llvm-project/clang/lib/Serialization/ASTWriterStmt.cpp

2693 lines
87 KiB
C++
Raw Normal View History

//===--- ASTWriterStmt.cpp - Statement and Expression Serialization -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Implements serialization for Statements and Expressions.
///
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTWriter.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/Token.h"
#include "llvm/Bitcode/BitstreamWriter.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Statement/expression serialization
//===----------------------------------------------------------------------===//
namespace clang {
class ASTStmtWriter : public StmtVisitor<ASTStmtWriter, void> {
ASTWriter &Writer;
ASTRecordWriter Record;
serialization::StmtCode Code;
unsigned AbbrevToUse;
public:
ASTStmtWriter(ASTWriter &Writer, ASTWriter::RecordData &Record)
: Writer(Writer), Record(Writer, Record),
Code(serialization::STMT_NULL_PTR), AbbrevToUse(0) {}
ASTStmtWriter(const ASTStmtWriter&) = delete;
uint64_t Emit() {
assert(Code != serialization::STMT_NULL_PTR &&
"unhandled sub-statement writing AST file");
return Record.EmitStmt(Code, AbbrevToUse);
}
void AddTemplateKWAndArgsInfo(const ASTTemplateKWAndArgsInfo &ArgInfo,
const TemplateArgumentLoc *Args);
void VisitStmt(Stmt *S);
#define STMT(Type, Base) \
void Visit##Type(Type *);
#include "clang/AST/StmtNodes.inc"
};
}
void ASTStmtWriter::AddTemplateKWAndArgsInfo(
const ASTTemplateKWAndArgsInfo &ArgInfo, const TemplateArgumentLoc *Args) {
Record.AddSourceLocation(ArgInfo.TemplateKWLoc);
Record.AddSourceLocation(ArgInfo.LAngleLoc);
Record.AddSourceLocation(ArgInfo.RAngleLoc);
for (unsigned i = 0; i != ArgInfo.NumTemplateArgs; ++i)
Record.AddTemplateArgumentLoc(Args[i]);
}
void ASTStmtWriter::VisitStmt(Stmt *S) {
}
void ASTStmtWriter::VisitNullStmt(NullStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getSemiLoc());
Record.push_back(S->HasLeadingEmptyMacro);
Code = serialization::STMT_NULL;
}
void ASTStmtWriter::VisitCompoundStmt(CompoundStmt *S) {
VisitStmt(S);
Record.push_back(S->size());
for (auto *CS : S->body())
Record.AddStmt(CS);
Record.AddSourceLocation(S->getLBracLoc());
Record.AddSourceLocation(S->getRBracLoc());
Code = serialization::STMT_COMPOUND;
}
void ASTStmtWriter::VisitSwitchCase(SwitchCase *S) {
VisitStmt(S);
Record.push_back(Writer.getSwitchCaseID(S));
Record.AddSourceLocation(S->getKeywordLoc());
Record.AddSourceLocation(S->getColonLoc());
}
void ASTStmtWriter::VisitCaseStmt(CaseStmt *S) {
VisitSwitchCase(S);
Record.AddStmt(S->getLHS());
Record.AddStmt(S->getRHS());
Record.AddStmt(S->getSubStmt());
Record.AddSourceLocation(S->getEllipsisLoc());
Code = serialization::STMT_CASE;
}
void ASTStmtWriter::VisitDefaultStmt(DefaultStmt *S) {
VisitSwitchCase(S);
Record.AddStmt(S->getSubStmt());
Code = serialization::STMT_DEFAULT;
}
void ASTStmtWriter::VisitLabelStmt(LabelStmt *S) {
VisitStmt(S);
Record.AddDeclRef(S->getDecl());
Record.AddStmt(S->getSubStmt());
Record.AddSourceLocation(S->getIdentLoc());
Code = serialization::STMT_LABEL;
}
void ASTStmtWriter::VisitAttributedStmt(AttributedStmt *S) {
VisitStmt(S);
Record.push_back(S->getAttrs().size());
Record.AddAttributes(S->getAttrs());
Record.AddStmt(S->getSubStmt());
Record.AddSourceLocation(S->getAttrLoc());
Code = serialization::STMT_ATTRIBUTED;
}
void ASTStmtWriter::VisitIfStmt(IfStmt *S) {
VisitStmt(S);
Record.push_back(S->isConstexpr());
Record.AddStmt(S->getInit());
Record.AddDeclRef(S->getConditionVariable());
Record.AddStmt(S->getCond());
Record.AddStmt(S->getThen());
Record.AddStmt(S->getElse());
Record.AddSourceLocation(S->getIfLoc());
Record.AddSourceLocation(S->getElseLoc());
Code = serialization::STMT_IF;
}
void ASTStmtWriter::VisitSwitchStmt(SwitchStmt *S) {
VisitStmt(S);
Record.AddStmt(S->getInit());
Record.AddDeclRef(S->getConditionVariable());
Record.AddStmt(S->getCond());
Record.AddStmt(S->getBody());
Record.AddSourceLocation(S->getSwitchLoc());
Record.push_back(S->isAllEnumCasesCovered());
for (SwitchCase *SC = S->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase())
Record.push_back(Writer.RecordSwitchCaseID(SC));
Code = serialization::STMT_SWITCH;
}
void ASTStmtWriter::VisitWhileStmt(WhileStmt *S) {
VisitStmt(S);
Record.AddDeclRef(S->getConditionVariable());
Record.AddStmt(S->getCond());
Record.AddStmt(S->getBody());
Record.AddSourceLocation(S->getWhileLoc());
Code = serialization::STMT_WHILE;
}
void ASTStmtWriter::VisitDoStmt(DoStmt *S) {
VisitStmt(S);
Record.AddStmt(S->getCond());
Record.AddStmt(S->getBody());
Record.AddSourceLocation(S->getDoLoc());
Record.AddSourceLocation(S->getWhileLoc());
Record.AddSourceLocation(S->getRParenLoc());
Code = serialization::STMT_DO;
}
void ASTStmtWriter::VisitForStmt(ForStmt *S) {
VisitStmt(S);
Record.AddStmt(S->getInit());
Record.AddStmt(S->getCond());
Record.AddDeclRef(S->getConditionVariable());
Record.AddStmt(S->getInc());
Record.AddStmt(S->getBody());
Record.AddSourceLocation(S->getForLoc());
Record.AddSourceLocation(S->getLParenLoc());
Record.AddSourceLocation(S->getRParenLoc());
Code = serialization::STMT_FOR;
}
void ASTStmtWriter::VisitGotoStmt(GotoStmt *S) {
VisitStmt(S);
Record.AddDeclRef(S->getLabel());
Record.AddSourceLocation(S->getGotoLoc());
Record.AddSourceLocation(S->getLabelLoc());
Code = serialization::STMT_GOTO;
}
void ASTStmtWriter::VisitIndirectGotoStmt(IndirectGotoStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getGotoLoc());
Record.AddSourceLocation(S->getStarLoc());
Record.AddStmt(S->getTarget());
Code = serialization::STMT_INDIRECT_GOTO;
}
void ASTStmtWriter::VisitContinueStmt(ContinueStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getContinueLoc());
Code = serialization::STMT_CONTINUE;
}
void ASTStmtWriter::VisitBreakStmt(BreakStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getBreakLoc());
Code = serialization::STMT_BREAK;
}
void ASTStmtWriter::VisitReturnStmt(ReturnStmt *S) {
VisitStmt(S);
Record.AddStmt(S->getRetValue());
Record.AddSourceLocation(S->getReturnLoc());
Record.AddDeclRef(S->getNRVOCandidate());
Code = serialization::STMT_RETURN;
}
void ASTStmtWriter::VisitDeclStmt(DeclStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getStartLoc());
Record.AddSourceLocation(S->getEndLoc());
DeclGroupRef DG = S->getDeclGroup();
for (DeclGroupRef::iterator D = DG.begin(), DEnd = DG.end(); D != DEnd; ++D)
Record.AddDeclRef(*D);
Code = serialization::STMT_DECL;
}
void ASTStmtWriter::VisitAsmStmt(AsmStmt *S) {
VisitStmt(S);
Record.push_back(S->getNumOutputs());
Record.push_back(S->getNumInputs());
Record.push_back(S->getNumClobbers());
Record.AddSourceLocation(S->getAsmLoc());
Record.push_back(S->isVolatile());
Record.push_back(S->isSimple());
}
void ASTStmtWriter::VisitGCCAsmStmt(GCCAsmStmt *S) {
VisitAsmStmt(S);
Record.AddSourceLocation(S->getRParenLoc());
Record.AddStmt(S->getAsmString());
// Outputs
for (unsigned I = 0, N = S->getNumOutputs(); I != N; ++I) {
Record.AddIdentifierRef(S->getOutputIdentifier(I));
Record.AddStmt(S->getOutputConstraintLiteral(I));
Record.AddStmt(S->getOutputExpr(I));
}
// Inputs
for (unsigned I = 0, N = S->getNumInputs(); I != N; ++I) {
Record.AddIdentifierRef(S->getInputIdentifier(I));
Record.AddStmt(S->getInputConstraintLiteral(I));
Record.AddStmt(S->getInputExpr(I));
}
// Clobbers
for (unsigned I = 0, N = S->getNumClobbers(); I != N; ++I)
Record.AddStmt(S->getClobberStringLiteral(I));
Code = serialization::STMT_GCCASM;
}
void ASTStmtWriter::VisitMSAsmStmt(MSAsmStmt *S) {
VisitAsmStmt(S);
Record.AddSourceLocation(S->getLBraceLoc());
Record.AddSourceLocation(S->getEndLoc());
Record.push_back(S->getNumAsmToks());
Record.AddString(S->getAsmString());
// Tokens
for (unsigned I = 0, N = S->getNumAsmToks(); I != N; ++I) {
// FIXME: Move this to ASTRecordWriter?
Writer.AddToken(S->getAsmToks()[I], Record.getRecordData());
}
// Clobbers
for (unsigned I = 0, N = S->getNumClobbers(); I != N; ++I) {
Record.AddString(S->getClobber(I));
}
// Outputs
for (unsigned I = 0, N = S->getNumOutputs(); I != N; ++I) {
Record.AddStmt(S->getOutputExpr(I));
Record.AddString(S->getOutputConstraint(I));
}
// Inputs
for (unsigned I = 0, N = S->getNumInputs(); I != N; ++I) {
Record.AddStmt(S->getInputExpr(I));
Record.AddString(S->getInputConstraint(I));
}
Code = serialization::STMT_MSASM;
}
void ASTStmtWriter::VisitCoroutineBodyStmt(CoroutineBodyStmt *S) {
// FIXME: Implement coroutine serialization.
llvm_unreachable("unimplemented");
}
void ASTStmtWriter::VisitCoreturnStmt(CoreturnStmt *S) {
// FIXME: Implement coroutine serialization.
llvm_unreachable("unimplemented");
}
void ASTStmtWriter::VisitCoawaitExpr(CoawaitExpr *S) {
// FIXME: Implement coroutine serialization.
llvm_unreachable("unimplemented");
}
void ASTStmtWriter::VisitDependentCoawaitExpr(DependentCoawaitExpr *S) {
// FIXME: Implement coroutine serialization.
llvm_unreachable("unimplemented");
}
void ASTStmtWriter::VisitCoyieldExpr(CoyieldExpr *S) {
// FIXME: Implement coroutine serialization.
llvm_unreachable("unimplemented");
}
void ASTStmtWriter::VisitCapturedStmt(CapturedStmt *S) {
VisitStmt(S);
// NumCaptures
Record.push_back(std::distance(S->capture_begin(), S->capture_end()));
// CapturedDecl and captured region kind
Record.AddDeclRef(S->getCapturedDecl());
Record.push_back(S->getCapturedRegionKind());
Record.AddDeclRef(S->getCapturedRecordDecl());
// Capture inits
for (auto *I : S->capture_inits())
Record.AddStmt(I);
// Body
Record.AddStmt(S->getCapturedStmt());
// Captures
for (const auto &I : S->captures()) {
if (I.capturesThis() || I.capturesVariableArrayType())
Record.AddDeclRef(nullptr);
else
Record.AddDeclRef(I.getCapturedVar());
Record.push_back(I.getCaptureKind());
Record.AddSourceLocation(I.getLocation());
}
Code = serialization::STMT_CAPTURED;
}
void ASTStmtWriter::VisitExpr(Expr *E) {
VisitStmt(E);
Record.AddTypeRef(E->getType());
Record.push_back(E->isTypeDependent());
Record.push_back(E->isValueDependent());
Record.push_back(E->isInstantiationDependent());
Record.push_back(E->containsUnexpandedParameterPack());
Record.push_back(E->getValueKind());
Record.push_back(E->getObjectKind());
}
void ASTStmtWriter::VisitPredefinedExpr(PredefinedExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getLocation());
Record.push_back(E->getIdentType()); // FIXME: stable encoding
Record.AddStmt(E->getFunctionName());
Code = serialization::EXPR_PREDEFINED;
}
void ASTStmtWriter::VisitDeclRefExpr(DeclRefExpr *E) {
VisitExpr(E);
Record.push_back(E->hasQualifier());
Add an optional field attached to a DeclRefExpr which points back to the Decl actually found via name lookup & overload resolution when that Decl is different from the ValueDecl which is actually referenced by the expression. This can be used by AST consumers to correctly attribute references to the spelling location of a using declaration, and otherwise gain insight into the name resolution performed by Clang. The public interface to DRE is kept as narrow as possible: we provide a getFoundDecl() which always returns a NamedDecl, either the ValueDecl referenced or the new, more precise NamedDecl if present. This way AST clients can code against getFoundDecl without know when exactly the AST has a split representation. For an example of the data this provides consider: % cat x.cc namespace N1 { struct S {}; void f(const S&); } void test(N1::S s) { f(s); using N1::f; f(s); } % ./bin/clang -fsyntax-only -Xclang -ast-dump x.cc [...] void test(N1::S s) (CompoundStmt 0x5b02010 <x.cc:5:20, line:9:1> (CallExpr 0x5b01df0 <line:6:3, col:6> 'void' (ImplicitCastExpr 0x5b01dd8 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay> (DeclRefExpr 0x5b01d80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)')) (ImplicitCastExpr 0x5b01e20 <col:5> 'const struct N1::S' lvalue <NoOp> (DeclRefExpr 0x5b01d58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S'))) (DeclStmt 0x5b01ee0 <line:7:3, col:14> 0x5b01e40 "UsingN1::;") (CallExpr 0x5b01fc8 <line:8:3, col:6> 'void' (ImplicitCastExpr 0x5b01fb0 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay> (DeclRefExpr 0x5b01f80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)' (UsingShadow 0x5b01ea0 'f'))) (ImplicitCastExpr 0x5b01ff8 <col:5> 'const struct N1::S' lvalue <NoOp> (DeclRefExpr 0x5b01f58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S')))) Now we can tell that the second call is 'using' (no pun intended) the using declaration, and *which* using declaration it sees. Without this, we can mistake calls that go through using declarations for ADL calls, and have no way to attribute names looked up with using declarations to the appropriate UsingDecl. llvm-svn: 130670
2011-05-02 07:48:14 +08:00
Record.push_back(E->getDecl() != E->getFoundDecl());
Record.push_back(E->hasTemplateKWAndArgsInfo());
Record.push_back(E->hadMultipleCandidates());
Record.push_back(E->refersToEnclosingVariableOrCapture());
if (E->hasTemplateKWAndArgsInfo()) {
unsigned NumTemplateArgs = E->getNumTemplateArgs();
Record.push_back(NumTemplateArgs);
}
DeclarationName::NameKind nk = (E->getDecl()->getDeclName().getNameKind());
if ((!E->hasTemplateKWAndArgsInfo()) && (!E->hasQualifier()) &&
(E->getDecl() == E->getFoundDecl()) &&
nk == DeclarationName::Identifier) {
AbbrevToUse = Writer.getDeclRefExprAbbrev();
}
if (E->hasQualifier())
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
Add an optional field attached to a DeclRefExpr which points back to the Decl actually found via name lookup & overload resolution when that Decl is different from the ValueDecl which is actually referenced by the expression. This can be used by AST consumers to correctly attribute references to the spelling location of a using declaration, and otherwise gain insight into the name resolution performed by Clang. The public interface to DRE is kept as narrow as possible: we provide a getFoundDecl() which always returns a NamedDecl, either the ValueDecl referenced or the new, more precise NamedDecl if present. This way AST clients can code against getFoundDecl without know when exactly the AST has a split representation. For an example of the data this provides consider: % cat x.cc namespace N1 { struct S {}; void f(const S&); } void test(N1::S s) { f(s); using N1::f; f(s); } % ./bin/clang -fsyntax-only -Xclang -ast-dump x.cc [...] void test(N1::S s) (CompoundStmt 0x5b02010 <x.cc:5:20, line:9:1> (CallExpr 0x5b01df0 <line:6:3, col:6> 'void' (ImplicitCastExpr 0x5b01dd8 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay> (DeclRefExpr 0x5b01d80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)')) (ImplicitCastExpr 0x5b01e20 <col:5> 'const struct N1::S' lvalue <NoOp> (DeclRefExpr 0x5b01d58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S'))) (DeclStmt 0x5b01ee0 <line:7:3, col:14> 0x5b01e40 "UsingN1::;") (CallExpr 0x5b01fc8 <line:8:3, col:6> 'void' (ImplicitCastExpr 0x5b01fb0 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay> (DeclRefExpr 0x5b01f80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)' (UsingShadow 0x5b01ea0 'f'))) (ImplicitCastExpr 0x5b01ff8 <col:5> 'const struct N1::S' lvalue <NoOp> (DeclRefExpr 0x5b01f58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S')))) Now we can tell that the second call is 'using' (no pun intended) the using declaration, and *which* using declaration it sees. Without this, we can mistake calls that go through using declarations for ADL calls, and have no way to attribute names looked up with using declarations to the appropriate UsingDecl. llvm-svn: 130670
2011-05-02 07:48:14 +08:00
if (E->getDecl() != E->getFoundDecl())
Record.AddDeclRef(E->getFoundDecl());
Add an optional field attached to a DeclRefExpr which points back to the Decl actually found via name lookup & overload resolution when that Decl is different from the ValueDecl which is actually referenced by the expression. This can be used by AST consumers to correctly attribute references to the spelling location of a using declaration, and otherwise gain insight into the name resolution performed by Clang. The public interface to DRE is kept as narrow as possible: we provide a getFoundDecl() which always returns a NamedDecl, either the ValueDecl referenced or the new, more precise NamedDecl if present. This way AST clients can code against getFoundDecl without know when exactly the AST has a split representation. For an example of the data this provides consider: % cat x.cc namespace N1 { struct S {}; void f(const S&); } void test(N1::S s) { f(s); using N1::f; f(s); } % ./bin/clang -fsyntax-only -Xclang -ast-dump x.cc [...] void test(N1::S s) (CompoundStmt 0x5b02010 <x.cc:5:20, line:9:1> (CallExpr 0x5b01df0 <line:6:3, col:6> 'void' (ImplicitCastExpr 0x5b01dd8 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay> (DeclRefExpr 0x5b01d80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)')) (ImplicitCastExpr 0x5b01e20 <col:5> 'const struct N1::S' lvalue <NoOp> (DeclRefExpr 0x5b01d58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S'))) (DeclStmt 0x5b01ee0 <line:7:3, col:14> 0x5b01e40 "UsingN1::;") (CallExpr 0x5b01fc8 <line:8:3, col:6> 'void' (ImplicitCastExpr 0x5b01fb0 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay> (DeclRefExpr 0x5b01f80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)' (UsingShadow 0x5b01ea0 'f'))) (ImplicitCastExpr 0x5b01ff8 <col:5> 'const struct N1::S' lvalue <NoOp> (DeclRefExpr 0x5b01f58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S')))) Now we can tell that the second call is 'using' (no pun intended) the using declaration, and *which* using declaration it sees. Without this, we can mistake calls that go through using declarations for ADL calls, and have no way to attribute names looked up with using declarations to the appropriate UsingDecl. llvm-svn: 130670
2011-05-02 07:48:14 +08:00
if (E->hasTemplateKWAndArgsInfo())
AddTemplateKWAndArgsInfo(*E->getTrailingObjects<ASTTemplateKWAndArgsInfo>(),
E->getTrailingObjects<TemplateArgumentLoc>());
Record.AddDeclRef(E->getDecl());
Record.AddSourceLocation(E->getLocation());
Record.AddDeclarationNameLoc(E->DNLoc, E->getDecl()->getDeclName());
Code = serialization::EXPR_DECL_REF;
}
void ASTStmtWriter::VisitIntegerLiteral(IntegerLiteral *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getLocation());
Record.AddAPInt(E->getValue());
if (E->getValue().getBitWidth() == 32) {
AbbrevToUse = Writer.getIntegerLiteralAbbrev();
}
Code = serialization::EXPR_INTEGER_LITERAL;
}
void ASTStmtWriter::VisitFloatingLiteral(FloatingLiteral *E) {
VisitExpr(E);
Record.push_back(E->getRawSemantics());
Record.push_back(E->isExact());
Record.AddAPFloat(E->getValue());
Record.AddSourceLocation(E->getLocation());
Code = serialization::EXPR_FLOATING_LITERAL;
}
void ASTStmtWriter::VisitImaginaryLiteral(ImaginaryLiteral *E) {
VisitExpr(E);
Record.AddStmt(E->getSubExpr());
Code = serialization::EXPR_IMAGINARY_LITERAL;
}
void ASTStmtWriter::VisitStringLiteral(StringLiteral *E) {
VisitExpr(E);
Record.push_back(E->getByteLength());
Record.push_back(E->getNumConcatenated());
Record.push_back(E->getKind());
Record.push_back(E->isPascal());
// FIXME: String data should be stored as a blob at the end of the
// StringLiteral. However, we can't do so now because we have no
// provision for coping with abbreviations when we're jumping around
// the AST file during deserialization.
Record.append(E->getBytes().begin(), E->getBytes().end());
for (unsigned I = 0, N = E->getNumConcatenated(); I != N; ++I)
Record.AddSourceLocation(E->getStrTokenLoc(I));
Code = serialization::EXPR_STRING_LITERAL;
}
void ASTStmtWriter::VisitCharacterLiteral(CharacterLiteral *E) {
VisitExpr(E);
Record.push_back(E->getValue());
Record.AddSourceLocation(E->getLocation());
Record.push_back(E->getKind());
AbbrevToUse = Writer.getCharacterLiteralAbbrev();
Code = serialization::EXPR_CHARACTER_LITERAL;
}
void ASTStmtWriter::VisitParenExpr(ParenExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getLParen());
Record.AddSourceLocation(E->getRParen());
Record.AddStmt(E->getSubExpr());
Code = serialization::EXPR_PAREN;
}
void ASTStmtWriter::VisitParenListExpr(ParenListExpr *E) {
VisitExpr(E);
Record.push_back(E->NumExprs);
for (unsigned i=0; i != E->NumExprs; ++i)
Record.AddStmt(E->Exprs[i]);
Record.AddSourceLocation(E->LParenLoc);
Record.AddSourceLocation(E->RParenLoc);
Code = serialization::EXPR_PAREN_LIST;
}
void ASTStmtWriter::VisitUnaryOperator(UnaryOperator *E) {
VisitExpr(E);
Record.AddStmt(E->getSubExpr());
Record.push_back(E->getOpcode()); // FIXME: stable encoding
Record.AddSourceLocation(E->getOperatorLoc());
Code = serialization::EXPR_UNARY_OPERATOR;
}
void ASTStmtWriter::VisitOffsetOfExpr(OffsetOfExpr *E) {
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
VisitExpr(E);
Record.push_back(E->getNumComponents());
Record.push_back(E->getNumExpressions());
Record.AddSourceLocation(E->getOperatorLoc());
Record.AddSourceLocation(E->getRParenLoc());
Record.AddTypeSourceInfo(E->getTypeSourceInfo());
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
const OffsetOfNode &ON = E->getComponent(I);
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
Record.push_back(ON.getKind()); // FIXME: Stable encoding
Record.AddSourceLocation(ON.getSourceRange().getBegin());
Record.AddSourceLocation(ON.getSourceRange().getEnd());
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
switch (ON.getKind()) {
case OffsetOfNode::Array:
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
Record.push_back(ON.getArrayExprIndex());
break;
case OffsetOfNode::Field:
Record.AddDeclRef(ON.getField());
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
break;
case OffsetOfNode::Identifier:
Record.AddIdentifierRef(ON.getFieldName());
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
break;
case OffsetOfNode::Base:
Record.AddCXXBaseSpecifier(*ON.getBase());
break;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
}
}
for (unsigned I = 0, N = E->getNumExpressions(); I != N; ++I)
Record.AddStmt(E->getIndexExpr(I));
Code = serialization::EXPR_OFFSETOF;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
}
void ASTStmtWriter::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E) {
VisitExpr(E);
Record.push_back(E->getKind());
if (E->isArgumentType())
Record.AddTypeSourceInfo(E->getArgumentTypeInfo());
else {
Record.push_back(0);
Record.AddStmt(E->getArgumentExpr());
}
Record.AddSourceLocation(E->getOperatorLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_SIZEOF_ALIGN_OF;
}
void ASTStmtWriter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getLHS());
Record.AddStmt(E->getRHS());
Record.AddSourceLocation(E->getRBracketLoc());
Code = serialization::EXPR_ARRAY_SUBSCRIPT;
}
void ASTStmtWriter::VisitOMPArraySectionExpr(OMPArraySectionExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getBase());
Record.AddStmt(E->getLowerBound());
Record.AddStmt(E->getLength());
Record.AddSourceLocation(E->getColonLoc());
Record.AddSourceLocation(E->getRBracketLoc());
Code = serialization::EXPR_OMP_ARRAY_SECTION;
}
void ASTStmtWriter::VisitCallExpr(CallExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumArgs());
Record.AddSourceLocation(E->getRParenLoc());
Record.AddStmt(E->getCallee());
for (CallExpr::arg_iterator Arg = E->arg_begin(), ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg)
Record.AddStmt(*Arg);
Code = serialization::EXPR_CALL;
}
void ASTStmtWriter::VisitMemberExpr(MemberExpr *E) {
// Don't call VisitExpr, we'll write everything here.
Record.push_back(E->hasQualifier());
if (E->hasQualifier())
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
Record.push_back(E->HasTemplateKWAndArgsInfo);
if (E->HasTemplateKWAndArgsInfo) {
Record.AddSourceLocation(E->getTemplateKeywordLoc());
unsigned NumTemplateArgs = E->getNumTemplateArgs();
Record.push_back(NumTemplateArgs);
Record.AddSourceLocation(E->getLAngleLoc());
Record.AddSourceLocation(E->getRAngleLoc());
for (unsigned i=0; i != NumTemplateArgs; ++i)
Record.AddTemplateArgumentLoc(E->getTemplateArgs()[i]);
}
Record.push_back(E->hadMultipleCandidates());
DeclAccessPair FoundDecl = E->getFoundDecl();
Record.AddDeclRef(FoundDecl.getDecl());
Record.push_back(FoundDecl.getAccess());
Record.AddTypeRef(E->getType());
Record.push_back(E->getValueKind());
Record.push_back(E->getObjectKind());
Record.AddStmt(E->getBase());
Record.AddDeclRef(E->getMemberDecl());
Record.AddSourceLocation(E->getMemberLoc());
Record.push_back(E->isArrow());
Record.AddSourceLocation(E->getOperatorLoc());
Record.AddDeclarationNameLoc(E->MemberDNLoc,
E->getMemberDecl()->getDeclName());
Code = serialization::EXPR_MEMBER;
}
void ASTStmtWriter::VisitObjCIsaExpr(ObjCIsaExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getBase());
Record.AddSourceLocation(E->getIsaMemberLoc());
Record.AddSourceLocation(E->getOpLoc());
Record.push_back(E->isArrow());
Code = serialization::EXPR_OBJC_ISA;
}
void ASTStmtWriter::
VisitObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getSubExpr());
Record.push_back(E->shouldCopy());
Code = serialization::EXPR_OBJC_INDIRECT_COPY_RESTORE;
}
void ASTStmtWriter::VisitObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
VisitExplicitCastExpr(E);
Record.AddSourceLocation(E->getLParenLoc());
Record.AddSourceLocation(E->getBridgeKeywordLoc());
Record.push_back(E->getBridgeKind()); // FIXME: Stable encoding
Code = serialization::EXPR_OBJC_BRIDGED_CAST;
}
void ASTStmtWriter::VisitCastExpr(CastExpr *E) {
VisitExpr(E);
Record.push_back(E->path_size());
Record.AddStmt(E->getSubExpr());
Record.push_back(E->getCastKind()); // FIXME: stable encoding
for (CastExpr::path_iterator
PI = E->path_begin(), PE = E->path_end(); PI != PE; ++PI)
Record.AddCXXBaseSpecifier(**PI);
}
void ASTStmtWriter::VisitBinaryOperator(BinaryOperator *E) {
VisitExpr(E);
Record.AddStmt(E->getLHS());
Record.AddStmt(E->getRHS());
Record.push_back(E->getOpcode()); // FIXME: stable encoding
Record.AddSourceLocation(E->getOperatorLoc());
Record.push_back(E->getFPFeatures().getInt());
Code = serialization::EXPR_BINARY_OPERATOR;
}
void ASTStmtWriter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
VisitBinaryOperator(E);
Record.AddTypeRef(E->getComputationLHSType());
Record.AddTypeRef(E->getComputationResultType());
Code = serialization::EXPR_COMPOUND_ASSIGN_OPERATOR;
}
void ASTStmtWriter::VisitConditionalOperator(ConditionalOperator *E) {
VisitExpr(E);
Record.AddStmt(E->getCond());
Record.AddStmt(E->getLHS());
Record.AddStmt(E->getRHS());
Record.AddSourceLocation(E->getQuestionLoc());
Record.AddSourceLocation(E->getColonLoc());
Code = serialization::EXPR_CONDITIONAL_OPERATOR;
}
void
ASTStmtWriter::VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
VisitExpr(E);
Record.AddStmt(E->getOpaqueValue());
Record.AddStmt(E->getCommon());
Record.AddStmt(E->getCond());
Record.AddStmt(E->getTrueExpr());
Record.AddStmt(E->getFalseExpr());
Record.AddSourceLocation(E->getQuestionLoc());
Record.AddSourceLocation(E->getColonLoc());
Code = serialization::EXPR_BINARY_CONDITIONAL_OPERATOR;
}
void ASTStmtWriter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
VisitCastExpr(E);
if (E->path_size() == 0)
AbbrevToUse = Writer.getExprImplicitCastAbbrev();
Code = serialization::EXPR_IMPLICIT_CAST;
}
void ASTStmtWriter::VisitExplicitCastExpr(ExplicitCastExpr *E) {
VisitCastExpr(E);
Record.AddTypeSourceInfo(E->getTypeInfoAsWritten());
}
void ASTStmtWriter::VisitCStyleCastExpr(CStyleCastExpr *E) {
VisitExplicitCastExpr(E);
Record.AddSourceLocation(E->getLParenLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_CSTYLE_CAST;
}
void ASTStmtWriter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getLParenLoc());
Record.AddTypeSourceInfo(E->getTypeSourceInfo());
Record.AddStmt(E->getInitializer());
Record.push_back(E->isFileScope());
Code = serialization::EXPR_COMPOUND_LITERAL;
}
void ASTStmtWriter::VisitExtVectorElementExpr(ExtVectorElementExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getBase());
Record.AddIdentifierRef(&E->getAccessor());
Record.AddSourceLocation(E->getAccessorLoc());
Code = serialization::EXPR_EXT_VECTOR_ELEMENT;
}
void ASTStmtWriter::VisitInitListExpr(InitListExpr *E) {
VisitExpr(E);
// NOTE: only add the (possibly null) syntactic form.
// No need to serialize the isSemanticForm flag and the semantic form.
Record.AddStmt(E->getSyntacticForm());
Record.AddSourceLocation(E->getLBraceLoc());
Record.AddSourceLocation(E->getRBraceLoc());
bool isArrayFiller = E->ArrayFillerOrUnionFieldInit.is<Expr*>();
Record.push_back(isArrayFiller);
if (isArrayFiller)
Record.AddStmt(E->getArrayFiller());
else
Record.AddDeclRef(E->getInitializedFieldInUnion());
Record.push_back(E->hadArrayRangeDesignator());
Record.push_back(E->getNumInits());
if (isArrayFiller) {
// ArrayFiller may have filled "holes" due to designated initializer.
// Replace them by 0 to indicate that the filler goes in that place.
Expr *filler = E->getArrayFiller();
for (unsigned I = 0, N = E->getNumInits(); I != N; ++I)
Record.AddStmt(E->getInit(I) != filler ? E->getInit(I) : nullptr);
} else {
for (unsigned I = 0, N = E->getNumInits(); I != N; ++I)
Record.AddStmt(E->getInit(I));
}
Code = serialization::EXPR_INIT_LIST;
}
void ASTStmtWriter::VisitDesignatedInitExpr(DesignatedInitExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumSubExprs());
for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I)
Record.AddStmt(E->getSubExpr(I));
Record.AddSourceLocation(E->getEqualOrColonLoc());
Record.push_back(E->usesGNUSyntax());
for (const DesignatedInitExpr::Designator &D : E->designators()) {
if (D.isFieldDesignator()) {
if (FieldDecl *Field = D.getField()) {
Record.push_back(serialization::DESIG_FIELD_DECL);
Record.AddDeclRef(Field);
} else {
Record.push_back(serialization::DESIG_FIELD_NAME);
Record.AddIdentifierRef(D.getFieldName());
}
Record.AddSourceLocation(D.getDotLoc());
Record.AddSourceLocation(D.getFieldLoc());
} else if (D.isArrayDesignator()) {
Record.push_back(serialization::DESIG_ARRAY);
Record.push_back(D.getFirstExprIndex());
Record.AddSourceLocation(D.getLBracketLoc());
Record.AddSourceLocation(D.getRBracketLoc());
} else {
assert(D.isArrayRangeDesignator() && "Unknown designator");
Record.push_back(serialization::DESIG_ARRAY_RANGE);
Record.push_back(D.getFirstExprIndex());
Record.AddSourceLocation(D.getLBracketLoc());
Record.AddSourceLocation(D.getEllipsisLoc());
Record.AddSourceLocation(D.getRBracketLoc());
}
}
Code = serialization::EXPR_DESIGNATED_INIT;
}
void ASTStmtWriter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getBase());
Record.AddStmt(E->getUpdater());
Code = serialization::EXPR_DESIGNATED_INIT_UPDATE;
}
void ASTStmtWriter::VisitNoInitExpr(NoInitExpr *E) {
VisitExpr(E);
Code = serialization::EXPR_NO_INIT;
}
void ASTStmtWriter::VisitArrayInitLoopExpr(ArrayInitLoopExpr *E) {
VisitExpr(E);
Record.AddStmt(E->SubExprs[0]);
Record.AddStmt(E->SubExprs[1]);
Code = serialization::EXPR_ARRAY_INIT_LOOP;
}
void ASTStmtWriter::VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
VisitExpr(E);
Code = serialization::EXPR_ARRAY_INIT_INDEX;
}
void ASTStmtWriter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
VisitExpr(E);
Code = serialization::EXPR_IMPLICIT_VALUE_INIT;
}
void ASTStmtWriter::VisitVAArgExpr(VAArgExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getSubExpr());
Record.AddTypeSourceInfo(E->getWrittenTypeInfo());
Record.AddSourceLocation(E->getBuiltinLoc());
Record.AddSourceLocation(E->getRParenLoc());
Record.push_back(E->isMicrosoftABI());
Code = serialization::EXPR_VA_ARG;
}
void ASTStmtWriter::VisitAddrLabelExpr(AddrLabelExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getAmpAmpLoc());
Record.AddSourceLocation(E->getLabelLoc());
Record.AddDeclRef(E->getLabel());
Code = serialization::EXPR_ADDR_LABEL;
}
void ASTStmtWriter::VisitStmtExpr(StmtExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getSubStmt());
Record.AddSourceLocation(E->getLParenLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_STMT;
}
void ASTStmtWriter::VisitChooseExpr(ChooseExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getCond());
Record.AddStmt(E->getLHS());
Record.AddStmt(E->getRHS());
Record.AddSourceLocation(E->getBuiltinLoc());
Record.AddSourceLocation(E->getRParenLoc());
Record.push_back(E->isConditionDependent() ? false : E->isConditionTrue());
Code = serialization::EXPR_CHOOSE;
}
void ASTStmtWriter::VisitGNUNullExpr(GNUNullExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getTokenLocation());
Code = serialization::EXPR_GNU_NULL;
}
void ASTStmtWriter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumSubExprs());
for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I)
Record.AddStmt(E->getExpr(I));
Record.AddSourceLocation(E->getBuiltinLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_SHUFFLE_VECTOR;
}
void ASTStmtWriter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getBuiltinLoc());
Record.AddSourceLocation(E->getRParenLoc());
Record.AddTypeSourceInfo(E->getTypeSourceInfo());
Record.AddStmt(E->getSrcExpr());
Code = serialization::EXPR_CONVERT_VECTOR;
}
void ASTStmtWriter::VisitBlockExpr(BlockExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getBlockDecl());
Code = serialization::EXPR_BLOCK;
}
void ASTStmtWriter::VisitGenericSelectionExpr(GenericSelectionExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumAssocs());
Record.AddStmt(E->getControllingExpr());
for (unsigned I = 0, N = E->getNumAssocs(); I != N; ++I) {
Record.AddTypeSourceInfo(E->getAssocTypeSourceInfo(I));
Record.AddStmt(E->getAssocExpr(I));
}
Record.push_back(E->isResultDependent() ? -1U : E->getResultIndex());
Record.AddSourceLocation(E->getGenericLoc());
Record.AddSourceLocation(E->getDefaultLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_GENERIC_SELECTION;
}
void ASTStmtWriter::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumSemanticExprs());
// Push the result index. Currently, this needs to exactly match
// the encoding used internally for ResultIndex.
unsigned result = E->getResultExprIndex();
result = (result == PseudoObjectExpr::NoResult ? 0 : result + 1);
Record.push_back(result);
Record.AddStmt(E->getSyntacticForm());
for (PseudoObjectExpr::semantics_iterator
i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
Record.AddStmt(*i);
}
Code = serialization::EXPR_PSEUDO_OBJECT;
}
void ASTStmtWriter::VisitAtomicExpr(AtomicExpr *E) {
VisitExpr(E);
Record.push_back(E->getOp());
for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I)
Record.AddStmt(E->getSubExprs()[I]);
Record.AddSourceLocation(E->getBuiltinLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_ATOMIC;
}
//===----------------------------------------------------------------------===//
// Objective-C Expressions and Statements.
//===----------------------------------------------------------------------===//
void ASTStmtWriter::VisitObjCStringLiteral(ObjCStringLiteral *E) {
VisitExpr(E);
Record.AddStmt(E->getString());
Record.AddSourceLocation(E->getAtLoc());
Code = serialization::EXPR_OBJC_STRING_LITERAL;
}
void ASTStmtWriter::VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getSubExpr());
Record.AddDeclRef(E->getBoxingMethod());
Record.AddSourceRange(E->getSourceRange());
Code = serialization::EXPR_OBJC_BOXED_EXPRESSION;
}
void ASTStmtWriter::VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
VisitExpr(E);
Record.push_back(E->getNumElements());
for (unsigned i = 0; i < E->getNumElements(); i++)
Record.AddStmt(E->getElement(i));
Record.AddDeclRef(E->getArrayWithObjectsMethod());
Record.AddSourceRange(E->getSourceRange());
Code = serialization::EXPR_OBJC_ARRAY_LITERAL;
}
void ASTStmtWriter::VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
VisitExpr(E);
Record.push_back(E->getNumElements());
Record.push_back(E->HasPackExpansions);
for (unsigned i = 0; i < E->getNumElements(); i++) {
ObjCDictionaryElement Element = E->getKeyValueElement(i);
Record.AddStmt(Element.Key);
Record.AddStmt(Element.Value);
if (E->HasPackExpansions) {
Record.AddSourceLocation(Element.EllipsisLoc);
unsigned NumExpansions = 0;
if (Element.NumExpansions)
NumExpansions = *Element.NumExpansions + 1;
Record.push_back(NumExpansions);
}
}
Record.AddDeclRef(E->getDictWithObjectsMethod());
Record.AddSourceRange(E->getSourceRange());
Code = serialization::EXPR_OBJC_DICTIONARY_LITERAL;
}
void ASTStmtWriter::VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
VisitExpr(E);
Record.AddTypeSourceInfo(E->getEncodedTypeSourceInfo());
Record.AddSourceLocation(E->getAtLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_OBJC_ENCODE;
}
void ASTStmtWriter::VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
VisitExpr(E);
Record.AddSelectorRef(E->getSelector());
Record.AddSourceLocation(E->getAtLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_OBJC_SELECTOR_EXPR;
}
void ASTStmtWriter::VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getProtocol());
Record.AddSourceLocation(E->getAtLoc());
Record.AddSourceLocation(E->ProtoLoc);
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_OBJC_PROTOCOL_EXPR;
}
void ASTStmtWriter::VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getDecl());
Record.AddSourceLocation(E->getLocation());
Record.AddSourceLocation(E->getOpLoc());
Record.AddStmt(E->getBase());
Record.push_back(E->isArrow());
Record.push_back(E->isFreeIvar());
Code = serialization::EXPR_OBJC_IVAR_REF_EXPR;
}
void ASTStmtWriter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
VisitExpr(E);
Record.push_back(E->SetterAndMethodRefFlags.getInt());
Record.push_back(E->isImplicitProperty());
if (E->isImplicitProperty()) {
Record.AddDeclRef(E->getImplicitPropertyGetter());
Record.AddDeclRef(E->getImplicitPropertySetter());
} else {
Record.AddDeclRef(E->getExplicitProperty());
}
Record.AddSourceLocation(E->getLocation());
Record.AddSourceLocation(E->getReceiverLocation());
if (E->isObjectReceiver()) {
Record.push_back(0);
Record.AddStmt(E->getBase());
} else if (E->isSuperReceiver()) {
Record.push_back(1);
Record.AddTypeRef(E->getSuperReceiverType());
} else {
Record.push_back(2);
Record.AddDeclRef(E->getClassReceiver());
}
Code = serialization::EXPR_OBJC_PROPERTY_REF_EXPR;
}
void ASTStmtWriter::VisitObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getRBracket());
Record.AddStmt(E->getBaseExpr());
Record.AddStmt(E->getKeyExpr());
Record.AddDeclRef(E->getAtIndexMethodDecl());
Record.AddDeclRef(E->setAtIndexMethodDecl());
Code = serialization::EXPR_OBJC_SUBSCRIPT_REF_EXPR;
}
void ASTStmtWriter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumArgs());
Record.push_back(E->getNumStoredSelLocs());
Record.push_back(E->SelLocsKind);
Record.push_back(E->isDelegateInitCall());
Record.push_back(E->IsImplicit);
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
Record.push_back((unsigned)E->getReceiverKind()); // FIXME: stable encoding
switch (E->getReceiverKind()) {
case ObjCMessageExpr::Instance:
Record.AddStmt(E->getInstanceReceiver());
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
break;
case ObjCMessageExpr::Class:
Record.AddTypeSourceInfo(E->getClassReceiverTypeInfo());
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
break;
case ObjCMessageExpr::SuperClass:
case ObjCMessageExpr::SuperInstance:
Record.AddTypeRef(E->getSuperType());
Record.AddSourceLocation(E->getSuperLoc());
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
break;
}
if (E->getMethodDecl()) {
Record.push_back(1);
Record.AddDeclRef(E->getMethodDecl());
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
} else {
Record.push_back(0);
Record.AddSelectorRef(E->getSelector());
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. llvm-svn: 101972
2010-04-21 08:45:42 +08:00
}
Record.AddSourceLocation(E->getLeftLoc());
Record.AddSourceLocation(E->getRightLoc());
for (CallExpr::arg_iterator Arg = E->arg_begin(), ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg)
Record.AddStmt(*Arg);
SourceLocation *Locs = E->getStoredSelLocs();
for (unsigned i = 0, e = E->getNumStoredSelLocs(); i != e; ++i)
Record.AddSourceLocation(Locs[i]);
Code = serialization::EXPR_OBJC_MESSAGE_EXPR;
}
void ASTStmtWriter::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
VisitStmt(S);
Record.AddStmt(S->getElement());
Record.AddStmt(S->getCollection());
Record.AddStmt(S->getBody());
Record.AddSourceLocation(S->getForLoc());
Record.AddSourceLocation(S->getRParenLoc());
Code = serialization::STMT_OBJC_FOR_COLLECTION;
}
void ASTStmtWriter::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
Record.AddStmt(S->getCatchBody());
Record.AddDeclRef(S->getCatchParamDecl());
Record.AddSourceLocation(S->getAtCatchLoc());
Record.AddSourceLocation(S->getRParenLoc());
Code = serialization::STMT_OBJC_CATCH;
}
void ASTStmtWriter::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
Record.AddStmt(S->getFinallyBody());
Record.AddSourceLocation(S->getAtFinallyLoc());
Code = serialization::STMT_OBJC_FINALLY;
}
void ASTStmtWriter::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
Record.AddStmt(S->getSubStmt());
Record.AddSourceLocation(S->getAtLoc());
Code = serialization::STMT_OBJC_AUTORELEASE_POOL;
}
void ASTStmtWriter::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
Record.push_back(S->getNumCatchStmts());
Record.push_back(S->getFinallyStmt() != nullptr);
Record.AddStmt(S->getTryBody());
for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I)
Record.AddStmt(S->getCatchStmt(I));
if (S->getFinallyStmt())
Record.AddStmt(S->getFinallyStmt());
Record.AddSourceLocation(S->getAtTryLoc());
Code = serialization::STMT_OBJC_AT_TRY;
}
void ASTStmtWriter::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
Record.AddStmt(S->getSynchExpr());
Record.AddStmt(S->getSynchBody());
Record.AddSourceLocation(S->getAtSynchronizedLoc());
Code = serialization::STMT_OBJC_AT_SYNCHRONIZED;
}
void ASTStmtWriter::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
Record.AddStmt(S->getThrowExpr());
Record.AddSourceLocation(S->getThrowLoc());
Code = serialization::STMT_OBJC_AT_THROW;
}
void ASTStmtWriter::VisitObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
VisitExpr(E);
Record.push_back(E->getValue());
Record.AddSourceLocation(E->getLocation());
Code = serialization::EXPR_OBJC_BOOL_LITERAL;
}
void ASTStmtWriter::VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
VisitExpr(E);
Record.AddSourceRange(E->getSourceRange());
Record.AddVersionTuple(E->getVersion());
Code = serialization::EXPR_OBJC_AVAILABILITY_CHECK;
}
//===----------------------------------------------------------------------===//
// C++ Expressions and Statements.
//===----------------------------------------------------------------------===//
void ASTStmtWriter::VisitCXXCatchStmt(CXXCatchStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getCatchLoc());
Record.AddDeclRef(S->getExceptionDecl());
Record.AddStmt(S->getHandlerBlock());
Code = serialization::STMT_CXX_CATCH;
}
void ASTStmtWriter::VisitCXXTryStmt(CXXTryStmt *S) {
VisitStmt(S);
Record.push_back(S->getNumHandlers());
Record.AddSourceLocation(S->getTryLoc());
Record.AddStmt(S->getTryBlock());
for (unsigned i = 0, e = S->getNumHandlers(); i != e; ++i)
Record.AddStmt(S->getHandler(i));
Code = serialization::STMT_CXX_TRY;
}
void ASTStmtWriter::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getForLoc());
Record.AddSourceLocation(S->getCoawaitLoc());
Record.AddSourceLocation(S->getColonLoc());
Record.AddSourceLocation(S->getRParenLoc());
Record.AddStmt(S->getRangeStmt());
Record.AddStmt(S->getBeginStmt());
Record.AddStmt(S->getEndStmt());
Record.AddStmt(S->getCond());
Record.AddStmt(S->getInc());
Record.AddStmt(S->getLoopVarStmt());
Record.AddStmt(S->getBody());
Code = serialization::STMT_CXX_FOR_RANGE;
}
void ASTStmtWriter::VisitMSDependentExistsStmt(MSDependentExistsStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getKeywordLoc());
Record.push_back(S->isIfExists());
Record.AddNestedNameSpecifierLoc(S->getQualifierLoc());
Record.AddDeclarationNameInfo(S->getNameInfo());
Record.AddStmt(S->getSubStmt());
Code = serialization::STMT_MS_DEPENDENT_EXISTS;
}
void ASTStmtWriter::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
VisitCallExpr(E);
Record.push_back(E->getOperator());
Record.AddSourceRange(E->Range);
Record.push_back(E->getFPFeatures().getInt());
Code = serialization::EXPR_CXX_OPERATOR_CALL;
}
void ASTStmtWriter::VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
VisitCallExpr(E);
Code = serialization::EXPR_CXX_MEMBER_CALL;
}
void ASTStmtWriter::VisitCXXConstructExpr(CXXConstructExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumArgs());
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
Record.AddStmt(E->getArg(I));
Record.AddDeclRef(E->getConstructor());
Record.AddSourceLocation(E->getLocation());
Record.push_back(E->isElidable());
Record.push_back(E->hadMultipleCandidates());
Record.push_back(E->isListInitialization());
Record.push_back(E->isStdInitListInitialization());
Record.push_back(E->requiresZeroInitialization());
Record.push_back(E->getConstructionKind()); // FIXME: stable encoding
Record.AddSourceRange(E->getParenOrBraceRange());
Code = serialization::EXPR_CXX_CONSTRUCT;
}
P0136R1, DR1573, DR1645, DR1715, DR1736, DR1903, DR1941, DR1959, DR1991: Replace inheriting constructors implementation with new approach, voted into C++ last year as a DR against C++11. Instead of synthesizing a set of derived class constructors for each inherited base class constructor, we make the constructors of the base class visible to constructor lookup in the derived class, using the normal rules for using-declarations. For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived class that tracks the requisite additional information. We create shadow constructors (not found by name lookup) in the derived class to model the actual initialization, and have a new expression node, CXXInheritedCtorInitExpr, to model the initialization of a base class from such a constructor. (This initialization is special because it performs real perfect forwarding of arguments.) In cases where argument forwarding is not possible (for inalloca calls, variadic calls, and calls with callee parameter cleanup), the shadow inheriting constructor is not emitted and instead we directly emit the initialization code into the caller of the inherited constructor. Note that this new model is not perfectly compatible with the old model in some corner cases. In particular: * if B inherits a private constructor from A, and C uses that constructor to construct a B, then we previously required that A befriends B and B befriends C, but the new rules require A to befriend C directly, and * if a derived class has its own constructors (and so its implicit default constructor is suppressed), it may still inherit a default constructor from a base class llvm-svn: 274049
2016-06-29 03:03:57 +08:00
void ASTStmtWriter::VisitCXXInheritedCtorInitExpr(CXXInheritedCtorInitExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getConstructor());
Record.AddSourceLocation(E->getLocation());
Record.push_back(E->constructsVBase());
Record.push_back(E->inheritedFromVBase());
Code = serialization::EXPR_CXX_INHERITED_CTOR_INIT;
}
void ASTStmtWriter::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E) {
VisitCXXConstructExpr(E);
Record.AddTypeSourceInfo(E->getTypeSourceInfo());
Code = serialization::EXPR_CXX_TEMPORARY_OBJECT;
}
void ASTStmtWriter::VisitLambdaExpr(LambdaExpr *E) {
VisitExpr(E);
Record.push_back(E->NumCaptures);
Record.AddSourceRange(E->IntroducerRange);
Record.push_back(E->CaptureDefault); // FIXME: stable encoding
Record.AddSourceLocation(E->CaptureDefaultLoc);
Record.push_back(E->ExplicitParams);
Record.push_back(E->ExplicitResultType);
Record.AddSourceLocation(E->ClosingBrace);
// Add capture initializers.
for (LambdaExpr::capture_init_iterator C = E->capture_init_begin(),
CEnd = E->capture_init_end();
C != CEnd; ++C) {
Record.AddStmt(*C);
}
Code = serialization::EXPR_LAMBDA;
}
void ASTStmtWriter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getSubExpr());
Code = serialization::EXPR_CXX_STD_INITIALIZER_LIST;
}
void ASTStmtWriter::VisitCXXNamedCastExpr(CXXNamedCastExpr *E) {
VisitExplicitCastExpr(E);
Record.AddSourceRange(SourceRange(E->getOperatorLoc(), E->getRParenLoc()));
Record.AddSourceRange(E->getAngleBrackets());
}
void ASTStmtWriter::VisitCXXStaticCastExpr(CXXStaticCastExpr *E) {
VisitCXXNamedCastExpr(E);
Code = serialization::EXPR_CXX_STATIC_CAST;
}
void ASTStmtWriter::VisitCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
VisitCXXNamedCastExpr(E);
Code = serialization::EXPR_CXX_DYNAMIC_CAST;
}
void ASTStmtWriter::VisitCXXReinterpretCastExpr(CXXReinterpretCastExpr *E) {
VisitCXXNamedCastExpr(E);
Code = serialization::EXPR_CXX_REINTERPRET_CAST;
}
void ASTStmtWriter::VisitCXXConstCastExpr(CXXConstCastExpr *E) {
VisitCXXNamedCastExpr(E);
Code = serialization::EXPR_CXX_CONST_CAST;
}
void ASTStmtWriter::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E) {
VisitExplicitCastExpr(E);
Record.AddSourceLocation(E->getLParenLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_CXX_FUNCTIONAL_CAST;
}
void ASTStmtWriter::VisitUserDefinedLiteral(UserDefinedLiteral *E) {
VisitCallExpr(E);
Record.AddSourceLocation(E->UDSuffixLoc);
Code = serialization::EXPR_USER_DEFINED_LITERAL;
}
void ASTStmtWriter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
2010-02-07 14:32:43 +08:00
VisitExpr(E);
Record.push_back(E->getValue());
Record.AddSourceLocation(E->getLocation());
Code = serialization::EXPR_CXX_BOOL_LITERAL;
2010-02-07 14:32:43 +08:00
}
void ASTStmtWriter::VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) {
2010-02-07 14:32:43 +08:00
VisitExpr(E);
Record.AddSourceLocation(E->getLocation());
Code = serialization::EXPR_CXX_NULL_PTR_LITERAL;
2010-02-07 14:32:43 +08:00
}
void ASTStmtWriter::VisitCXXTypeidExpr(CXXTypeidExpr *E) {
2010-05-09 14:03:39 +08:00
VisitExpr(E);
Record.AddSourceRange(E->getSourceRange());
2010-05-09 14:03:39 +08:00
if (E->isTypeOperand()) {
Record.AddTypeSourceInfo(E->getTypeOperandSourceInfo());
Code = serialization::EXPR_CXX_TYPEID_TYPE;
2010-05-09 14:03:39 +08:00
} else {
Record.AddStmt(E->getExprOperand());
Code = serialization::EXPR_CXX_TYPEID_EXPR;
2010-05-09 14:03:39 +08:00
}
}
void ASTStmtWriter::VisitCXXThisExpr(CXXThisExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getLocation());
Record.push_back(E->isImplicit());
Code = serialization::EXPR_CXX_THIS;
}
void ASTStmtWriter::VisitCXXThrowExpr(CXXThrowExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getThrowLoc());
Record.AddStmt(E->getSubExpr());
Record.push_back(E->isThrownVariableInScope());
Code = serialization::EXPR_CXX_THROW;
}
void ASTStmtWriter::VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getParam());
Record.AddSourceLocation(E->getUsedLocation());
Code = serialization::EXPR_CXX_DEFAULT_ARG;
}
void ASTStmtWriter::VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getField());
Record.AddSourceLocation(E->getExprLoc());
Code = serialization::EXPR_CXX_DEFAULT_INIT;
}
void ASTStmtWriter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
VisitExpr(E);
Record.AddCXXTemporary(E->getTemporary());
Record.AddStmt(E->getSubExpr());
Code = serialization::EXPR_CXX_BIND_TEMPORARY;
}
void ASTStmtWriter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
VisitExpr(E);
Record.AddTypeSourceInfo(E->getTypeSourceInfo());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_CXX_SCALAR_VALUE_INIT;
}
void ASTStmtWriter::VisitCXXNewExpr(CXXNewExpr *E) {
VisitExpr(E);
Record.push_back(E->isGlobalNew());
Record.push_back(E->isArray());
Record.push_back(E->passAlignment());
Record.push_back(E->doesUsualArrayDeleteWantSize());
Record.push_back(E->getNumPlacementArgs());
Record.push_back(E->StoredInitializationStyle);
Record.AddDeclRef(E->getOperatorNew());
Record.AddDeclRef(E->getOperatorDelete());
Record.AddTypeSourceInfo(E->getAllocatedTypeSourceInfo());
Record.AddSourceRange(E->getTypeIdParens());
Record.AddSourceRange(E->getSourceRange());
Record.AddSourceRange(E->getDirectInitRange());
for (CXXNewExpr::arg_iterator I = E->raw_arg_begin(), e = E->raw_arg_end();
I != e; ++I)
Record.AddStmt(*I);
Code = serialization::EXPR_CXX_NEW;
}
void ASTStmtWriter::VisitCXXDeleteExpr(CXXDeleteExpr *E) {
VisitExpr(E);
Record.push_back(E->isGlobalDelete());
Record.push_back(E->isArrayForm());
Record.push_back(E->isArrayFormAsWritten());
Record.push_back(E->doesUsualArrayDeleteWantSize());
Record.AddDeclRef(E->getOperatorDelete());
Record.AddStmt(E->getArgument());
Record.AddSourceLocation(E->getSourceRange().getBegin());
Code = serialization::EXPR_CXX_DELETE;
}
void ASTStmtWriter::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getBase());
Record.push_back(E->isArrow());
Record.AddSourceLocation(E->getOperatorLoc());
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
Record.AddTypeSourceInfo(E->getScopeTypeInfo());
Record.AddSourceLocation(E->getColonColonLoc());
Record.AddSourceLocation(E->getTildeLoc());
// PseudoDestructorTypeStorage.
Record.AddIdentifierRef(E->getDestroyedTypeIdentifier());
if (E->getDestroyedTypeIdentifier())
Record.AddSourceLocation(E->getDestroyedTypeLoc());
else
Record.AddTypeSourceInfo(E->getDestroyedTypeInfo());
Code = serialization::EXPR_CXX_PSEUDO_DESTRUCTOR;
}
void ASTStmtWriter::VisitExprWithCleanups(ExprWithCleanups *E) {
VisitExpr(E);
Record.push_back(E->getNumObjects());
for (unsigned i = 0, e = E->getNumObjects(); i != e; ++i)
Record.AddDeclRef(E->getObject(i));
Record.push_back(E->cleanupsHaveSideEffects());
Record.AddStmt(E->getSubExpr());
Code = serialization::EXPR_EXPR_WITH_CLEANUPS;
}
void
ASTStmtWriter::VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E){
VisitExpr(E);
// Don't emit anything here, HasTemplateKWAndArgsInfo must be
// emitted first.
Record.push_back(E->HasTemplateKWAndArgsInfo);
if (E->HasTemplateKWAndArgsInfo) {
const ASTTemplateKWAndArgsInfo &ArgInfo =
*E->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
Record.push_back(ArgInfo.NumTemplateArgs);
AddTemplateKWAndArgsInfo(ArgInfo,
E->getTrailingObjects<TemplateArgumentLoc>());
}
if (!E->isImplicitAccess())
Record.AddStmt(E->getBase());
else
Record.AddStmt(nullptr);
Record.AddTypeRef(E->getBaseType());
Record.push_back(E->isArrow());
Record.AddSourceLocation(E->getOperatorLoc());
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
Record.AddDeclRef(E->getFirstQualifierFoundInScope());
Record.AddDeclarationNameInfo(E->MemberNameInfo);
Code = serialization::EXPR_CXX_DEPENDENT_SCOPE_MEMBER;
}
void
ASTStmtWriter::VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
VisitExpr(E);
// Don't emit anything here, HasTemplateKWAndArgsInfo must be
// emitted first.
Record.push_back(E->HasTemplateKWAndArgsInfo);
if (E->HasTemplateKWAndArgsInfo) {
const ASTTemplateKWAndArgsInfo &ArgInfo =
*E->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
Record.push_back(ArgInfo.NumTemplateArgs);
AddTemplateKWAndArgsInfo(ArgInfo,
E->getTrailingObjects<TemplateArgumentLoc>());
}
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
Record.AddDeclarationNameInfo(E->NameInfo);
Code = serialization::EXPR_CXX_DEPENDENT_SCOPE_DECL_REF;
}
void
ASTStmtWriter::VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr *E) {
VisitExpr(E);
Record.push_back(E->arg_size());
for (CXXUnresolvedConstructExpr::arg_iterator
ArgI = E->arg_begin(), ArgE = E->arg_end(); ArgI != ArgE; ++ArgI)
Record.AddStmt(*ArgI);
Record.AddTypeSourceInfo(E->getTypeSourceInfo());
Record.AddSourceLocation(E->getLParenLoc());
Record.AddSourceLocation(E->getRParenLoc());
Code = serialization::EXPR_CXX_UNRESOLVED_CONSTRUCT;
}
void ASTStmtWriter::VisitOverloadExpr(OverloadExpr *E) {
VisitExpr(E);
// Don't emit anything here, HasTemplateKWAndArgsInfo must be
// emitted first.
Record.push_back(E->HasTemplateKWAndArgsInfo);
if (E->HasTemplateKWAndArgsInfo) {
const ASTTemplateKWAndArgsInfo &ArgInfo =
*E->getTrailingASTTemplateKWAndArgsInfo();
Record.push_back(ArgInfo.NumTemplateArgs);
AddTemplateKWAndArgsInfo(ArgInfo, E->getTrailingTemplateArgumentLoc());
}
Record.push_back(E->getNumDecls());
for (OverloadExpr::decls_iterator
OvI = E->decls_begin(), OvE = E->decls_end(); OvI != OvE; ++OvI) {
Record.AddDeclRef(OvI.getDecl());
Record.push_back(OvI.getAccess());
}
Record.AddDeclarationNameInfo(E->NameInfo);
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
}
void ASTStmtWriter::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *E) {
VisitOverloadExpr(E);
Record.push_back(E->isArrow());
Record.push_back(E->hasUnresolvedUsing());
Record.AddStmt(!E->isImplicitAccess() ? E->getBase() : nullptr);
Record.AddTypeRef(E->getBaseType());
Record.AddSourceLocation(E->getOperatorLoc());
Code = serialization::EXPR_CXX_UNRESOLVED_MEMBER;
}
void ASTStmtWriter::VisitUnresolvedLookupExpr(UnresolvedLookupExpr *E) {
VisitOverloadExpr(E);
Record.push_back(E->requiresADL());
Record.push_back(E->isOverloaded());
Record.AddDeclRef(E->getNamingClass());
Code = serialization::EXPR_CXX_UNRESOLVED_LOOKUP;
}
void ASTStmtWriter::VisitTypeTraitExpr(TypeTraitExpr *E) {
VisitExpr(E);
Record.push_back(E->TypeTraitExprBits.NumArgs);
Record.push_back(E->TypeTraitExprBits.Kind); // FIXME: Stable encoding
Record.push_back(E->TypeTraitExprBits.Value);
Record.AddSourceRange(E->getSourceRange());
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
Record.AddTypeSourceInfo(E->getArg(I));
Code = serialization::EXPR_TYPE_TRAIT;
}
void ASTStmtWriter::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
VisitExpr(E);
Record.push_back(E->getTrait());
Record.push_back(E->getValue());
Record.AddSourceRange(E->getSourceRange());
Record.AddTypeSourceInfo(E->getQueriedTypeSourceInfo());
Record.AddStmt(E->getDimensionExpression());
Code = serialization::EXPR_ARRAY_TYPE_TRAIT;
}
void ASTStmtWriter::VisitExpressionTraitExpr(ExpressionTraitExpr *E) {
VisitExpr(E);
Record.push_back(E->getTrait());
Record.push_back(E->getValue());
Record.AddSourceRange(E->getSourceRange());
Record.AddStmt(E->getQueriedExpression());
Code = serialization::EXPR_CXX_EXPRESSION_TRAIT;
}
void ASTStmtWriter::VisitCXXNoexceptExpr(CXXNoexceptExpr *E) {
VisitExpr(E);
Record.push_back(E->getValue());
Record.AddSourceRange(E->getSourceRange());
Record.AddStmt(E->getOperand());
Code = serialization::EXPR_CXX_NOEXCEPT;
}
void ASTStmtWriter::VisitPackExpansionExpr(PackExpansionExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getEllipsisLoc());
Record.push_back(E->NumExpansions);
Record.AddStmt(E->getPattern());
Code = serialization::EXPR_PACK_EXPANSION;
}
void ASTStmtWriter::VisitSizeOfPackExpr(SizeOfPackExpr *E) {
VisitExpr(E);
Record.push_back(E->isPartiallySubstituted() ? E->getPartialArguments().size()
: 0);
Record.AddSourceLocation(E->OperatorLoc);
Record.AddSourceLocation(E->PackLoc);
Record.AddSourceLocation(E->RParenLoc);
Record.AddDeclRef(E->Pack);
if (E->isPartiallySubstituted()) {
for (const auto &TA : E->getPartialArguments())
Record.AddTemplateArgument(TA);
} else if (!E->isValueDependent()) {
Record.push_back(E->getPackLength());
}
Code = serialization::EXPR_SIZEOF_PACK;
}
void ASTStmtWriter::VisitSubstNonTypeTemplateParmExpr(
SubstNonTypeTemplateParmExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getParameter());
Record.AddSourceLocation(E->getNameLoc());
Record.AddStmt(E->getReplacement());
Code = serialization::EXPR_SUBST_NON_TYPE_TEMPLATE_PARM;
}
void ASTStmtWriter::VisitSubstNonTypeTemplateParmPackExpr(
SubstNonTypeTemplateParmPackExpr *E) {
VisitExpr(E);
Record.AddDeclRef(E->getParameterPack());
Record.AddTemplateArgument(E->getArgumentPack());
Record.AddSourceLocation(E->getParameterPackLocation());
Code = serialization::EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK;
}
void ASTStmtWriter::VisitFunctionParmPackExpr(FunctionParmPackExpr *E) {
VisitExpr(E);
Record.push_back(E->getNumExpansions());
Record.AddDeclRef(E->getParameterPack());
Record.AddSourceLocation(E->getParameterPackLocation());
for (FunctionParmPackExpr::iterator I = E->begin(), End = E->end();
I != End; ++I)
Record.AddDeclRef(*I);
Code = serialization::EXPR_FUNCTION_PARM_PACK;
}
void ASTStmtWriter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getTemporary());
Record.AddDeclRef(E->getExtendingDecl());
Record.push_back(E->getManglingNumber());
Code = serialization::EXPR_MATERIALIZE_TEMPORARY;
}
void ASTStmtWriter::VisitCXXFoldExpr(CXXFoldExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->LParenLoc);
Record.AddSourceLocation(E->EllipsisLoc);
Record.AddSourceLocation(E->RParenLoc);
Record.AddStmt(E->SubExprs[0]);
Record.AddStmt(E->SubExprs[1]);
Record.push_back(E->Opcode);
Code = serialization::EXPR_CXX_FOLD;
}
void ASTStmtWriter::VisitOpaqueValueExpr(OpaqueValueExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getSourceExpr());
Record.AddSourceLocation(E->getLocation());
Code = serialization::EXPR_OPAQUE_VALUE;
}
void ASTStmtWriter::VisitTypoExpr(TypoExpr *E) {
VisitExpr(E);
// TODO: Figure out sane writer behavior for a TypoExpr, if necessary
llvm_unreachable("Cannot write TypoExpr nodes");
}
//===----------------------------------------------------------------------===//
// CUDA Expressions and Statements.
//===----------------------------------------------------------------------===//
void ASTStmtWriter::VisitCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
VisitCallExpr(E);
Record.AddStmt(E->getConfig());
Code = serialization::EXPR_CUDA_KERNEL_CALL;
}
//===----------------------------------------------------------------------===//
// OpenCL Expressions and Statements.
//===----------------------------------------------------------------------===//
void ASTStmtWriter::VisitAsTypeExpr(AsTypeExpr *E) {
VisitExpr(E);
Record.AddSourceLocation(E->getBuiltinLoc());
Record.AddSourceLocation(E->getRParenLoc());
Record.AddStmt(E->getSrcExpr());
Code = serialization::EXPR_ASTYPE;
}
//===----------------------------------------------------------------------===//
// Microsoft Expressions and Statements.
//===----------------------------------------------------------------------===//
void ASTStmtWriter::VisitMSPropertyRefExpr(MSPropertyRefExpr *E) {
VisitExpr(E);
Record.push_back(E->isArrow());
Record.AddStmt(E->getBaseExpr());
Record.AddNestedNameSpecifierLoc(E->getQualifierLoc());
Record.AddSourceLocation(E->getMemberLoc());
Record.AddDeclRef(E->getPropertyDecl());
Code = serialization::EXPR_CXX_PROPERTY_REF_EXPR;
}
void ASTStmtWriter::VisitMSPropertySubscriptExpr(MSPropertySubscriptExpr *E) {
VisitExpr(E);
Record.AddStmt(E->getBase());
Record.AddStmt(E->getIdx());
Record.AddSourceLocation(E->getRBracketLoc());
Code = serialization::EXPR_CXX_PROPERTY_SUBSCRIPT_EXPR;
}
void ASTStmtWriter::VisitCXXUuidofExpr(CXXUuidofExpr *E) {
VisitExpr(E);
Record.AddSourceRange(E->getSourceRange());
Record.AddString(E->getUuidStr());
if (E->isTypeOperand()) {
Record.AddTypeSourceInfo(E->getTypeOperandSourceInfo());
Code = serialization::EXPR_CXX_UUIDOF_TYPE;
} else {
Record.AddStmt(E->getExprOperand());
Code = serialization::EXPR_CXX_UUIDOF_EXPR;
}
}
void ASTStmtWriter::VisitSEHExceptStmt(SEHExceptStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getExceptLoc());
Record.AddStmt(S->getFilterExpr());
Record.AddStmt(S->getBlock());
Code = serialization::STMT_SEH_EXCEPT;
}
void ASTStmtWriter::VisitSEHFinallyStmt(SEHFinallyStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getFinallyLoc());
Record.AddStmt(S->getBlock());
Code = serialization::STMT_SEH_FINALLY;
}
void ASTStmtWriter::VisitSEHTryStmt(SEHTryStmt *S) {
VisitStmt(S);
Record.push_back(S->getIsCXXTry());
Record.AddSourceLocation(S->getTryLoc());
Record.AddStmt(S->getTryBlock());
Record.AddStmt(S->getHandler());
Code = serialization::STMT_SEH_TRY;
}
void ASTStmtWriter::VisitSEHLeaveStmt(SEHLeaveStmt *S) {
VisitStmt(S);
Record.AddSourceLocation(S->getLeaveLoc());
Code = serialization::STMT_SEH_LEAVE;
}
//===----------------------------------------------------------------------===//
// OpenMP Clauses.
//===----------------------------------------------------------------------===//
namespace clang {
class OMPClauseWriter : public OMPClauseVisitor<OMPClauseWriter> {
ASTRecordWriter &Record;
public:
OMPClauseWriter(ASTRecordWriter &Record) : Record(Record) {}
#define OPENMP_CLAUSE(Name, Class) \
void Visit##Class(Class *S);
#include "clang/Basic/OpenMPKinds.def"
void writeClause(OMPClause *C);
void VisitOMPClauseWithPreInit(OMPClauseWithPreInit *C);
void VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *C);
};
}
void OMPClauseWriter::writeClause(OMPClause *C) {
Record.push_back(C->getClauseKind());
Visit(C);
Record.AddSourceLocation(C->getLocStart());
Record.AddSourceLocation(C->getLocEnd());
}
void OMPClauseWriter::VisitOMPClauseWithPreInit(OMPClauseWithPreInit *C) {
Record.push_back(C->getCaptureRegion());
Record.AddStmt(C->getPreInitStmt());
}
void OMPClauseWriter::VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *C) {
VisitOMPClauseWithPreInit(C);
Record.AddStmt(C->getPostUpdateExpr());
}
void OMPClauseWriter::VisitOMPIfClause(OMPIfClause *C) {
VisitOMPClauseWithPreInit(C);
Record.push_back(C->getNameModifier());
Record.AddSourceLocation(C->getNameModifierLoc());
Record.AddSourceLocation(C->getColonLoc());
Record.AddStmt(C->getCondition());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPFinalClause(OMPFinalClause *C) {
Record.AddStmt(C->getCondition());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) {
VisitOMPClauseWithPreInit(C);
Record.AddStmt(C->getNumThreads());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPSafelenClause(OMPSafelenClause *C) {
Record.AddStmt(C->getSafelen());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPSimdlenClause(OMPSimdlenClause *C) {
Record.AddStmt(C->getSimdlen());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPCollapseClause(OMPCollapseClause *C) {
Record.AddStmt(C->getNumForLoops());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPDefaultClause(OMPDefaultClause *C) {
Record.push_back(C->getDefaultKind());
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getDefaultKindKwLoc());
}
void OMPClauseWriter::VisitOMPProcBindClause(OMPProcBindClause *C) {
Record.push_back(C->getProcBindKind());
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getProcBindKindKwLoc());
}
void OMPClauseWriter::VisitOMPScheduleClause(OMPScheduleClause *C) {
VisitOMPClauseWithPreInit(C);
Record.push_back(C->getScheduleKind());
Record.push_back(C->getFirstScheduleModifier());
Record.push_back(C->getSecondScheduleModifier());
Record.AddStmt(C->getChunkSize());
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getFirstScheduleModifierLoc());
Record.AddSourceLocation(C->getSecondScheduleModifierLoc());
Record.AddSourceLocation(C->getScheduleKindLoc());
Record.AddSourceLocation(C->getCommaLoc());
}
void OMPClauseWriter::VisitOMPOrderedClause(OMPOrderedClause *C) {
Record.AddStmt(C->getNumForLoops());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPNowaitClause(OMPNowaitClause *) {}
void OMPClauseWriter::VisitOMPUntiedClause(OMPUntiedClause *) {}
void OMPClauseWriter::VisitOMPMergeableClause(OMPMergeableClause *) {}
void OMPClauseWriter::VisitOMPReadClause(OMPReadClause *) {}
void OMPClauseWriter::VisitOMPWriteClause(OMPWriteClause *) {}
void OMPClauseWriter::VisitOMPUpdateClause(OMPUpdateClause *) {}
void OMPClauseWriter::VisitOMPCaptureClause(OMPCaptureClause *) {}
void OMPClauseWriter::VisitOMPSeqCstClause(OMPSeqCstClause *) {}
void OMPClauseWriter::VisitOMPThreadsClause(OMPThreadsClause *) {}
void OMPClauseWriter::VisitOMPSIMDClause(OMPSIMDClause *) {}
void OMPClauseWriter::VisitOMPNogroupClause(OMPNogroupClause *) {}
void OMPClauseWriter::VisitOMPPrivateClause(OMPPrivateClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists()) {
Record.AddStmt(VE);
}
for (auto *VE : C->private_copies()) {
Record.AddStmt(VE);
}
}
void OMPClauseWriter::VisitOMPFirstprivateClause(OMPFirstprivateClause *C) {
Record.push_back(C->varlist_size());
VisitOMPClauseWithPreInit(C);
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists()) {
Record.AddStmt(VE);
}
for (auto *VE : C->private_copies()) {
Record.AddStmt(VE);
}
for (auto *VE : C->inits()) {
Record.AddStmt(VE);
}
}
void OMPClauseWriter::VisitOMPLastprivateClause(OMPLastprivateClause *C) {
Record.push_back(C->varlist_size());
VisitOMPClauseWithPostUpdate(C);
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
for (auto *E : C->private_copies())
Record.AddStmt(E);
for (auto *E : C->source_exprs())
Record.AddStmt(E);
for (auto *E : C->destination_exprs())
Record.AddStmt(E);
for (auto *E : C->assignment_ops())
Record.AddStmt(E);
}
void OMPClauseWriter::VisitOMPSharedClause(OMPSharedClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
}
void OMPClauseWriter::VisitOMPReductionClause(OMPReductionClause *C) {
Record.push_back(C->varlist_size());
VisitOMPClauseWithPostUpdate(C);
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getColonLoc());
Record.AddNestedNameSpecifierLoc(C->getQualifierLoc());
Record.AddDeclarationNameInfo(C->getNameInfo());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
for (auto *VE : C->privates())
Record.AddStmt(VE);
for (auto *E : C->lhs_exprs())
Record.AddStmt(E);
for (auto *E : C->rhs_exprs())
Record.AddStmt(E);
for (auto *E : C->reduction_ops())
Record.AddStmt(E);
}
void OMPClauseWriter::VisitOMPLinearClause(OMPLinearClause *C) {
Record.push_back(C->varlist_size());
VisitOMPClauseWithPostUpdate(C);
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getColonLoc());
Record.push_back(C->getModifier());
Record.AddSourceLocation(C->getModifierLoc());
for (auto *VE : C->varlists()) {
Record.AddStmt(VE);
}
for (auto *VE : C->privates()) {
Record.AddStmt(VE);
}
for (auto *VE : C->inits()) {
Record.AddStmt(VE);
}
for (auto *VE : C->updates()) {
Record.AddStmt(VE);
}
for (auto *VE : C->finals()) {
Record.AddStmt(VE);
}
Record.AddStmt(C->getStep());
Record.AddStmt(C->getCalcStep());
}
void OMPClauseWriter::VisitOMPAlignedClause(OMPAlignedClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getColonLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
Record.AddStmt(C->getAlignment());
}
void OMPClauseWriter::VisitOMPCopyinClause(OMPCopyinClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
for (auto *E : C->source_exprs())
Record.AddStmt(E);
for (auto *E : C->destination_exprs())
Record.AddStmt(E);
for (auto *E : C->assignment_ops())
Record.AddStmt(E);
}
void OMPClauseWriter::VisitOMPCopyprivateClause(OMPCopyprivateClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
for (auto *E : C->source_exprs())
Record.AddStmt(E);
for (auto *E : C->destination_exprs())
Record.AddStmt(E);
for (auto *E : C->assignment_ops())
Record.AddStmt(E);
}
void OMPClauseWriter::VisitOMPFlushClause(OMPFlushClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
}
void OMPClauseWriter::VisitOMPDependClause(OMPDependClause *C) {
Record.push_back(C->varlist_size());
Record.AddSourceLocation(C->getLParenLoc());
Record.push_back(C->getDependencyKind());
Record.AddSourceLocation(C->getDependencyLoc());
Record.AddSourceLocation(C->getColonLoc());
for (auto *VE : C->varlists())
Record.AddStmt(VE);
Record.AddStmt(C->getCounterValue());
}
void OMPClauseWriter::VisitOMPDeviceClause(OMPDeviceClause *C) {
Record.AddStmt(C->getDevice());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPMapClause(OMPMapClause *C) {
Record.push_back(C->varlist_size());
Record.push_back(C->getUniqueDeclarationsNum());
Record.push_back(C->getTotalComponentListNum());
Record.push_back(C->getTotalComponentsNum());
Record.AddSourceLocation(C->getLParenLoc());
Record.push_back(C->getMapTypeModifier());
Record.push_back(C->getMapType());
Record.AddSourceLocation(C->getMapLoc());
Record.AddSourceLocation(C->getColonLoc());
for (auto *E : C->varlists())
Record.AddStmt(E);
for (auto *D : C->all_decls())
Record.AddDeclRef(D);
for (auto N : C->all_num_lists())
Record.push_back(N);
for (auto N : C->all_lists_sizes())
Record.push_back(N);
for (auto &M : C->all_components()) {
Record.AddStmt(M.getAssociatedExpression());
Record.AddDeclRef(M.getAssociatedDeclaration());
}
}
void OMPClauseWriter::VisitOMPNumTeamsClause(OMPNumTeamsClause *C) {
VisitOMPClauseWithPreInit(C);
Record.AddStmt(C->getNumTeams());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPThreadLimitClause(OMPThreadLimitClause *C) {
VisitOMPClauseWithPreInit(C);
Record.AddStmt(C->getThreadLimit());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPPriorityClause(OMPPriorityClause *C) {
Record.AddStmt(C->getPriority());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPGrainsizeClause(OMPGrainsizeClause *C) {
Record.AddStmt(C->getGrainsize());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPNumTasksClause(OMPNumTasksClause *C) {
Record.AddStmt(C->getNumTasks());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPHintClause(OMPHintClause *C) {
Record.AddStmt(C->getHint());
Record.AddSourceLocation(C->getLParenLoc());
}
void OMPClauseWriter::VisitOMPDistScheduleClause(OMPDistScheduleClause *C) {
VisitOMPClauseWithPreInit(C);
Record.push_back(C->getDistScheduleKind());
Record.AddStmt(C->getChunkSize());
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getDistScheduleKindLoc());
Record.AddSourceLocation(C->getCommaLoc());
}
void OMPClauseWriter::VisitOMPDefaultmapClause(OMPDefaultmapClause *C) {
Record.push_back(C->getDefaultmapKind());
Record.push_back(C->getDefaultmapModifier());
Record.AddSourceLocation(C->getLParenLoc());
Record.AddSourceLocation(C->getDefaultmapModifierLoc());
Record.AddSourceLocation(C->getDefaultmapKindLoc());
}
void OMPClauseWriter::VisitOMPToClause(OMPToClause *C) {
Record.push_back(C->varlist_size());
Record.push_back(C->getUniqueDeclarationsNum());
Record.push_back(C->getTotalComponentListNum());
Record.push_back(C->getTotalComponentsNum());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *E : C->varlists())
Record.AddStmt(E);
for (auto *D : C->all_decls())
Record.AddDeclRef(D);
for (auto N : C->all_num_lists())
Record.push_back(N);
for (auto N : C->all_lists_sizes())
Record.push_back(N);
for (auto &M : C->all_components()) {
Record.AddStmt(M.getAssociatedExpression());
Record.AddDeclRef(M.getAssociatedDeclaration());
}
}
void OMPClauseWriter::VisitOMPFromClause(OMPFromClause *C) {
Record.push_back(C->varlist_size());
Record.push_back(C->getUniqueDeclarationsNum());
Record.push_back(C->getTotalComponentListNum());
Record.push_back(C->getTotalComponentsNum());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *E : C->varlists())
Record.AddStmt(E);
for (auto *D : C->all_decls())
Record.AddDeclRef(D);
for (auto N : C->all_num_lists())
Record.push_back(N);
for (auto N : C->all_lists_sizes())
Record.push_back(N);
for (auto &M : C->all_components()) {
Record.AddStmt(M.getAssociatedExpression());
Record.AddDeclRef(M.getAssociatedDeclaration());
}
}
void OMPClauseWriter::VisitOMPUseDevicePtrClause(OMPUseDevicePtrClause *C) {
Record.push_back(C->varlist_size());
Record.push_back(C->getUniqueDeclarationsNum());
Record.push_back(C->getTotalComponentListNum());
Record.push_back(C->getTotalComponentsNum());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *E : C->varlists())
Record.AddStmt(E);
for (auto *VE : C->private_copies())
Record.AddStmt(VE);
for (auto *VE : C->inits())
Record.AddStmt(VE);
for (auto *D : C->all_decls())
Record.AddDeclRef(D);
for (auto N : C->all_num_lists())
Record.push_back(N);
for (auto N : C->all_lists_sizes())
Record.push_back(N);
for (auto &M : C->all_components()) {
Record.AddStmt(M.getAssociatedExpression());
Record.AddDeclRef(M.getAssociatedDeclaration());
}
}
void OMPClauseWriter::VisitOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) {
Record.push_back(C->varlist_size());
Record.push_back(C->getUniqueDeclarationsNum());
Record.push_back(C->getTotalComponentListNum());
Record.push_back(C->getTotalComponentsNum());
Record.AddSourceLocation(C->getLParenLoc());
for (auto *E : C->varlists())
Record.AddStmt(E);
for (auto *D : C->all_decls())
Record.AddDeclRef(D);
for (auto N : C->all_num_lists())
Record.push_back(N);
for (auto N : C->all_lists_sizes())
Record.push_back(N);
for (auto &M : C->all_components()) {
Record.AddStmt(M.getAssociatedExpression());
Record.AddDeclRef(M.getAssociatedDeclaration());
}
}
//===----------------------------------------------------------------------===//
// OpenMP Directives.
//===----------------------------------------------------------------------===//
void ASTStmtWriter::VisitOMPExecutableDirective(OMPExecutableDirective *E) {
Record.AddSourceLocation(E->getLocStart());
Record.AddSourceLocation(E->getLocEnd());
OMPClauseWriter ClauseWriter(Record);
for (unsigned i = 0; i < E->getNumClauses(); ++i) {
ClauseWriter.writeClause(E->getClause(i));
}
if (E->hasAssociatedStmt())
Record.AddStmt(E->getAssociatedStmt());
}
void ASTStmtWriter::VisitOMPLoopDirective(OMPLoopDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
Record.push_back(D->getCollapsedNumber());
VisitOMPExecutableDirective(D);
Record.AddStmt(D->getIterationVariable());
Record.AddStmt(D->getLastIteration());
Record.AddStmt(D->getCalcLastIteration());
Record.AddStmt(D->getPreCond());
Record.AddStmt(D->getCond());
Record.AddStmt(D->getInit());
Record.AddStmt(D->getInc());
Record.AddStmt(D->getPreInits());
if (isOpenMPWorksharingDirective(D->getDirectiveKind()) ||
isOpenMPTaskLoopDirective(D->getDirectiveKind()) ||
isOpenMPDistributeDirective(D->getDirectiveKind())) {
Record.AddStmt(D->getIsLastIterVariable());
Record.AddStmt(D->getLowerBoundVariable());
Record.AddStmt(D->getUpperBoundVariable());
Record.AddStmt(D->getStrideVariable());
Record.AddStmt(D->getEnsureUpperBound());
Record.AddStmt(D->getNextLowerBound());
Record.AddStmt(D->getNextUpperBound());
Record.AddStmt(D->getNumIterations());
}
if (isOpenMPLoopBoundSharingDirective(D->getDirectiveKind())) {
Record.AddStmt(D->getPrevLowerBoundVariable());
Record.AddStmt(D->getPrevUpperBoundVariable());
Record.AddStmt(D->getDistInc());
Record.AddStmt(D->getPrevEnsureUpperBound());
Record.AddStmt(D->getCombinedLowerBoundVariable());
Record.AddStmt(D->getCombinedUpperBoundVariable());
Record.AddStmt(D->getCombinedEnsureUpperBound());
Record.AddStmt(D->getCombinedInit());
Record.AddStmt(D->getCombinedCond());
Record.AddStmt(D->getCombinedNextLowerBound());
Record.AddStmt(D->getCombinedNextUpperBound());
}
for (auto I : D->counters()) {
Record.AddStmt(I);
}
for (auto I : D->private_counters()) {
Record.AddStmt(I);
}
for (auto I : D->inits()) {
Record.AddStmt(I);
}
for (auto I : D->updates()) {
Record.AddStmt(I);
}
for (auto I : D->finals()) {
Record.AddStmt(I);
}
}
void ASTStmtWriter::VisitOMPParallelDirective(OMPParallelDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_PARALLEL_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPSimdDirective(OMPSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPForDirective(OMPForDirective *D) {
VisitOMPLoopDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_FOR_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPForSimdDirective(OMPForSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_FOR_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPSectionsDirective(OMPSectionsDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_SECTIONS_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPSectionDirective(OMPSectionDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_SECTION_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPSingleDirective(OMPSingleDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_SINGLE_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPMasterDirective(OMPMasterDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_MASTER_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPCriticalDirective(OMPCriticalDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.AddDeclarationNameInfo(D->getDirectiveName());
Code = serialization::STMT_OMP_CRITICAL_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPParallelForDirective(OMPParallelForDirective *D) {
VisitOMPLoopDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_PARALLEL_FOR_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPParallelForSimdDirective(
OMPParallelForSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_PARALLEL_FOR_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPParallelSectionsDirective(
OMPParallelSectionsDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_PARALLEL_SECTIONS_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTaskDirective(OMPTaskDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_TASK_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPAtomicDirective(OMPAtomicDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.AddStmt(D->getX());
Record.AddStmt(D->getV());
Record.AddStmt(D->getExpr());
Record.AddStmt(D->getUpdateExpr());
Record.push_back(D->isXLHSInRHSPart() ? 1 : 0);
Record.push_back(D->isPostfixUpdate() ? 1 : 0);
Code = serialization::STMT_OMP_ATOMIC_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetDirective(OMPTargetDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetDataDirective(OMPTargetDataDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_DATA_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetEnterDataDirective(
OMPTargetEnterDataDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_ENTER_DATA_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetExitDataDirective(
OMPTargetExitDataDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_EXIT_DATA_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetParallelDirective(
OMPTargetParallelDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_PARALLEL_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetParallelForDirective(
OMPTargetParallelForDirective *D) {
VisitOMPLoopDirective(D);
Record.push_back(D->hasCancel() ? 1 : 0);
Code = serialization::STMT_OMP_TARGET_PARALLEL_FOR_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTaskyieldDirective(OMPTaskyieldDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TASKYIELD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPBarrierDirective(OMPBarrierDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_BARRIER_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TASKWAIT_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTaskgroupDirective(OMPTaskgroupDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TASKGROUP_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPFlushDirective(OMPFlushDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_FLUSH_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPOrderedDirective(OMPOrderedDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_ORDERED_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTeamsDirective(OMPTeamsDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TEAMS_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPCancellationPointDirective(
OMPCancellationPointDirective *D) {
VisitStmt(D);
VisitOMPExecutableDirective(D);
Record.push_back(D->getCancelRegion());
Code = serialization::STMT_OMP_CANCELLATION_POINT_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPCancelDirective(OMPCancelDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Record.push_back(D->getCancelRegion());
Code = serialization::STMT_OMP_CANCEL_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTaskLoopDirective(OMPTaskLoopDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TASKLOOP_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTaskLoopSimdDirective(OMPTaskLoopSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TASKLOOP_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPDistributeDirective(OMPDistributeDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_DISTRIBUTE_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetUpdateDirective(OMPTargetUpdateDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_UPDATE_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPDistributeParallelForDirective(
OMPDistributeParallelForDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_DISTRIBUTE_PARALLEL_FOR_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPDistributeParallelForSimdDirective(
OMPDistributeParallelForSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_DISTRIBUTE_PARALLEL_FOR_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPDistributeSimdDirective(
OMPDistributeSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_DISTRIBUTE_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetParallelForSimdDirective(
OMPTargetParallelForSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TARGET_PARALLEL_FOR_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetSimdDirective(OMPTargetSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TARGET_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTeamsDistributeDirective(
OMPTeamsDistributeDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TEAMS_DISTRIBUTE_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTeamsDistributeSimdDirective(
OMPTeamsDistributeSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TEAMS_DISTRIBUTE_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTeamsDistributeParallelForSimdDirective(
OMPTeamsDistributeParallelForSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TEAMS_DISTRIBUTE_PARALLEL_FOR_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTeamsDistributeParallelForDirective(
OMPTeamsDistributeParallelForDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TEAMS_DISTRIBUTE_PARALLEL_FOR_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetTeamsDirective(OMPTargetTeamsDirective *D) {
VisitStmt(D);
Record.push_back(D->getNumClauses());
VisitOMPExecutableDirective(D);
Code = serialization::STMT_OMP_TARGET_TEAMS_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetTeamsDistributeDirective(
OMPTargetTeamsDistributeDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TARGET_TEAMS_DISTRIBUTE_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetTeamsDistributeParallelForDirective(
OMPTargetTeamsDistributeParallelForDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_FOR_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetTeamsDistributeParallelForSimdDirective(
OMPTargetTeamsDistributeParallelForSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::
STMT_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_FOR_SIMD_DIRECTIVE;
}
void ASTStmtWriter::VisitOMPTargetTeamsDistributeSimdDirective(
OMPTargetTeamsDistributeSimdDirective *D) {
VisitOMPLoopDirective(D);
Code = serialization::STMT_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD_DIRECTIVE;
}
//===----------------------------------------------------------------------===//
// ASTWriter Implementation
//===----------------------------------------------------------------------===//
unsigned ASTWriter::RecordSwitchCaseID(SwitchCase *S) {
assert(SwitchCaseIDs.find(S) == SwitchCaseIDs.end() &&
"SwitchCase recorded twice");
unsigned NextID = SwitchCaseIDs.size();
SwitchCaseIDs[S] = NextID;
return NextID;
}
unsigned ASTWriter::getSwitchCaseID(SwitchCase *S) {
assert(SwitchCaseIDs.find(S) != SwitchCaseIDs.end() &&
"SwitchCase hasn't been seen yet");
return SwitchCaseIDs[S];
}
void ASTWriter::ClearSwitchCaseIDs() {
SwitchCaseIDs.clear();
}
/// \brief Write the given substatement or subexpression to the
/// bitstream.
void ASTWriter::WriteSubStmt(Stmt *S) {
RecordData Record;
ASTStmtWriter Writer(*this, Record);
++NumStatements;
if (!S) {
Stream.EmitRecord(serialization::STMT_NULL_PTR, Record);
return;
}
llvm::DenseMap<Stmt *, uint64_t>::iterator I = SubStmtEntries.find(S);
if (I != SubStmtEntries.end()) {
Record.push_back(I->second);
Stream.EmitRecord(serialization::STMT_REF_PTR, Record);
return;
}
#ifndef NDEBUG
assert(!ParentStmts.count(S) && "There is a Stmt cycle!");
struct ParentStmtInserterRAII {
Stmt *S;
llvm::DenseSet<Stmt *> &ParentStmts;
ParentStmtInserterRAII(Stmt *S, llvm::DenseSet<Stmt *> &ParentStmts)
: S(S), ParentStmts(ParentStmts) {
ParentStmts.insert(S);
}
~ParentStmtInserterRAII() {
ParentStmts.erase(S);
}
};
ParentStmtInserterRAII ParentStmtInserter(S, ParentStmts);
#endif
Writer.Visit(S);
uint64_t Offset = Writer.Emit();
SubStmtEntries[S] = Offset;
}
/// \brief Flush all of the statements that have been added to the
/// queue via AddStmt().
void ASTRecordWriter::FlushStmts() {
// We expect to be the only consumer of the two temporary statement maps,
// assert that they are empty.
assert(Writer->SubStmtEntries.empty() && "unexpected entries in sub-stmt map");
assert(Writer->ParentStmts.empty() && "unexpected entries in parent stmt map");
for (unsigned I = 0, N = StmtsToEmit.size(); I != N; ++I) {
Writer->WriteSubStmt(StmtsToEmit[I]);
assert(N == StmtsToEmit.size() && "record modified while being written!");
// Note that we are at the end of a full expression. Any
// expression records that follow this one are part of a different
// expression.
Writer->Stream.EmitRecord(serialization::STMT_STOP, ArrayRef<uint32_t>());
Writer->SubStmtEntries.clear();
Writer->ParentStmts.clear();
}
StmtsToEmit.clear();
}
void ASTRecordWriter::FlushSubStmts() {
// For a nested statement, write out the substatements in reverse order (so
// that a simple stack machine can be used when loading), and don't emit a
// STMT_STOP after each one.
for (unsigned I = 0, N = StmtsToEmit.size(); I != N; ++I) {
Writer->WriteSubStmt(StmtsToEmit[N - I - 1]);
assert(N == StmtsToEmit.size() && "record modified while being written!");
}
StmtsToEmit.clear();
}