llvm-project/llvm/lib/Target/AArch64/AArch64InstrAtomics.td

427 lines
19 KiB
TableGen
Raw Normal View History

//=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// AArch64 Atomic operand code-gen constructs.
//
//===----------------------------------------------------------------------===//
//===----------------------------------
// Atomic fences
//===----------------------------------
let AddedComplexity = 15, Size = 0 in
def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering),
[(atomic_fence imm:$ordering, 0)]>, Sched<[]>;
def : Pat<(atomic_fence (i64 4), (imm)), (DMB (i32 0x9))>;
def : Pat<(atomic_fence (imm), (imm)), (DMB (i32 0xb))>;
//===----------------------------------
// Atomic loads
//===----------------------------------
// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.
// A atomic load operation that actually needs acquire semantics.
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr)> {
let IsAtomic = 1;
let IsAtomicOrderingAcquireOrStronger = 1;
}
// An atomic load operation that does not need either acquire or release
// semantics.
class relaxed_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr)> {
let IsAtomic = 1;
let IsAtomicOrderingAcquireOrStronger = 0;
}
// 8-bit loads
def : Pat<(acquiring_load<atomic_load_8> GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend8:$offset)),
(LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend8:$offset)),
(LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
uimm12s1:$offset)),
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(relaxed_load<atomic_load_8>
(am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
// 16-bit loads
def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend16:$extend)),
(LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend16:$extend)),
(LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
uimm12s2:$offset)),
(LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(relaxed_load<atomic_load_16>
(am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
(LDURHHi GPR64sp:$Rn, simm9:$offset)>;
// 32-bit loads
def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend32:$extend)),
(LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend32:$extend)),
(LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
uimm12s4:$offset)),
(LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(relaxed_load<atomic_load_32>
(am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
(LDURWi GPR64sp:$Rn, simm9:$offset)>;
// 64-bit loads
def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend64:$extend)),
(LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend64:$extend)),
(LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
uimm12s8:$offset)),
(LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(relaxed_load<atomic_load_64>
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(LDURXi GPR64sp:$Rn, simm9:$offset)>;
//===----------------------------------
// Atomic stores
//===----------------------------------
// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.
// A store operation that actually needs release semantics.
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
let IsAtomic = 1;
let IsAtomicOrderingReleaseOrStronger = 1;
}
// An atomic store operation that doesn't actually need to be atomic on AArch64.
class relaxed_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
let IsAtomic = 1;
let IsAtomicOrderingReleaseOrStronger = 0;
}
// 8-bit stores
def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
(STLRB GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_8>
(ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
GPR32:$val),
(STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
def : Pat<(relaxed_store<atomic_store_8>
(ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
GPR32:$val),
(STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
def : Pat<(relaxed_store<atomic_store_8>
(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
(STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(relaxed_store<atomic_store_8>
(am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
(STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
// 16-bit stores
def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
(STLRH GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend16:$extend),
GPR32:$val),
(STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend16:$extend),
GPR32:$val),
(STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
def : Pat<(relaxed_store<atomic_store_16>
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
(STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(relaxed_store<atomic_store_16>
(am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
(STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
// 32-bit stores
def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
(STLRW GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend32:$extend),
GPR32:$val),
(STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend32:$extend),
GPR32:$val),
(STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
def : Pat<(relaxed_store<atomic_store_32>
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
(STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(relaxed_store<atomic_store_32>
(am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
(STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
// 64-bit stores
def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
(STLRX GPR64:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend16:$extend),
GPR64:$val),
(STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend16:$extend),
GPR64:$val),
(STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
def : Pat<(relaxed_store<atomic_store_64>
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
(STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(relaxed_store<atomic_store_64>
(am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
(STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;
//===----------------------------------
// Low-level exclusive operations
//===----------------------------------
// Load-exclusives.
def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def : Pat<(ldxr_1 GPR64sp:$addr),
(SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_2 GPR64sp:$addr),
(SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_4 GPR64sp:$addr),
(SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;
def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
(SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
(SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
(SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
// Load-exclusives.
def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def : Pat<(ldaxr_1 GPR64sp:$addr),
(SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_2 GPR64sp:$addr),
(SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_4 GPR64sp:$addr),
(SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;
def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
(SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
(SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
(SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
// Store-exclusives.
def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
(STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
(STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
(STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
(STXRX GPR64:$val, GPR64sp:$addr)>;
def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
(STXRB GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
(STXRH GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
(STXRW GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
(STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
(STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
(STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
// Store-release-exclusives.
def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stlxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stlxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stlxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
(int_aarch64_stlxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
(STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
(STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
(STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
(STLXRX GPR64:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
(STLXRB GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
(STLXRH GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
(STLXRW GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
(STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
(STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
(STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
// And clear exclusive.
def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;
//===----------------------------------
// Atomic cmpxchg for -O0
//===----------------------------------
// The fast register allocator used during -O0 inserts spills to cover any VRegs
// live across basic block boundaries. When this happens between an LDXR and an
// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
// fail.
// Unfortunately, this means we have to have an alternative (expanded
// post-regalloc) path for -O0 compilations. Fortunately this path can be
// significantly more naive than the standard expansion: we conservatively
// assume seq_cst, strong cmpxchg and omit clrex on failure.
let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch",
mayLoad = 1, mayStore = 1 in {
def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
(ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
Sched<[WriteAtomic]>;
def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
(ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
Sched<[WriteAtomic]>;
def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
(ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
Sched<[WriteAtomic]>;
def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch),
(ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>,
Sched<[WriteAtomic]>;
}
let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch",
mayLoad = 1, mayStore = 1 in
def CMP_SWAP_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32:$scratch),
(ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi,
GPR64:$newLo, GPR64:$newHi), []>,
Sched<[WriteAtomic]>;
// v8.1 Atomic instructions:
let Predicates = [HasLSE] in {
defm : LDOPregister_patterns<"LDADD", "atomic_load_add">;
defm : LDOPregister_patterns<"LDSET", "atomic_load_or">;
defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">;
defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">;
defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">;
defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">;
defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">;
defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">;
defm : LDOPregister_patterns<"SWP", "atomic_swap">;
defm : CASregister_patterns<"CAS", "atomic_cmp_swap">;
// These two patterns are only needed for global isel, selection dag isel
// converts atomic load-sub into a sub and atomic load-add, and likewise for
// and -> clr.
defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">;
defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">;
}