Finally pass "two floats in a 64-bit unit" as a <2 x float> instead of
as a double in the x86-64 ABI. This allows us to generate much better
code for certain things, e.g.:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
Used to compile into (look at the integer silliness!):
_f32: ## @f32
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm1
movd %xmm0, %rcx
movd %ecx, %xmm0
addss %xmm1, %xmm0
movd %xmm0, %edx
shrq $32, %rax
movd %eax, %xmm0
shrq $32, %rcx
movd %ecx, %xmm1
addss %xmm0, %xmm1
movd %xmm1, %eax
shlq $32, %rax
addq %rdx, %rax
movd %rax, %xmm0
ret
Now we get:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
and compile stuff like:
extern float _Complex ccoshf( float _Complex ) ;
float _Complex ccosf ( float _Complex z ) {
float _Complex iz;
(__real__ iz) = -(__imag__ z);
(__imag__ iz) = (__real__ z);
return ccoshf(iz);
}
into:
_ccosf: ## @ccosf
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm1
xorps LCPI4_0(%rip), %xmm1
unpcklps %xmm0, %xmm1
movaps %xmm1, %xmm0
jmp _ccoshf ## TAILCALL
instead of:
_ccosf: ## @ccosf
## BB#0: ## %entry
movd %xmm0, %rax
movq %rax, %rcx
shlq $32, %rcx
shrq $32, %rax
xorl $-2147483648, %eax ## imm = 0xFFFFFFFF80000000
addq %rcx, %rax
movd %rax, %xmm0
jmp _ccoshf ## TAILCALL
There is still "stuff to be done" here for the struct case,
but this resolves rdar://6379669 - [x86-64 ABI] Pass and return
_Complex float / double efficiently
llvm-svn: 112111
2010-08-26 07:39:14 +08:00
|
|
|
// RUN: %clang_cc1 -triple x86_64-unknown-unknown -emit-llvm -o - %s| FileCheck %s
|
2010-08-26 14:28:35 +08:00
|
|
|
#include <stdarg.h>
|
2009-02-14 10:09:24 +08:00
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: %0 = type { i64, double }
|
|
|
|
|
|
|
|
// CHECK: define signext i8 @f0()
|
2009-02-14 10:09:24 +08:00
|
|
|
char f0(void) {
|
2009-07-22 04:52:43 +08:00
|
|
|
return 0;
|
2009-02-14 10:09:24 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define signext i16 @f1()
|
2009-02-14 10:09:24 +08:00
|
|
|
short f1(void) {
|
2009-07-22 04:52:43 +08:00
|
|
|
return 0;
|
2009-02-14 10:09:24 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define i32 @f2()
|
2009-02-14 10:09:24 +08:00
|
|
|
int f2(void) {
|
2009-07-22 04:52:43 +08:00
|
|
|
return 0;
|
2009-02-14 10:09:24 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define float @f3()
|
2009-02-14 10:09:24 +08:00
|
|
|
float f3(void) {
|
2009-07-22 04:52:43 +08:00
|
|
|
return 0;
|
2009-02-14 10:09:24 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define double @f4()
|
2009-02-14 10:09:24 +08:00
|
|
|
double f4(void) {
|
2009-07-22 04:52:43 +08:00
|
|
|
return 0;
|
2009-02-14 10:09:24 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define x86_fp80 @f5()
|
2009-02-14 10:09:24 +08:00
|
|
|
long double f5(void) {
|
2009-07-22 04:52:43 +08:00
|
|
|
return 0;
|
2009-02-14 10:09:24 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define void @f6(i8 signext %a0, i16 signext %a1, i32 %a2, i64 %a3, i8* %a4)
|
2009-02-14 10:09:24 +08:00
|
|
|
void f6(char a0, short a1, int a2, long long a3, void *a4) {
|
|
|
|
}
|
2009-02-27 01:38:19 +08:00
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define void @f7(i32 %a0)
|
|
|
|
typedef enum { A, B, C } e7;
|
|
|
|
void f7(e7 a0) {
|
2009-02-27 03:00:14 +08:00
|
|
|
}
|
2009-03-07 01:50:25 +08:00
|
|
|
|
|
|
|
// Test merging/passing of upper eightbyte with X87 class.
|
2010-04-22 03:10:54 +08:00
|
|
|
//
|
|
|
|
// CHECK: define %0 @f8_1()
|
2010-06-29 08:14:52 +08:00
|
|
|
// CHECK: define void @f8_2(i64 %a0.coerce0, double %a0.coerce1)
|
2009-03-07 01:50:25 +08:00
|
|
|
union u8 {
|
|
|
|
long double a;
|
|
|
|
int b;
|
|
|
|
};
|
2009-07-22 04:52:43 +08:00
|
|
|
union u8 f8_1() { while (1) {} }
|
2009-03-07 01:50:25 +08:00
|
|
|
void f8_2(union u8 a0) {}
|
2009-05-09 06:26:44 +08:00
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define i64 @f9()
|
2009-07-22 04:52:43 +08:00
|
|
|
struct s9 { int a; int b; int : 0; } f9(void) { while (1) {} }
|
2009-05-09 06:26:44 +08:00
|
|
|
|
2010-06-29 08:14:52 +08:00
|
|
|
// CHECK: define void @f10(i64 %a0.coerce)
|
2009-05-09 06:26:44 +08:00
|
|
|
struct s10 { int a; int b; int : 0; };
|
|
|
|
void f10(struct s10 a0) {}
|
|
|
|
|
2010-04-22 03:49:55 +08:00
|
|
|
// CHECK: define void @f11(%struct.s19* sret %agg.result)
|
2009-07-22 04:52:43 +08:00
|
|
|
union { long double a; float b; } f11() { while (1) {} }
|
2009-05-12 23:22:40 +08:00
|
|
|
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
// CHECK: define i32 @f12_0()
|
|
|
|
// CHECK: define void @f12_1(i32 %a0.coerce)
|
2009-05-14 02:54:26 +08:00
|
|
|
struct s12 { int a __attribute__((aligned(16))); };
|
2009-07-22 04:52:43 +08:00
|
|
|
struct s12 f12_0(void) { while (1) {} }
|
2009-05-14 02:54:26 +08:00
|
|
|
void f12_1(struct s12 a0) {}
|
|
|
|
|
2009-05-23 01:33:44 +08:00
|
|
|
// Check that sret parameter is accounted for when checking available integer
|
|
|
|
// registers.
|
2010-07-06 04:21:00 +08:00
|
|
|
// CHECK: define void @f13(%struct.s13_0* sret %agg.result, i32 %a, i32 %b, i32 %c, i32 %d, {{.*}}* byval %e, i32 %f)
|
2009-05-23 01:33:44 +08:00
|
|
|
|
|
|
|
struct s13_0 { long long f0[3]; };
|
2009-08-24 03:28:59 +08:00
|
|
|
struct s13_1 { long long f0[2]; };
|
2010-04-22 03:10:54 +08:00
|
|
|
struct s13_0 f13(int a, int b, int c, int d,
|
2009-08-24 03:28:59 +08:00
|
|
|
struct s13_1 e, int f) { while (1) {} }
|
2009-05-23 01:33:44 +08:00
|
|
|
|
2010-04-22 03:10:54 +08:00
|
|
|
// CHECK: define void @f14({{.*}}, i8 signext %X)
|
|
|
|
void f14(int a, int b, int c, int d, int e, int f, char X) {}
|
|
|
|
|
|
|
|
// CHECK: define void @f15({{.*}}, i8* %X)
|
|
|
|
void f15(int a, int b, int c, int d, int e, int f, void *X) {}
|
|
|
|
|
|
|
|
// CHECK: define void @f16({{.*}}, float %X)
|
2009-05-27 00:37:37 +08:00
|
|
|
void f16(float a, float b, float c, float d, float e, float f, float g, float h,
|
|
|
|
float X) {}
|
2010-04-22 03:10:54 +08:00
|
|
|
|
|
|
|
// CHECK: define void @f17({{.*}}, x86_fp80 %X)
|
2009-05-27 00:37:37 +08:00
|
|
|
void f17(float a, float b, float c, float d, float e, float f, float g, float h,
|
|
|
|
long double X) {}
|
|
|
|
|
X86-64:
pass/return structs of float/int as float/i32 instead of double/i64
to make the code generated for ABI cleaner. Passing in the low part
of a double is the same as passing in a float.
For example, we now compile:
struct DeclGroup { float NumDecls; };
float foo(DeclGroup D);
void bar(DeclGroup *D) {
foo(*D);
}
into:
%struct.DeclGroup = type { float }
define void @_Z3barP9DeclGroup(%struct.DeclGroup* %D) nounwind {
entry:
%D.addr = alloca %struct.DeclGroup*, align 8 ; <%struct.DeclGroup**> [#uses=2]
%agg.tmp = alloca %struct.DeclGroup, align 4 ; <%struct.DeclGroup*> [#uses=2]
store %struct.DeclGroup* %D, %struct.DeclGroup** %D.addr
%tmp = load %struct.DeclGroup** %D.addr ; <%struct.DeclGroup*> [#uses=1]
%tmp1 = bitcast %struct.DeclGroup* %agg.tmp to i8* ; <i8*> [#uses=1]
%tmp2 = bitcast %struct.DeclGroup* %tmp to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %tmp1, i8* %tmp2, i64 4, i32 4, i1 false)
%coerce.dive = getelementptr %struct.DeclGroup* %agg.tmp, i32 0, i32 0 ; <float*> [#uses=1]
%0 = load float* %coerce.dive, align 1 ; <float> [#uses=1]
%call = call float @_Z3foo9DeclGroup(float %0) ; <float> [#uses=0]
ret void
}
instead of:
%struct.DeclGroup = type { float }
define void @_Z3barP9DeclGroup(%struct.DeclGroup* %D) nounwind {
entry:
%D.addr = alloca %struct.DeclGroup*, align 8 ; <%struct.DeclGroup**> [#uses=2]
%agg.tmp = alloca %struct.DeclGroup, align 4 ; <%struct.DeclGroup*> [#uses=2]
%tmp3 = alloca double ; <double*> [#uses=2]
store %struct.DeclGroup* %D, %struct.DeclGroup** %D.addr
%tmp = load %struct.DeclGroup** %D.addr ; <%struct.DeclGroup*> [#uses=1]
%tmp1 = bitcast %struct.DeclGroup* %agg.tmp to i8* ; <i8*> [#uses=1]
%tmp2 = bitcast %struct.DeclGroup* %tmp to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %tmp1, i8* %tmp2, i64 4, i32 4, i1 false)
%coerce.dive = getelementptr %struct.DeclGroup* %agg.tmp, i32 0, i32 0 ; <float*> [#uses=1]
%0 = bitcast double* %tmp3 to float* ; <float*> [#uses=1]
%1 = load float* %coerce.dive ; <float> [#uses=1]
store float %1, float* %0, align 1
%2 = load double* %tmp3 ; <double> [#uses=1]
%call = call float @_Z3foo9DeclGroup(double %2) ; <float> [#uses=0]
ret void
}
which is this machine code (at -O0):
__Z3barP9DeclGroup:
subq $24, %rsp
movq %rdi, 16(%rsp)
movq 16(%rsp), %rdi
leaq 8(%rsp), %rax
movl (%rdi), %ecx
movl %ecx, (%rax)
movss 8(%rsp), %xmm0
callq __Z3foo9DeclGroup
addq $24, %rsp
ret
vs this:
__Z3barP9DeclGroup:
subq $24, %rsp
movq %rdi, 16(%rsp)
movq 16(%rsp), %rdi
leaq 8(%rsp), %rax
movl (%rdi), %ecx
movl %ecx, (%rax)
movss 8(%rsp), %xmm0
movss %xmm0, (%rsp)
movsd (%rsp), %xmm0
callq __Z3foo9DeclGroup
addq $24, %rsp
ret
At -O3, it is the difference between this now:
__Z3barP9DeclGroup:
movss (%rdi), %xmm0
jmp __Z3foo9DeclGroup # TAILCALL
vs this before:
__Z3barP9DeclGroup:
movl (%rdi), %eax
movd %rax, %xmm0
jmp __Z3foo9DeclGroup # TAILCALL
llvm-svn: 107048
2010-06-29 03:56:59 +08:00
|
|
|
// Check for valid coercion. The struct should be passed/returned as i32, not
|
|
|
|
// as i64 for better code quality.
|
|
|
|
// rdar://8135035
|
2010-06-29 08:14:52 +08:00
|
|
|
// CHECK: define void @f18(i32 %a, i32 %f18_arg1.coerce)
|
2009-08-24 03:28:59 +08:00
|
|
|
struct f18_s0 { int f0; };
|
|
|
|
void f18(int a, struct f18_s0 f18_arg1) { while (1) {} }
|
2009-06-05 15:58:54 +08:00
|
|
|
|
2010-04-22 03:49:55 +08:00
|
|
|
// Check byval alignment.
|
|
|
|
|
|
|
|
// CHECK: define void @f19(%struct.s19* byval align 16 %x)
|
|
|
|
struct s19 {
|
|
|
|
long double a;
|
|
|
|
};
|
|
|
|
void f19(struct s19 x) {}
|
|
|
|
|
|
|
|
// CHECK: define void @f20(%struct.s20* byval align 32 %x)
|
|
|
|
struct __attribute__((aligned(32))) s20 {
|
|
|
|
int x;
|
|
|
|
int y;
|
|
|
|
};
|
|
|
|
void f20(struct s20 x) {}
|
Change X86_64ABIInfo to have ASTContext and TargetData ivars to
avoid passing ASTContext down through all the methods it has.
When classifying an argument, or argument piece, as INTEGER, check
to see if we have a pointer at exactly the same offset in the
preferred type. If so, use that pointer type instead of i64. This
allows us to compile A function taking a stringref into something
like this:
define i8* @foo(i64 %D.coerce0, i8* %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=4]
%0 = getelementptr %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
store i64 %D.coerce0, i64* %0
%1 = getelementptr %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
store i8* %D.coerce1, i8** %1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
instead of this:
define i8* @foo(i64 %D.coerce0, i64 %D.coerce1) nounwind ssp {
entry:
%D = alloca %struct.DeclGroup, align 8 ; <%struct.DeclGroup*> [#uses=3]
%0 = insertvalue %0 undef, i64 %D.coerce0, 0 ; <%0> [#uses=1]
%1 = insertvalue %0 %0, i64 %D.coerce1, 1 ; <%0> [#uses=1]
%2 = bitcast %struct.DeclGroup* %D to %0* ; <%0*> [#uses=1]
store %0 %1, %0* %2, align 1
%tmp = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 0 ; <i64*> [#uses=1]
%tmp1 = load i64* %tmp ; <i64> [#uses=1]
%tmp2 = getelementptr inbounds %struct.DeclGroup* %D, i32 0, i32 1 ; <i8**> [#uses=1]
%tmp3 = load i8** %tmp2 ; <i8*> [#uses=1]
%add.ptr = getelementptr inbounds i8* %tmp3, i64 %tmp1 ; <i8*> [#uses=1]
ret i8* %add.ptr
}
This implements rdar://7375902 - [codegen quality] clang x86-64 ABI lowering code punishing StringRef
llvm-svn: 107123
2010-06-29 14:01:59 +08:00
|
|
|
|
|
|
|
struct StringRef {
|
|
|
|
long x;
|
|
|
|
const char *Ptr;
|
|
|
|
};
|
|
|
|
|
|
|
|
// rdar://7375902
|
|
|
|
// CHECK: define i8* @f21(i64 %S.coerce0, i8* %S.coerce1)
|
|
|
|
const char *f21(struct StringRef S) { return S.x+S.Ptr; }
|
|
|
|
|
2010-07-06 04:21:00 +08:00
|
|
|
// PR7567
|
|
|
|
typedef __attribute__ ((aligned(16))) struct f22s { unsigned long long x[2]; } L;
|
|
|
|
void f22(L x, L y) { }
|
|
|
|
// CHECK: @f22
|
|
|
|
// CHECK: %x = alloca{{.*}}, align 16
|
|
|
|
// CHECK: %y = alloca{{.*}}, align 16
|
|
|
|
|
|
|
|
|
2010-07-29 06:15:08 +08:00
|
|
|
|
|
|
|
// PR7714
|
|
|
|
struct f23S {
|
|
|
|
short f0;
|
|
|
|
unsigned f1;
|
|
|
|
int f2;
|
|
|
|
};
|
|
|
|
|
2010-07-29 07:06:14 +08:00
|
|
|
|
2010-07-29 06:15:08 +08:00
|
|
|
void f23(int A, struct f23S B) {
|
|
|
|
// CHECK: define void @f23(i32 %A, i64 %B.coerce0, i32 %B.coerce1)
|
|
|
|
}
|
|
|
|
|
2010-07-29 07:06:14 +08:00
|
|
|
struct f24s { long a; int b; };
|
2010-07-29 06:15:08 +08:00
|
|
|
|
2010-07-29 07:06:14 +08:00
|
|
|
struct f23S f24(struct f23S *X, struct f24s *P2) {
|
|
|
|
return *X;
|
|
|
|
|
|
|
|
// CHECK: define %struct.f24s @f24(%struct.f23S* %X, %struct.f24s* %P2)
|
|
|
|
}
|
2010-07-29 06:15:08 +08:00
|
|
|
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
// rdar://8248065
|
2010-07-29 07:47:21 +08:00
|
|
|
typedef float v4f32 __attribute__((__vector_size__(16)));
|
|
|
|
v4f32 f25(v4f32 X) {
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
// CHECK: define <4 x float> @f25(<4 x float> %X)
|
|
|
|
// CHECK-NOT: alloca
|
2010-07-30 01:14:05 +08:00
|
|
|
// CHECK: alloca <4 x float>
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
// CHECK-NOT: alloca
|
2010-07-30 01:14:05 +08:00
|
|
|
// CHECK: store <4 x float> %X, <4 x float>*
|
Kill off the 'coerce' ABI passing form. Now 'direct' and 'extend' always
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
llvm-svn: 109733
2010-07-29 14:26:06 +08:00
|
|
|
// CHECK-NOT: store
|
|
|
|
// CHECK: ret <4 x float>
|
2010-07-29 07:47:21 +08:00
|
|
|
return X+X;
|
|
|
|
}
|
|
|
|
|
now that we have CGT around, we can start using preferred types
for return values too. Instead of compiling something like:
struct foo {
int *X;
float *Y;
};
struct foo test(struct foo *P) { return *P; }
to:
%1 = type { i64, i64 }
define %1 @test(%struct.foo* %P) nounwind {
entry:
%retval = alloca %struct.foo, align 8 ; <%struct.foo*> [#uses=2]
%P.addr = alloca %struct.foo*, align 8 ; <%struct.foo**> [#uses=2]
store %struct.foo* %P, %struct.foo** %P.addr
%tmp = load %struct.foo** %P.addr ; <%struct.foo*> [#uses=1]
%tmp1 = bitcast %struct.foo* %retval to i8* ; <i8*> [#uses=1]
%tmp2 = bitcast %struct.foo* %tmp to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %tmp1, i8* %tmp2, i64 16, i32 8, i1 false)
%0 = bitcast %struct.foo* %retval to %1* ; <%1*> [#uses=1]
%1 = load %1* %0, align 1 ; <%1> [#uses=1]
ret %1 %1
}
We now get the result more type safe, with:
define %struct.foo @test(%struct.foo* %P) nounwind {
entry:
%retval = alloca %struct.foo, align 8 ; <%struct.foo*> [#uses=2]
%P.addr = alloca %struct.foo*, align 8 ; <%struct.foo**> [#uses=2]
store %struct.foo* %P, %struct.foo** %P.addr
%tmp = load %struct.foo** %P.addr ; <%struct.foo*> [#uses=1]
%tmp1 = bitcast %struct.foo* %retval to i8* ; <i8*> [#uses=1]
%tmp2 = bitcast %struct.foo* %tmp to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %tmp1, i8* %tmp2, i64 16, i32 8, i1 false)
%0 = load %struct.foo* %retval ; <%struct.foo> [#uses=1]
ret %struct.foo %0
}
That memcpy is completely terrible, but I don't know how to fix it.
llvm-svn: 109729
2010-07-29 12:46:19 +08:00
|
|
|
struct foo26 {
|
|
|
|
int *X;
|
|
|
|
float *Y;
|
|
|
|
};
|
2010-07-29 07:47:21 +08:00
|
|
|
|
now that we have CGT around, we can start using preferred types
for return values too. Instead of compiling something like:
struct foo {
int *X;
float *Y;
};
struct foo test(struct foo *P) { return *P; }
to:
%1 = type { i64, i64 }
define %1 @test(%struct.foo* %P) nounwind {
entry:
%retval = alloca %struct.foo, align 8 ; <%struct.foo*> [#uses=2]
%P.addr = alloca %struct.foo*, align 8 ; <%struct.foo**> [#uses=2]
store %struct.foo* %P, %struct.foo** %P.addr
%tmp = load %struct.foo** %P.addr ; <%struct.foo*> [#uses=1]
%tmp1 = bitcast %struct.foo* %retval to i8* ; <i8*> [#uses=1]
%tmp2 = bitcast %struct.foo* %tmp to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %tmp1, i8* %tmp2, i64 16, i32 8, i1 false)
%0 = bitcast %struct.foo* %retval to %1* ; <%1*> [#uses=1]
%1 = load %1* %0, align 1 ; <%1> [#uses=1]
ret %1 %1
}
We now get the result more type safe, with:
define %struct.foo @test(%struct.foo* %P) nounwind {
entry:
%retval = alloca %struct.foo, align 8 ; <%struct.foo*> [#uses=2]
%P.addr = alloca %struct.foo*, align 8 ; <%struct.foo**> [#uses=2]
store %struct.foo* %P, %struct.foo** %P.addr
%tmp = load %struct.foo** %P.addr ; <%struct.foo*> [#uses=1]
%tmp1 = bitcast %struct.foo* %retval to i8* ; <i8*> [#uses=1]
%tmp2 = bitcast %struct.foo* %tmp to i8* ; <i8*> [#uses=1]
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %tmp1, i8* %tmp2, i64 16, i32 8, i1 false)
%0 = load %struct.foo* %retval ; <%struct.foo> [#uses=1]
ret %struct.foo %0
}
That memcpy is completely terrible, but I don't know how to fix it.
llvm-svn: 109729
2010-07-29 12:46:19 +08:00
|
|
|
struct foo26 f26(struct foo26 *P) {
|
|
|
|
// CHECK: define %struct.foo26 @f26(%struct.foo26* %P)
|
|
|
|
return *P;
|
|
|
|
}
|
2010-07-29 13:02:29 +08:00
|
|
|
|
|
|
|
|
|
|
|
struct v4f32wrapper {
|
|
|
|
v4f32 v;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct v4f32wrapper f27(struct v4f32wrapper X) {
|
|
|
|
// CHECK: define <4 x float> @f27(<4 x float> %X.coerce)
|
|
|
|
return X;
|
implement a todo: pass a eight-byte that consists of a
small integer + padding as that small integer. On code
like:
struct c { double x; int y; };
void bar(struct c C) { }
This means that we compile to:
define void @bar(double %C.coerce0, i32 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=2]
%0 = getelementptr %struct.c* %C, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %0
%1 = getelementptr %struct.c* %C, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %C.coerce1, i32* %1
instead of:
define void @bar(double %C.coerce0, i64 %C.coerce1) nounwind {
entry:
%C = alloca %struct.c, align 8 ; <%struct.c*> [#uses=3]
%0 = bitcast %struct.c* %C to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %C.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %C.coerce1, i64* %2
which gives SRoA heartburn.
This implements rdar://5711709, a nice low number :)
llvm-svn: 109737
2010-07-29 15:30:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// rdar://5711709
|
|
|
|
struct f28c {
|
|
|
|
double x;
|
|
|
|
int y;
|
|
|
|
};
|
|
|
|
void f28(struct f28c C) {
|
|
|
|
// CHECK: define void @f28(double %C.coerce0, i32 %C.coerce1)
|
|
|
|
}
|
|
|
|
|
This is a little bit far, but optimize cases like:
struct a {
struct c {
double x;
int y;
} x[1];
};
void foo(struct a A) {
}
into:
define void @foo(double %A.coerce0, i32 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %struct.c* ; <%struct.c*> [#uses=2]
%1 = getelementptr %struct.c* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %struct.c* %0, i32 0, i32 1 ; <i32*> [#uses=1]
store i32 %A.coerce1, i32* %2
instead of:
define void @foo(double %A.coerce0, i64 %A.coerce1) nounwind {
entry:
%A = alloca %struct.a, align 8 ; <%struct.a*> [#uses=1]
%0 = bitcast %struct.a* %A to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %A.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <i64*> [#uses=1]
store i64 %A.coerce1, i64* %2
I only do this now because I never want to look at this code again :)
llvm-svn: 109738
2010-07-29 15:43:55 +08:00
|
|
|
struct f29a {
|
|
|
|
struct c {
|
|
|
|
double x;
|
|
|
|
int y;
|
|
|
|
} x[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
void f29a(struct f29a A) {
|
|
|
|
// CHECK: define void @f29a(double %A.coerce0, i32 %A.coerce1)
|
|
|
|
}
|
2010-07-30 01:34:39 +08:00
|
|
|
|
|
|
|
// rdar://8249586
|
|
|
|
struct S0 { char f0[8]; char f2; char f3; char f4; };
|
|
|
|
void f30(struct S0 p_4) {
|
|
|
|
// CHECK: define void @f30(i64 %p_4.coerce0, i24 %p_4.coerce1)
|
|
|
|
}
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
|
|
|
|
// Pass the third element as a float when followed by tail padding.
|
|
|
|
// rdar://8251384
|
|
|
|
struct f31foo { float a, b, c; };
|
|
|
|
float f31(struct f31foo X) {
|
Finally pass "two floats in a 64-bit unit" as a <2 x float> instead of
as a double in the x86-64 ABI. This allows us to generate much better
code for certain things, e.g.:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
Used to compile into (look at the integer silliness!):
_f32: ## @f32
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm1
movd %xmm0, %rcx
movd %ecx, %xmm0
addss %xmm1, %xmm0
movd %xmm0, %edx
shrq $32, %rax
movd %eax, %xmm0
shrq $32, %rcx
movd %ecx, %xmm1
addss %xmm0, %xmm1
movd %xmm1, %eax
shlq $32, %rax
addq %rdx, %rax
movd %rax, %xmm0
ret
Now we get:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
and compile stuff like:
extern float _Complex ccoshf( float _Complex ) ;
float _Complex ccosf ( float _Complex z ) {
float _Complex iz;
(__real__ iz) = -(__imag__ z);
(__imag__ iz) = (__real__ z);
return ccoshf(iz);
}
into:
_ccosf: ## @ccosf
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm1
xorps LCPI4_0(%rip), %xmm1
unpcklps %xmm0, %xmm1
movaps %xmm1, %xmm0
jmp _ccoshf ## TAILCALL
instead of:
_ccosf: ## @ccosf
## BB#0: ## %entry
movd %xmm0, %rax
movq %rax, %rcx
shlq $32, %rcx
shrq $32, %rax
xorl $-2147483648, %eax ## imm = 0xFFFFFFFF80000000
addq %rcx, %rax
movd %rax, %xmm0
jmp _ccoshf ## TAILCALL
There is still "stuff to be done" here for the struct case,
but this resolves rdar://6379669 - [x86-64 ABI] Pass and return
_Complex float / double efficiently
llvm-svn: 112111
2010-08-26 07:39:14 +08:00
|
|
|
// CHECK: define float @f31(<2 x float> %X.coerce0, float %X.coerce1)
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
return X.c;
|
|
|
|
}
|
|
|
|
|
Finally pass "two floats in a 64-bit unit" as a <2 x float> instead of
as a double in the x86-64 ABI. This allows us to generate much better
code for certain things, e.g.:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
Used to compile into (look at the integer silliness!):
_f32: ## @f32
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm1
movd %xmm0, %rcx
movd %ecx, %xmm0
addss %xmm1, %xmm0
movd %xmm0, %edx
shrq $32, %rax
movd %eax, %xmm0
shrq $32, %rcx
movd %ecx, %xmm1
addss %xmm0, %xmm1
movd %xmm1, %eax
shlq $32, %rax
addq %rdx, %rax
movd %rax, %xmm0
ret
Now we get:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
and compile stuff like:
extern float _Complex ccoshf( float _Complex ) ;
float _Complex ccosf ( float _Complex z ) {
float _Complex iz;
(__real__ iz) = -(__imag__ z);
(__imag__ iz) = (__real__ z);
return ccoshf(iz);
}
into:
_ccosf: ## @ccosf
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm1
xorps LCPI4_0(%rip), %xmm1
unpcklps %xmm0, %xmm1
movaps %xmm1, %xmm0
jmp _ccoshf ## TAILCALL
instead of:
_ccosf: ## @ccosf
## BB#0: ## %entry
movd %xmm0, %rax
movq %rax, %rcx
shlq $32, %rcx
shrq $32, %rax
xorl $-2147483648, %eax ## imm = 0xFFFFFFFF80000000
addq %rcx, %rax
movd %rax, %xmm0
jmp _ccoshf ## TAILCALL
There is still "stuff to be done" here for the struct case,
but this resolves rdar://6379669 - [x86-64 ABI] Pass and return
_Complex float / double efficiently
llvm-svn: 112111
2010-08-26 07:39:14 +08:00
|
|
|
_Complex float f32(_Complex float A, _Complex float B) {
|
|
|
|
// rdar://6379669
|
|
|
|
// CHECK: define <2 x float> @f32(<2 x float> %A.coerce, <2 x float> %B.coerce)
|
|
|
|
return A+B;
|
|
|
|
}
|
|
|
|
|
fix rdar://8251384, another case where we could access beyond the
end of a struct. This improves the case when the struct being passed
contains 3 floats, either due to a struct or array of 3 things. Before
we'd generate this IR for the testcase:
define float @bar(double %X.coerce0, double %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %1* ; <%1*> [#uses=2]
%1 = getelementptr %1* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %1* %0, i32 0, i32 1 ; <double*> [#uses=1]
store double %X.coerce1, double* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
which compiled (with optimization) to:
_bar: ## @bar
## BB#0: ## %entry
movd %xmm1, %rax
movd %eax, %xmm0
ret
Now we produce:
define float @bar(double %X.coerce0, float %X.coerce1) nounwind {
entry:
%X = alloca %struct.foof, align 8 ; <%struct.foof*> [#uses=2]
%0 = bitcast %struct.foof* %X to %0* ; <%0*> [#uses=2]
%1 = getelementptr %0* %0, i32 0, i32 0 ; <double*> [#uses=1]
store double %X.coerce0, double* %1
%2 = getelementptr %0* %0, i32 0, i32 1 ; <float*> [#uses=1]
store float %X.coerce1, float* %2
%tmp = getelementptr inbounds %struct.foof* %X, i32 0, i32 2 ; <float*> [#uses=1]
%tmp1 = load float* %tmp ; <float> [#uses=1]
ret float %tmp1
}
and:
_bar: ## @bar
## BB#0: ## %entry
movaps %xmm1, %xmm0
ret
llvm-svn: 109776
2010-07-30 02:13:09 +08:00
|
|
|
|
2010-08-26 14:28:35 +08:00
|
|
|
// rdar://8357396
|
|
|
|
struct f33s { long x; float c,d; };
|
|
|
|
|
|
|
|
void f33(va_list X) {
|
|
|
|
va_arg(X, struct f33s);
|
|
|
|
}
|
|
|
|
|
2010-08-27 02:03:20 +08:00
|
|
|
typedef unsigned long long v1i64 __attribute__((__vector_size__(8)));
|
|
|
|
|
|
|
|
// rdar://8359248
|
|
|
|
// CHECK: define i64 @f34(i64 %arg.coerce)
|
|
|
|
v1i64 f34(v1i64 arg) { return arg; }
|
2010-08-26 14:28:35 +08:00
|
|
|
|
2010-08-27 02:13:50 +08:00
|
|
|
|
|
|
|
// rdar://8358475
|
|
|
|
// CHECK: define i64 @f35(i64 %arg.coerce)
|
|
|
|
typedef unsigned long v1i64_2 __attribute__((__vector_size__(8)));
|
|
|
|
v1i64_2 f35(v1i64_2 arg) { return arg+arg; }
|
|
|
|
|