llvm-project/llvm/lib/Analysis/CFLSteensAliasAnalysis.cpp

1032 lines
35 KiB
C++
Raw Normal View History

//- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a CFL-base, summary-based alias analysis algorithm. It
// does not depend on types. The algorithm is a mixture of the one described in
// "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
// algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
// Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
// graph of the uses of a variable, where each node is a memory location, and
// each edge is an action that happened on that memory location. The "actions"
// can be one of Dereference, Reference, or Assign. The precision of this
// analysis is roughly the same as that of an one level context-sensitive
// Steensgaard's algorithm.
//
// Two variables are considered as aliasing iff you can reach one value's node
// from the other value's node and the language formed by concatenating all of
// the edge labels (actions) conforms to a context-free grammar.
//
// Because this algorithm requires a graph search on each query, we execute the
// algorithm outlined in "Fast algorithms..." (mentioned above)
// in order to transform the graph into sets of variables that may alias in
// ~nlogn time (n = number of variables), which makes queries take constant
// time.
//===----------------------------------------------------------------------===//
// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
// CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
// FunctionPasses are only allowed to inspect the Function that they're being
// run on. Realistically, this likely isn't a problem until we allow
// FunctionPasses to run concurrently.
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "CFLGraph.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <tuple>
using namespace llvm;
using namespace llvm::cflaa;
#define DEBUG_TYPE "cfl-steens-aa"
CFLSteensAAResult::CFLSteensAAResult(const TargetLibraryInfo &TLI)
: AAResultBase(), TLI(TLI) {}
CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
: AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
CFLSteensAAResult::~CFLSteensAAResult() {}
/// We use InterfaceValue to describe parameters/return value, as well as
/// potential memory locations that are pointed to by parameters/return value,
/// of a function.
/// Index is an integer which represents a single parameter or a return value.
/// When the index is 0, it refers to the return value. Non-zero index i refers
/// to the i-th parameter.
/// DerefLevel indicates the number of dereferences one must perform on the
/// parameter/return value to get this InterfaceValue.
struct InterfaceValue {
unsigned Index;
unsigned DerefLevel;
};
bool operator==(InterfaceValue lhs, InterfaceValue rhs) {
return lhs.Index == rhs.Index && lhs.DerefLevel == rhs.DerefLevel;
}
bool operator!=(InterfaceValue lhs, InterfaceValue rhs) {
return !(lhs == rhs);
}
/// We use ExternalRelation to describe an externally visible aliasing relations
/// between parameters/return value of a function.
struct ExternalRelation {
InterfaceValue From, To;
};
/// We use ExternalAttribute to describe an externally visible StratifiedAttrs
/// for parameters/return value.
struct ExternalAttribute {
InterfaceValue IValue;
StratifiedAttrs Attr;
};
/// Information we have about a function and would like to keep around.
class CFLSteensAAResult::FunctionInfo {
StratifiedSets<Value *> Sets;
// RetParamRelations is a collection of ExternalRelations.
SmallVector<ExternalRelation, 8> RetParamRelations;
// RetParamAttributes is a collection of ExternalAttributes.
SmallVector<ExternalAttribute, 8> RetParamAttributes;
public:
FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
StratifiedSets<Value *> S);
const StratifiedSets<Value *> &getStratifiedSets() const { return Sets; }
const SmallVectorImpl<ExternalRelation> &getRetParamRelations() const {
return RetParamRelations;
}
const SmallVectorImpl<ExternalAttribute> &getRetParamAttributes() const {
return RetParamAttributes;
}
};
/// Try to go from a Value* to a Function*. Never returns nullptr.
static Optional<Function *> parentFunctionOfValue(Value *);
/// Returns possible functions called by the Inst* into the given
/// SmallVectorImpl. Returns true if targets found, false otherwise. This is
/// templated so we can use it with CallInsts and InvokeInsts.
static bool getPossibleTargets(CallSite, SmallVectorImpl<Function *> &);
const StratifiedIndex StratifiedLink::SetSentinel =
std::numeric_limits<StratifiedIndex>::max();
namespace {
/// StratifiedInfo Attribute things.
LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
LLVM_CONSTEXPR unsigned AttrEscapedIndex = 0;
LLVM_CONSTEXPR unsigned AttrUnknownIndex = 1;
LLVM_CONSTEXPR unsigned AttrGlobalIndex = 2;
LLVM_CONSTEXPR unsigned AttrCallerIndex = 3;
LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 4;
LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
// NOTE: These aren't StratifiedAttrs because bitsets don't have a constexpr
// ctor for some versions of MSVC that we support. We could maybe refactor,
// but...
using StratifiedAttr = unsigned;
LLVM_CONSTEXPR StratifiedAttr AttrEscaped = 1 << AttrEscapedIndex;
LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
LLVM_CONSTEXPR StratifiedAttr AttrGlobal = 1 << AttrGlobalIndex;
LLVM_CONSTEXPR StratifiedAttr AttrCaller = 1 << AttrCallerIndex;
LLVM_CONSTEXPR StratifiedAttr ExternalAttrMask =
AttrEscaped | AttrUnknown | AttrGlobal;
/// The maximum number of arguments we can put into a summary.
LLVM_CONSTEXPR unsigned MaxSupportedArgsInSummary = 50;
/// StratifiedSets call for knowledge of "direction", so this is how we
/// represent that locally.
enum class Level { Same, Above, Below };
// This is the result of instantiating InterfaceValue at a particular callsite
struct InterprocNode {
Value *Val;
unsigned DerefLevel;
};
// Interprocedural assignment edges that CFLGraph may not easily model
struct InterprocEdge {
InterprocNode From, To;
};
// Interprocedural attribute tagging that CFLGraph may not easily model
struct InterprocAttr {
InterprocNode Node;
StratifiedAttrs Attr;
};
/// Gets the edges our graph should have, based on an Instruction*
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
CFLSteensAAResult &AA;
const TargetLibraryInfo &TLI;
CFLGraph &Graph;
SmallVectorImpl<Value *> &ReturnValues;
SmallPtrSetImpl<Value *> &Externals;
SmallPtrSetImpl<Value *> &Escapes;
SmallVectorImpl<InterprocEdge> &InterprocEdges;
SmallVectorImpl<InterprocAttr> &InterprocAttrs;
static bool hasUsefulEdges(ConstantExpr *CE) {
// ConstantExpr doesn't have terminators, invokes, or fences, so only needs
// to check for compares.
return CE->getOpcode() != Instruction::ICmp &&
CE->getOpcode() != Instruction::FCmp;
}
void addNode(Value *Val) {
if (!Graph.addNode(Val))
return;
if (isa<GlobalValue>(Val))
Externals.insert(Val);
else if (auto CExpr = dyn_cast<ConstantExpr>(Val))
if (hasUsefulEdges(CExpr))
visitConstantExpr(CExpr);
}
void addNodeWithAttr(Value *Val, StratifiedAttrs Attr) {
addNode(Val);
Graph.addAttr(Val, Attr);
}
void addEdge(Value *From, Value *To, EdgeType Type) {
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
return;
addNode(From);
if (To != From)
addNode(To);
Graph.addEdge(From, To, Type);
}
public:
GetEdgesVisitor(CFLSteensAAResult &AA, const TargetLibraryInfo &TLI,
CFLGraph &Graph, SmallVectorImpl<Value *> &ReturnValues,
SmallPtrSetImpl<Value *> &Externals,
SmallPtrSetImpl<Value *> &Escapes,
SmallVectorImpl<InterprocEdge> &InterprocEdges,
SmallVectorImpl<InterprocAttr> &InterprocAttrs)
: AA(AA), TLI(TLI), Graph(Graph), ReturnValues(ReturnValues),
Externals(Externals), Escapes(Escapes), InterprocEdges(InterprocEdges),
InterprocAttrs(InterprocAttrs) {}
void visitInstruction(Instruction &) {
llvm_unreachable("Unsupported instruction encountered");
}
void visitReturnInst(ReturnInst &Inst) {
if (auto RetVal = Inst.getReturnValue()) {
if (RetVal->getType()->isPointerTy()) {
addNode(RetVal);
ReturnValues.push_back(RetVal);
}
}
}
void visitPtrToIntInst(PtrToIntInst &Inst) {
auto *Ptr = Inst.getOperand(0);
addNodeWithAttr(Ptr, AttrEscaped);
}
void visitIntToPtrInst(IntToPtrInst &Inst) {
auto *Ptr = &Inst;
addNodeWithAttr(Ptr, AttrUnknown);
}
void visitCastInst(CastInst &Inst) {
auto *Src = Inst.getOperand(0);
addEdge(Src, &Inst, EdgeType::Assign);
}
void visitBinaryOperator(BinaryOperator &Inst) {
auto *Op1 = Inst.getOperand(0);
auto *Op2 = Inst.getOperand(1);
addEdge(Op1, &Inst, EdgeType::Assign);
addEdge(Op2, &Inst, EdgeType::Assign);
}
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getNewValOperand();
addEdge(Ptr, Val, EdgeType::Dereference);
}
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValOperand();
addEdge(Ptr, Val, EdgeType::Dereference);
}
void visitPHINode(PHINode &Inst) {
for (Value *Val : Inst.incoming_values())
addEdge(Val, &Inst, EdgeType::Assign);
}
void visitGetElementPtrInst(GetElementPtrInst &Inst) {
auto *Op = Inst.getPointerOperand();
addEdge(Op, &Inst, EdgeType::Assign);
}
void visitSelectInst(SelectInst &Inst) {
// Condition is not processed here (The actual statement producing
// the condition result is processed elsewhere). For select, the
// condition is evaluated, but not loaded, stored, or assigned
// simply as a result of being the condition of a select.
auto *TrueVal = Inst.getTrueValue();
auto *FalseVal = Inst.getFalseValue();
addEdge(TrueVal, &Inst, EdgeType::Assign);
addEdge(FalseVal, &Inst, EdgeType::Assign);
}
void visitAllocaInst(AllocaInst &Inst) { Graph.addNode(&Inst); }
void visitLoadInst(LoadInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = &Inst;
addEdge(Val, Ptr, EdgeType::Reference);
}
void visitStoreInst(StoreInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValueOperand();
addEdge(Ptr, Val, EdgeType::Dereference);
}
void visitVAArgInst(VAArgInst &Inst) {
// We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
// two things:
// 1. Loads a value from *((T*)*Ptr).
// 2. Increments (stores to) *Ptr by some target-specific amount.
// For now, we'll handle this like a landingpad instruction (by placing the
// result in its own group, and having that group alias externals).
addNodeWithAttr(&Inst, AttrUnknown);
}
static bool isFunctionExternal(Function *Fn) {
return !Fn->hasExactDefinition();
}
bool tryInterproceduralAnalysis(CallSite CS,
const SmallVectorImpl<Function *> &Fns) {
assert(Fns.size() > 0);
if (CS.arg_size() > MaxSupportedArgsInSummary)
return false;
// Exit early if we'll fail anyway
for (auto *Fn : Fns) {
if (isFunctionExternal(Fn) || Fn->isVarArg())
return false;
// Fail if the caller does not provide enough arguments
assert(Fn->arg_size() <= CS.arg_size());
auto &MaybeInfo = AA.ensureCached(Fn);
if (!MaybeInfo.hasValue())
return false;
}
auto InstantiateInterfaceIndex = [&CS](unsigned Index) {
auto Value =
(Index == 0) ? CS.getInstruction() : CS.getArgument(Index - 1);
return Value->getType()->isPointerTy() ? Value : nullptr;
};
for (auto *Fn : Fns) {
auto &FnInfo = AA.ensureCached(Fn);
assert(FnInfo.hasValue());
auto &RetParamRelations = FnInfo->getRetParamRelations();
for (auto &Relation : RetParamRelations) {
auto FromVal = InstantiateInterfaceIndex(Relation.From.Index);
auto ToVal = InstantiateInterfaceIndex(Relation.To.Index);
if (FromVal && ToVal) {
auto FromLevel = Relation.From.DerefLevel;
auto ToLevel = Relation.To.DerefLevel;
InterprocEdges.push_back(
InterprocEdge{InterprocNode{FromVal, FromLevel},
InterprocNode{ToVal, ToLevel}});
}
}
auto &RetParamAttributes = FnInfo->getRetParamAttributes();
for (auto &Attribute : RetParamAttributes) {
if (auto Val = InstantiateInterfaceIndex(Attribute.IValue.Index)) {
InterprocAttrs.push_back(InterprocAttr{
InterprocNode{Val, Attribute.IValue.DerefLevel}, Attribute.Attr});
}
}
}
return true;
}
void visitCallSite(CallSite CS) {
auto Inst = CS.getInstruction();
// Make sure all arguments and return value are added to the graph first
for (Value *V : CS.args())
addNode(V);
if (Inst->getType()->isPointerTy())
addNode(Inst);
// Check if Inst is a call to a library function that allocates/deallocates
// on the heap. Those kinds of functions do not introduce any aliases.
// TODO: address other common library functions such as realloc(), strdup(),
// etc.
if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI) ||
isFreeCall(Inst, &TLI))
return;
// TODO: Add support for noalias args/all the other fun function attributes
// that we can tack on.
SmallVector<Function *, 4> Targets;
if (getPossibleTargets(CS, Targets))
if (tryInterproceduralAnalysis(CS, Targets))
return;
// Because the function is opaque, we need to note that anything
// could have happened to the arguments (unless the function is marked
// readonly or readnone), and that the result could alias just about
// anything, too (unless the result is marked noalias).
if (!CS.onlyReadsMemory())
for (Value *V : CS.args()) {
if (V->getType()->isPointerTy())
Escapes.insert(V);
}
if (Inst->getType()->isPointerTy()) {
auto *Fn = CS.getCalledFunction();
if (Fn == nullptr || !Fn->doesNotAlias(0))
Graph.addAttr(Inst, AttrUnknown);
}
}
/// Because vectors/aggregates are immutable and unaddressable, there's
/// nothing we can do to coax a value out of them, other than calling
/// Extract{Element,Value}. We can effectively treat them as pointers to
/// arbitrary memory locations we can store in and load from.
void visitExtractElementInst(ExtractElementInst &Inst) {
auto *Ptr = Inst.getVectorOperand();
auto *Val = &Inst;
addEdge(Val, Ptr, EdgeType::Reference);
}
void visitInsertElementInst(InsertElementInst &Inst) {
auto *Vec = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addEdge(Vec, &Inst, EdgeType::Assign);
addEdge(&Inst, Val, EdgeType::Dereference);
}
void visitLandingPadInst(LandingPadInst &Inst) {
// Exceptions come from "nowhere", from our analysis' perspective.
// So we place the instruction its own group, noting that said group may
// alias externals
addNodeWithAttr(&Inst, AttrUnknown);
}
void visitInsertValueInst(InsertValueInst &Inst) {
auto *Agg = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addEdge(Agg, &Inst, EdgeType::Assign);
addEdge(&Inst, Val, EdgeType::Dereference);
}
void visitExtractValueInst(ExtractValueInst &Inst) {
auto *Ptr = Inst.getAggregateOperand();
addEdge(&Inst, Ptr, EdgeType::Reference);
}
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
auto *From1 = Inst.getOperand(0);
auto *From2 = Inst.getOperand(1);
addEdge(From1, &Inst, EdgeType::Assign);
addEdge(From2, &Inst, EdgeType::Assign);
}
void visitConstantExpr(ConstantExpr *CE) {
switch (CE->getOpcode()) {
default:
llvm_unreachable("Unknown instruction type encountered!");
// Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: \
visit##OPCODE(*(CLASS *)CE); \
break;
#include "llvm/IR/Instruction.def"
}
}
};
class CFLGraphBuilder {
// Input of the builder
CFLSteensAAResult &Analysis;
const TargetLibraryInfo &TLI;
// Output of the builder
CFLGraph Graph;
SmallVector<Value *, 4> ReturnedValues;
// Auxiliary structures used by the builder
SmallPtrSet<Value *, 8> ExternalValues;
SmallPtrSet<Value *, 8> EscapedValues;
SmallVector<InterprocEdge, 8> InterprocEdges;
SmallVector<InterprocAttr, 8> InterprocAttrs;
// Helper functions
// Determines whether or not we an instruction is useless to us (e.g.
// FenceInst)
static bool hasUsefulEdges(Instruction *Inst) {
bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) &&
!isa<InvokeInst>(Inst) &&
!isa<ReturnInst>(Inst);
return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
!IsNonInvokeRetTerminator;
}
void addArgumentToGraph(Argument &Arg) {
if (Arg.getType()->isPointerTy()) {
Graph.addNode(&Arg);
ExternalValues.insert(&Arg);
}
}
// Given an Instruction, this will add it to the graph, along with any
// Instructions that are potentially only available from said Instruction
// For example, given the following line:
// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
// addInstructionToGraph would add both the `load` and `getelementptr`
// instructions to the graph appropriately.
void addInstructionToGraph(Instruction &Inst) {
if (!hasUsefulEdges(&Inst))
return;
GetEdgesVisitor(Analysis, TLI, Graph, ReturnedValues, ExternalValues,
EscapedValues, InterprocEdges, InterprocAttrs)
.visit(Inst);
}
// Builds the graph needed for constructing the StratifiedSets for the given
// function
void buildGraphFrom(Function &Fn) {
for (auto &Bb : Fn.getBasicBlockList())
for (auto &Inst : Bb.getInstList())
addInstructionToGraph(Inst);
for (auto &Arg : Fn.args())
addArgumentToGraph(Arg);
}
public:
CFLGraphBuilder(CFLSteensAAResult &Analysis, const TargetLibraryInfo &TLI,
Function &Fn)
: Analysis(Analysis), TLI(TLI) {
buildGraphFrom(Fn);
}
const CFLGraph &getCFLGraph() const { return Graph; }
const SmallVector<Value *, 4> &getReturnValues() const {
return ReturnedValues;
}
const SmallPtrSet<Value *, 8> &getExternalValues() const {
return ExternalValues;
}
const SmallPtrSet<Value *, 8> &getEscapedValues() const {
return EscapedValues;
}
const SmallVector<InterprocEdge, 8> &getInterprocEdges() const {
return InterprocEdges;
}
const SmallVector<InterprocAttr, 8> &getInterprocAttrs() const {
return InterprocAttrs;
}
};
}
//===----------------------------------------------------------------------===//
// Function declarations that require types defined in the namespace above
//===----------------------------------------------------------------------===//
/// Given a StratifiedAttrs, returns true if it marks the corresponding values
/// as globals or arguments
static bool isGlobalOrArgAttr(StratifiedAttrs Attr);
/// Given a StratifiedAttrs, returns true if the corresponding values come from
/// an unknown source (such as opaque memory or an integer cast)
static bool isUnknownAttr(StratifiedAttrs Attr);
/// Given an argument number, returns the appropriate StratifiedAttr to set.
static StratifiedAttrs argNumberToAttr(unsigned ArgNum);
/// Given a Value, potentially return which StratifiedAttr it maps to.
static Optional<StratifiedAttrs> valueToAttr(Value *Val);
/// Gets the "Level" that one should travel in StratifiedSets
/// given an EdgeType.
static Level directionOfEdgeType(EdgeType);
/// Determines whether it would be pointless to add the given Value to our sets.
static bool canSkipAddingToSets(Value *Val);
static Optional<Function *> parentFunctionOfValue(Value *Val) {
if (auto *Inst = dyn_cast<Instruction>(Val)) {
auto *Bb = Inst->getParent();
return Bb->getParent();
}
if (auto *Arg = dyn_cast<Argument>(Val))
return Arg->getParent();
return None;
}
static bool getPossibleTargets(CallSite CS,
SmallVectorImpl<Function *> &Output) {
if (auto *Fn = CS.getCalledFunction()) {
Output.push_back(Fn);
return true;
}
// TODO: If the call is indirect, we might be able to enumerate all potential
// targets of the call and return them, rather than just failing.
return false;
}
static bool isGlobalOrArgAttr(StratifiedAttrs Attr) {
return Attr.reset(AttrEscapedIndex)
.reset(AttrUnknownIndex)
.reset(AttrCallerIndex)
.any();
}
static bool isUnknownAttr(StratifiedAttrs Attr) {
return Attr.test(AttrUnknownIndex) || Attr.test(AttrCallerIndex);
}
static Optional<StratifiedAttrs> valueToAttr(Value *Val) {
if (isa<GlobalValue>(Val))
return StratifiedAttrs(AttrGlobal);
if (auto *Arg = dyn_cast<Argument>(Val))
// Only pointer arguments should have the argument attribute,
// because things can't escape through scalars without us seeing a
// cast, and thus, interaction with them doesn't matter.
if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
return argNumberToAttr(Arg->getArgNo());
return None;
}
static StratifiedAttrs argNumberToAttr(unsigned ArgNum) {
if (ArgNum >= AttrMaxNumArgs)
return AttrUnknown;
// N.B. MSVC complains if we use `1U` here, since StratifiedAttrs' ctor takes
// an unsigned long long.
return StratifiedAttrs(1ULL << (ArgNum + AttrFirstArgIndex));
}
static Level directionOfEdgeType(EdgeType Weight) {
switch (Weight) {
case EdgeType::Reference:
return Level::Above;
case EdgeType::Dereference:
return Level::Below;
case EdgeType::Assign:
return Level::Same;
}
llvm_unreachable("Incomplete switch coverage");
}
static bool canSkipAddingToSets(Value *Val) {
// Constants can share instances, which may falsely unify multiple
// sets, e.g. in
// store i32* null, i32** %ptr1
// store i32* null, i32** %ptr2
// clearly ptr1 and ptr2 should not be unified into the same set, so
// we should filter out the (potentially shared) instance to
// i32* null.
if (isa<Constant>(Val)) {
// TODO: Because all of these things are constant, we can determine whether
// the data is *actually* mutable at graph building time. This will probably
// come for free/cheap with offset awareness.
bool CanStoreMutableData = isa<GlobalValue>(Val) ||
isa<ConstantExpr>(Val) ||
isa<ConstantAggregate>(Val);
return !CanStoreMutableData;
}
return false;
}
CFLSteensAAResult::FunctionInfo::FunctionInfo(
Function &Fn, const SmallVectorImpl<Value *> &RetVals,
StratifiedSets<Value *> S)
: Sets(std::move(S)) {
// Historically, an arbitrary upper-bound of 50 args was selected. We may want
// to remove this if it doesn't really matter in practice.
if (Fn.arg_size() > MaxSupportedArgsInSummary)
return;
DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
// Our intention here is to record all InterfaceValues that share the same
// StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
// have its StratifiedIndex scanned here and check if the index is presented
// in InterfaceMap: if it is not, we add the correspondence to the map;
// otherwise, an aliasing relation is found and we add it to
// RetParamRelations.
auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
StratifiedIndex SetIndex) {
unsigned Level = 0;
while (true) {
InterfaceValue CurrValue{InterfaceIndex, Level};
auto Itr = InterfaceMap.find(SetIndex);
if (Itr != InterfaceMap.end()) {
if (CurrValue != Itr->second)
RetParamRelations.push_back(ExternalRelation{CurrValue, Itr->second});
break;
}
auto &Link = Sets.getLink(SetIndex);
InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
auto ExternalAttrs = Link.Attrs & StratifiedAttrs(ExternalAttrMask);
if (ExternalAttrs.any())
RetParamAttributes.push_back(
ExternalAttribute{CurrValue, ExternalAttrs});
if (!Link.hasBelow())
break;
++Level;
SetIndex = Link.Below;
}
};
// Populate RetParamRelations for return values
for (auto *RetVal : RetVals) {
assert(RetVal != nullptr);
assert(RetVal->getType()->isPointerTy());
auto RetInfo = Sets.find(RetVal);
if (RetInfo.hasValue())
AddToRetParamRelations(0, RetInfo->Index);
}
// Populate RetParamRelations for parameters
unsigned I = 0;
for (auto &Param : Fn.args()) {
if (Param.getType()->isPointerTy()) {
auto ParamInfo = Sets.find(&Param);
if (ParamInfo.hasValue())
AddToRetParamRelations(I + 1, ParamInfo->Index);
}
++I;
}
}
// Builds the graph + StratifiedSets for a function.
CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
CFLGraphBuilder GraphBuilder(*this, TLI, *Fn);
StratifiedSetsBuilder<Value *> SetBuilder;
auto &Graph = GraphBuilder.getCFLGraph();
SmallVector<Value *, 16> Worklist;
for (auto Node : Graph.nodes())
Worklist.push_back(Node);
while (!Worklist.empty()) {
auto *CurValue = Worklist.pop_back_val();
SetBuilder.add(CurValue);
if (canSkipAddingToSets(CurValue))
continue;
auto Attr = Graph.attrFor(CurValue);
SetBuilder.noteAttributes(CurValue, Attr);
for (const auto &Edge : Graph.edgesFor(CurValue)) {
auto Label = Edge.Type;
auto *OtherValue = Edge.Other;
if (canSkipAddingToSets(OtherValue))
continue;
bool Added;
switch (directionOfEdgeType(Label)) {
case Level::Above:
Added = SetBuilder.addAbove(CurValue, OtherValue);
break;
case Level::Below:
Added = SetBuilder.addBelow(CurValue, OtherValue);
break;
case Level::Same:
Added = SetBuilder.addWith(CurValue, OtherValue);
break;
}
if (Added)
Worklist.push_back(OtherValue);
}
}
// Special handling for globals and arguments
for (auto *External : GraphBuilder.getExternalValues()) {
SetBuilder.add(External);
auto Attr = valueToAttr(External);
if (Attr.hasValue()) {
SetBuilder.noteAttributes(External, *Attr);
if (*Attr == AttrGlobal)
SetBuilder.addAttributesBelow(External, 1, AttrUnknown);
else
SetBuilder.addAttributesBelow(External, 1, AttrCaller);
}
}
// Special handling for interprocedural aliases
for (auto &Edge : GraphBuilder.getInterprocEdges()) {
auto FromVal = Edge.From.Val;
auto ToVal = Edge.To.Val;
SetBuilder.add(FromVal);
SetBuilder.add(ToVal);
SetBuilder.addBelowWith(FromVal, Edge.From.DerefLevel, ToVal,
Edge.To.DerefLevel);
}
// Special handling for interprocedural attributes
for (auto &IPAttr : GraphBuilder.getInterprocAttrs()) {
auto Val = IPAttr.Node.Val;
SetBuilder.add(Val);
SetBuilder.addAttributesBelow(Val, IPAttr.Node.DerefLevel, IPAttr.Attr);
}
// Special handling for opaque external functions
for (auto *Escape : GraphBuilder.getEscapedValues()) {
SetBuilder.add(Escape);
SetBuilder.noteAttributes(Escape, AttrEscaped);
SetBuilder.addAttributesBelow(Escape, 1, AttrUnknown);
}
return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
}
void CFLSteensAAResult::scan(Function *Fn) {
auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
(void)InsertPair;
assert(InsertPair.second &&
"Trying to scan a function that has already been cached");
// Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
// may get evaluated after operator[], potentially triggering a DenseMap
// resize and invalidating the reference returned by operator[]
auto FunInfo = buildSetsFrom(Fn);
Cache[Fn] = std::move(FunInfo);
Handles.push_front(FunctionHandle(Fn, this));
}
void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
/// Ensures that the given function is available in the cache, and returns the
/// entry.
const Optional<CFLSteensAAResult::FunctionInfo> &
CFLSteensAAResult::ensureCached(Function *Fn) {
auto Iter = Cache.find(Fn);
if (Iter == Cache.end()) {
scan(Fn);
Iter = Cache.find(Fn);
assert(Iter != Cache.end());
assert(Iter->second.hasValue());
}
return Iter->second;
}
AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
auto *ValA = const_cast<Value *>(LocA.Ptr);
auto *ValB = const_cast<Value *>(LocB.Ptr);
if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
return NoAlias;
Function *Fn = nullptr;
auto MaybeFnA = parentFunctionOfValue(ValA);
auto MaybeFnB = parentFunctionOfValue(ValB);
if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
// The only times this is known to happen are when globals + InlineAsm are
// involved
DEBUG(dbgs()
<< "CFLSteensAA: could not extract parent function information.\n");
return MayAlias;
}
if (MaybeFnA.hasValue()) {
Fn = *MaybeFnA;
assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
"Interprocedural queries not supported");
} else {
Fn = *MaybeFnB;
}
assert(Fn != nullptr);
auto &MaybeInfo = ensureCached(Fn);
assert(MaybeInfo.hasValue());
auto &Sets = MaybeInfo->getStratifiedSets();
auto MaybeA = Sets.find(ValA);
if (!MaybeA.hasValue())
return MayAlias;
auto MaybeB = Sets.find(ValB);
if (!MaybeB.hasValue())
return MayAlias;
auto SetA = *MaybeA;
auto SetB = *MaybeB;
auto AttrsA = Sets.getLink(SetA.Index).Attrs;
auto AttrsB = Sets.getLink(SetB.Index).Attrs;
// If both values are local (meaning the corresponding set has attribute
// AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
// they may-alias each other if and only if they are in the same set.
// If at least one value is non-local (meaning it either is global/argument or
// it comes from unknown sources like integer cast), the situation becomes a
// bit more interesting. We follow three general rules described below:
// - Non-local values may alias each other
// - AttrNone values do not alias any non-local values
// - AttrEscaped do not alias globals/arguments, but they may alias
// AttrUnknown values
if (SetA.Index == SetB.Index)
return MayAlias;
if (AttrsA.none() || AttrsB.none())
return NoAlias;
if (isUnknownAttr(AttrsA) || isUnknownAttr(AttrsB))
return MayAlias;
if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
return MayAlias;
return NoAlias;
}
ModRefInfo CFLSteensAAResult::getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) {
if (auto CalledFunc = CS.getCalledFunction()) {
auto &MaybeInfo = ensureCached(const_cast<Function *>(CalledFunc));
if (!MaybeInfo.hasValue())
return MRI_ModRef;
auto &RetParamAttributes = MaybeInfo->getRetParamAttributes();
auto &RetParamRelations = MaybeInfo->getRetParamRelations();
bool ArgAttributeIsWritten =
std::any_of(RetParamAttributes.begin(), RetParamAttributes.end(),
[ArgIdx](const ExternalAttribute &ExtAttr) {
return ExtAttr.IValue.Index == ArgIdx + 1;
});
bool ArgIsAccessed =
std::any_of(RetParamRelations.begin(), RetParamRelations.end(),
[ArgIdx](const ExternalRelation &ExtRelation) {
return ExtRelation.To.Index == ArgIdx + 1 ||
ExtRelation.From.Index == ArgIdx + 1;
});
return (!ArgIsAccessed && !ArgAttributeIsWritten) ? MRI_NoModRef
: MRI_ModRef;
}
return MRI_ModRef;
}
FunctionModRefBehavior
CFLSteensAAResult::getModRefBehavior(ImmutableCallSite CS) {
// If we know the callee, try analyzing it
if (auto CalledFunc = CS.getCalledFunction())
return getModRefBehavior(CalledFunc);
// Otherwise, be conservative
return FMRB_UnknownModRefBehavior;
}
FunctionModRefBehavior CFLSteensAAResult::getModRefBehavior(const Function *F) {
assert(F != nullptr);
// TODO: Remove the const_cast
auto &MaybeInfo = ensureCached(const_cast<Function *>(F));
if (!MaybeInfo.hasValue())
return FMRB_UnknownModRefBehavior;
auto &RetParamAttributes = MaybeInfo->getRetParamAttributes();
auto &RetParamRelations = MaybeInfo->getRetParamRelations();
// First, if any argument is marked Escpaed, Unknown or Global, anything may
// happen to them and thus we can't draw any conclusion.
if (!RetParamAttributes.empty())
return FMRB_UnknownModRefBehavior;
// Currently we don't (and can't) distinguish reads from writes in
// RetParamRelations. All we can say is whether there may be memory access or
// not.
if (RetParamRelations.empty())
return FMRB_DoesNotAccessMemory;
// Check if something beyond argmem gets touched.
bool AccessArgMemoryOnly =
std::all_of(RetParamRelations.begin(), RetParamRelations.end(),
[](const ExternalRelation &ExtRelation) {
// Both DerefLevels has to be 0, since we don't know which
// one is a read and which is a write.
return ExtRelation.From.DerefLevel == 0 &&
ExtRelation.To.DerefLevel == 0;
});
return AccessArgMemoryOnly ? FMRB_OnlyAccessesArgumentPointees
: FMRB_UnknownModRefBehavior;
}
char CFLSteensAA::PassID;
CFLSteensAAResult CFLSteensAA::run(Function &F, AnalysisManager<Function> &AM) {
return CFLSteensAAResult(AM.getResult<TargetLibraryAnalysis>(F));
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
}
char CFLSteensAAWrapperPass::ID = 0;
INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
"Unification-Based CFL Alias Analysis", false, true)
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
return new CFLSteensAAWrapperPass();
}
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
}
void CFLSteensAAWrapperPass::initializePass() {
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
Result.reset(new CFLSteensAAResult(TLIWP.getTLI()));
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
}
void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
AU.setPreservesAll();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}