llvm-project/llvm/test/Analysis/ScalarEvolution/max-trip-count.ll

183 lines
6.4 KiB
LLVM
Raw Normal View History

; RUN: opt < %s -analyze -scalar-evolution | FileCheck %s
; ScalarEvolution should be able to understand the loop and eliminate the casts.
; CHECK: {%d,+,sizeof(i32)}
define void @foo(i32* nocapture %d, i32 %n) nounwind {
entry:
%0 = icmp sgt i32 %n, 0 ; <i1> [#uses=1]
br i1 %0, label %bb.nph, label %return
bb.nph: ; preds = %entry
br label %bb
bb: ; preds = %bb1, %bb.nph
%i.02 = phi i32 [ %5, %bb1 ], [ 0, %bb.nph ] ; <i32> [#uses=2]
%p.01 = phi i8 [ %4, %bb1 ], [ -1, %bb.nph ] ; <i8> [#uses=2]
%1 = sext i8 %p.01 to i32 ; <i32> [#uses=1]
%2 = sext i32 %i.02 to i64 ; <i64> [#uses=1]
%3 = getelementptr i32* %d, i64 %2 ; <i32*> [#uses=1]
store i32 %1, i32* %3, align 4
%4 = add i8 %p.01, 1 ; <i8> [#uses=1]
%5 = add i32 %i.02, 1 ; <i32> [#uses=2]
br label %bb1
bb1: ; preds = %bb
%6 = icmp slt i32 %5, %n ; <i1> [#uses=1]
br i1 %6, label %bb, label %bb1.return_crit_edge
bb1.return_crit_edge: ; preds = %bb1
br label %return
return: ; preds = %bb1.return_crit_edge, %entry
ret void
}
; ScalarEvolution should be able to find the maximum tripcount
; of this multiple-exit loop, and if it doesn't know the exact
; count, it should say so.
; PR7845
; CHECK: Loop %for.cond: <multiple exits> Unpredictable backedge-taken count.
; CHECK: Loop %for.cond: max backedge-taken count is 5
@.str = private constant [4 x i8] c"%d\0A\00" ; <[4 x i8]*> [#uses=2]
define i32 @main() nounwind {
entry:
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%g_4.0 = phi i32 [ 0, %entry ], [ %add, %for.inc ] ; <i32> [#uses=5]
%cmp = icmp slt i32 %g_4.0, 5 ; <i1> [#uses=1]
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%conv = trunc i32 %g_4.0 to i16 ; <i16> [#uses=1]
%tobool.not = icmp eq i16 %conv, 0 ; <i1> [#uses=1]
%tobool3 = icmp ne i32 %g_4.0, 0 ; <i1> [#uses=1]
%or.cond = and i1 %tobool.not, %tobool3 ; <i1> [#uses=1]
br i1 %or.cond, label %for.end, label %for.inc
for.inc: ; preds = %for.body
%add = add nsw i32 %g_4.0, 1 ; <i32> [#uses=1]
br label %for.cond
for.end: ; preds = %for.body, %for.cond
%call = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([4 x i8]* @.str, i64 0, i64 0), i32 %g_4.0) nounwind ; <i32> [#uses=0]
ret i32 0
}
declare i32 @printf(i8*, ...)
define void @test(i8* %a, i32 %n) nounwind {
entry:
%cmp1 = icmp sgt i32 %n, 0
br i1 %cmp1, label %for.body.lr.ph, label %for.end
for.body.lr.ph: ; preds = %entry
%tmp = zext i32 %n to i64
br label %for.body
for.body: ; preds = %for.body, %for.body.lr.ph
%indvar = phi i64 [ %indvar.next, %for.body ], [ 0, %for.body.lr.ph ]
%arrayidx = getelementptr i8* %a, i64 %indvar
store i8 0, i8* %arrayidx, align 1
%indvar.next = add i64 %indvar, 1
%exitcond = icmp ne i64 %indvar.next, %tmp
br i1 %exitcond, label %for.body, label %for.cond.for.end_crit_edge
for.cond.for.end_crit_edge: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
ret void
}
; CHECK: Determining loop execution counts for: @test
; CHECK-NEXT: backedge-taken count is
; CHECK-NEXT: max backedge-taken count is -1
Fix a bug in SCEV's backedge taken count computation from my prior fix in Jan. This has to do with the trip count computation for loops with multiple exits, which is quite subtle. Most passes just ask for a single trip count number, so we must be conservative assuming any exit could be taken. Normally, we rely on the "exact" trip count, which was correctly given as "unknown". However, SCEV also gives a "max" back-edge taken count. The loops max BE taken count is conservatively a maximum over the max of each exit's non-exiting iterations count. Note that some exit tests can be skipped so the max loop back-edge taken count can actually exceed the max non-exiting iterations for some exits. However, when we know the loop *latch* cannot be skipped, we can directly use its max taken count disregarding other exits. I previously took the minimum here without checking whether the other exit could be skipped. The correct, and simpler thing to do here is just to directly use the loop latch's max non-exiting iterations as the loops max back-edge count. In the problematic test case, the first loop exit had a max of zero non-exiting iterations, but could be skipped. The loop latch was known not to be skipped but had max of one non-exiting iteration. We incorrectly claimed the loop back-edge could be taken zero times, when it is actually taken one time. Fixes Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count. Loop %for.body.i: max backedge-taken count is 1. llvm-svn: 209358
2014-05-22 08:37:03 +08:00
; PR19799: Indvars miscompile due to an incorrect max backedge taken count from SCEV.
; CHECK-LABEL: @pr19799
; CHECK: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
; CHECK: Loop %for.body.i: max backedge-taken count is 1
@a = common global i32 0, align 4
define i32 @pr19799() {
entry:
store i32 -1, i32* @a, align 4
br label %for.body.i
for.body.i: ; preds = %for.cond.i, %entry
%storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ]
%tobool.i = icmp eq i32 %storemerge1.i, 0
%add.i.i = add nsw i32 %storemerge1.i, 2
br i1 %tobool.i, label %bar.exit, label %for.cond.i
for.cond.i: ; preds = %for.body.i
store i32 %add.i.i, i32* @a, align 4
%cmp.i = icmp slt i32 %storemerge1.i, 0
br i1 %cmp.i, label %for.body.i, label %bar.exit
bar.exit: ; preds = %for.cond.i, %for.body.i
ret i32 0
}
; Here we have a must-exit loop latch that is not computable and a
; may-exit early exit that can only have one non-exiting iteration
; before the check is forever skipped.
;
; CHECK-LABEL: @cannot_compute_mustexit
; CHECK: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
; CHECK: Loop %for.body.i: Unpredictable max backedge-taken count.
@b = common global i32 0, align 4
define i32 @cannot_compute_mustexit() {
entry:
store i32 -1, i32* @a, align 4
br label %for.body.i
for.body.i: ; preds = %for.cond.i, %entry
%storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ]
%tobool.i = icmp eq i32 %storemerge1.i, 0
%add.i.i = add nsw i32 %storemerge1.i, 2
br i1 %tobool.i, label %bar.exit, label %for.cond.i
for.cond.i: ; preds = %for.body.i
store i32 %add.i.i, i32* @a, align 4
%ld = load volatile i32* @b
%cmp.i = icmp ne i32 %ld, 0
br i1 %cmp.i, label %for.body.i, label %bar.exit
bar.exit: ; preds = %for.cond.i, %for.body.i
ret i32 0
}
; This loop has two must-exits, both of which dominate the latch. The
; MaxBECount should be the minimum of them.
;
; CHECK-LABEL: @two_mustexit
; CHECK: Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
; CHECK: Loop %for.body.i: max backedge-taken count is 1
define i32 @two_mustexit() {
entry:
store i32 -1, i32* @a, align 4
br label %for.body.i
for.body.i: ; preds = %for.cond.i, %entry
%storemerge1.i = phi i32 [ -1, %entry ], [ %add.i.i, %for.cond.i ]
%tobool.i = icmp sgt i32 %storemerge1.i, 0
%add.i.i = add nsw i32 %storemerge1.i, 2
br i1 %tobool.i, label %bar.exit, label %for.cond.i
for.cond.i: ; preds = %for.body.i
store i32 %add.i.i, i32* @a, align 4
%cmp.i = icmp slt i32 %storemerge1.i, 3
br i1 %cmp.i, label %for.body.i, label %bar.exit
bar.exit: ; preds = %for.cond.i, %for.body.i
ret i32 0
}