-2 {{variable of type 'S' has private destructor}}
}
}
}
namespace dr480 { // dr480: yes
struct A { int n; };
struct B : A {};
struct C : virtual B {};
struct D : C {};
int A::*a = &A::n;
int D::*b = a; // expected-error {{virtual base}}
extern int D::*c;
int A::*d = static_cast<int A::*>(c); // expected-error {{virtual base}}
D *e;
A *f = e;
D *g = static_cast<D*>(f); // expected-error {{virtual base}}
extern D &i;
A &j = i;
D &k = static_cast<D&>(j); // expected-error {{virtual base}}
}
namespace dr481 { // dr481: yes
template<class T, T U> class A { T *x; };
T *x; // expected-error {{unknown type}}
template<class T *U> class B { T *x; };
T *y; // ok
struct C {
template<class T> void f(class D *p);
};
D *z; // ok
template<typename A = C, typename C = A> struct E {
void f() {
typedef ::dr481::C c; // expected-note {{previous}}
typedef C c; // expected-error {{different type}}
}
};
template struct E<>; // ok
template struct E<int>; // expected-note {{instantiation of}}
template<template<typename U_no_typo_correction> class A,
A<int> *B,
U_no_typo_correction *C> // expected-error {{unknown type}}
struct F {
U_no_typo_correction *x; // expected-error {{unknown type}}
};
template<template<class H *> class> struct G {
H *x;
};
H *q;
typedef int N;
template<N X, typename N, template<N Y> class T> struct I;
template<char*> struct J;
I<123, char*, J> *j;
}
namespace dr482 { // dr482: 3.5
extern int a;
void f();
int dr482::a = 0; // expected-warning {{extra qualification}}
void dr482::f() {} // expected-warning {{extra qualification}}
inline namespace X { // expected-error 0-1{{C++11 feature}}
extern int b;
void g();
struct S;
}
int dr482::b = 0; // expected-warning {{extra qualification}}
void dr482::g() {} // expected-warning {{extra qualification}}
struct dr482::S {}; // expected-warning {{extra qualification}}
void dr482::f(); // expected-warning {{extra qualification}}
void dr482::g(); // expected-warning {{extra qualification}}
// FIXME: The following are valid in DR482's wording, but these are bugs in
// the wording which we deliberately don't implement.
namespace N { typedef int type; }
typedef int N::type; // expected-error {{typedef declarator cannot be qualified}}
struct A {
struct B;
struct A::B {}; // expected-error {{extra qualification}}
#if __cplusplus >= 201103L
enum class C;
enum class A::C {}; // expected-error {{extra qualification}}
#endif
};
}
namespace dr483 { // dr483: yes
namespace climits {
int check1[__SCHAR_MAX__ >= 127 ? 1 : -1];
int check2[__SHRT_MAX__ >= 32767 ? 1 : -1];
int check3[__INT_MAX__ >= 32767 ? 1 : -1];
int check4[__LONG_MAX__ >= 2147483647 ? 1 : -1];
int check5[__LONG_LONG_MAX__ >= 9223372036854775807 ? 1 : -1];
#if __cplusplus < 201103L
// expected-error@-2 1+{{extension}}
#endif
}
namespace cstdint {
int check1[__PTRDIFF_WIDTH__ >= 16 ? 1 : -1];
int check2[__SIG_ATOMIC_WIDTH__ >= 8 ? 1 : -1];
int check3[__SIZE_WIDTH__ >= 16 ? 1 : -1];
int check4[__WCHAR_WIDTH__ >= 8 ? 1 : -1];
int check5[__WINT_WIDTH__ >= 16 ? 1 : -1];
}
}
namespace dr484 { // dr484: yes
struct A {
A();
void f();
};
typedef const A CA;
void CA::f() {
this->~CA();
this->CA::~A();
this->CA::A::~A();
}
CA::A() {}
struct B : CA {
B() : CA() {}
void f() { return CA::f(); }
};
struct C;
typedef C CT; // expected-note {{here}}
struct CT {}; // expected-error {{conflicts with typedef}}
namespace N {
struct D;
typedef D DT; // expected-note {{here}}
}
struct N::DT {}; // expected-error {{conflicts with typedef}}
typedef struct {
S(); // expected-error {{a type specifier is required}}
} S;
}
namespace dr485 { // dr485: yes
namespace N {
struct S {};
int operator+(S, S);
template<typename T> int f(S);
}
template<typename T> int f();
N::S s;
int a = operator+(s, s);
int b = f<int>(s);
}
namespace dr486 { // dr486: yes
template<typename T> T f(T *); // expected-note 2{{substitution failure}}
int &f(...);
void g();
int n[10];
void h() {
int &a = f(&g);
int &b = f(&n);
f<void()>(&g); // expected-error {{no match}}
f<int[10]>(&n); // expected-error {{no match}}
}
}
namespace dr487 { // dr487: yes
enum E { e };
int operator+(int, E); // expected-note 0-1{{here}}
int i[4 + e]; // expected-error 2{{variable length array}} expected-note 0-1{{non-constexpr}}
}
namespace dr488 { // dr488: yes c++11
template <typename T> void f(T);
void f(int);
void g() {
// FIXME: It seems CWG thought this should be a SFINAE failure prior to
// allowing local types as template arguments. In C++98, we should either
// allow local types as template arguments or treat this as a SFINAE
// failure.
enum E { e };
f(e);
#if __cplusplus < 201103L
// expected-error@-2 {{local type}}
#endif
}
}
// dr489: na
namespace dr490 { // dr490: yes
template<typename T> struct X {};
struct A {
typedef int T;
struct K {}; // expected-note {{declared}}
int f(T);
int g(T);
int h(X<T>);
int X<T>::*i(); // expected-note {{previous}}
int K::*j();
template<typename T> T k();
operator X<T>();
};
struct B {
typedef char T;
typedef int U;
friend int A::f(T);
friend int A::g(U);
friend int A::h(X<T>);
// FIXME: Per this DR, these two are valid! That is another defect
// (no number yet...) which will eventually supersede this one.
friend int X<T>::*A::i(); // expected-error {{return type}}
friend int K::*A::j(); // expected-error {{undeclared identifier 'K'; did you mean 'A::K'?}}
// ok, lookup finds B::T, not A::T, so return type matches
friend char A::k<T>();
friend int A::k<U>();
// A conversion-type-id in a conversion-function-id is always looked up in
// the class of the conversion function first.
friend A::operator X<T>();
};
}
namespace dr491 { // dr491: dup 413
struct A {} a, b[3] = { a, {} };
A c[2] = { a, {}, b[1] }; // expected-error {{excess elements}}
}
// dr492 FIXME write a codegen test
namespace dr493 { // dr493: dup 976
struct X {
template <class T> operator const T &() const;
};
void f() {
if (X()) {
}
}
}
namespace dr494 { // dr494: dup 372
class A {
class B {};
friend class C;
};
class C : A::B {
A::B x;
class D : A::B {
A::B y;
};
};
}
namespace dr495 { // dr495: 3.5
template<typename T>
struct S {
operator int() { return T::error; }
template<typename U> operator U();
};
S<int> s;
long n = s;
template<typename T>
struct S2 {
template<typename U> operator U();
operator int() { return T::error; }
};
S2<int> s2;
long n2 = s2;
}
namespace dr496 { // dr496: sup 2094
struct A { int n; };
struct B { volatile int n; };
int check1[ __is_trivially_copyable(const int) ? 1 : -1];
// This checks the dr2094 behavior, not dr496
int check2[ __is_trivially_copyable(volatile int) ? 1 : -1];
int check3[ __is_trivially_constructible(A, const A&) ? 1 : -1];
int check4[ __is_trivially_constructible(B, const B&) ? 1 : -1];
int check5[ __is_trivially_assignable(A, const A&) ? 1 : -1];
int check6[ __is_trivially_assignable(B, const B&) ? 1 : -1];
}
namespace dr497 { // dr497: sup 253
void before() {
struct S {
mutable int i;
};
const S cs;
int S::*pm = &S::i;
Move fixit for const init from note to diag, weaken to warning in MS mode. r235046 turned "extern __declspec(selectany) int a;" from a declaration into a definition to fix PR23242 (required for compatibility with mc.exe output). However, this broke parsing Windows headers: A d3d11 headers contain something like struct SomeStruct {}; extern const __declspec(selectany) SomeStruct some_struct; This is now a definition, and const objects either need an explicit default ctor or an initializer so this errors out with d3d11.h(1065,48) : error: default initialization of an object of const type 'const CD3D11_DEFAULT' without a user-provided default constructor (cl.exe just doesn't implement this rule, independent of selectany.) To work around this, weaken this error into a warning for selectany decls in microsoft mode, and recover with zero-initialization. Doing this is a bit hairy since it adds a fixit on an error emitted by InitializationSequence – this means it needs to build a correct AST, which in turn means InitializationSequence::Failed() cannot return true when this fixit is applied. As a workaround, the patch adds a fixit member to InitializationSequence, and InitializationSequence::Perform() prints the diagnostic if the fixit member is set right after its call to Diagnose. That function is usually called when InitializationSequences are used – InitListChecker::PerformEmptyInit() doesn't call it, but the InitListChecker case never performs default-initialization, so this is technically OK. This is the alternative, original fix for PR20208 that got reviewed in the thread "[patch] Improve diagnostic on default-initializing const variables (PR20208)". This change basically reverts r213725, adds the original fix for PR20208, and makes the error a warning in Microsoft mode. llvm-svn: 235166
2015-04-17 16:32:38 +08:00
cs.*pm = 88; // expected-error {{not assignable}}
}
void after() {
struct S {
S() : i(0) {}
mutable int i;
};
const S cs;
int S::*pm = &S::i;
cs.*pm = 88; // expected-error {{not assignable}}
}
}
namespace dr499 { // dr499: yes
extern char str[];
void f() { throw str; }
}