llvm-project/llvm/lib/Target/AMDGPU/SILowerControlFlow.cpp

518 lines
16 KiB
C++
Raw Normal View History

//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow is handled using predicated instructions and
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU). Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %vcc = V_CMP_GT_F32 %vgpr1, %vgpr2
/// %sgpr0 = SI_IF %vcc
/// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0
/// %sgpr0 = SI_ELSE %sgpr0
/// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr0
/// SI_END_CF %sgpr0
///
/// becomes:
///
/// %sgpr0 = S_AND_SAVEEXEC_B64 %vcc // Save and update the exec mask
/// %sgpr0 = S_XOR_B64 %sgpr0, %exec // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0 // This instruction is an optional
/// // optimization which allows us to
/// // branch if all the bits of
/// // EXEC are zero.
/// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0 // Do the IF block of the branch
///
/// label0:
/// %sgpr0 = S_OR_SAVEEXEC_B64 %exec // Restore the exec mask for the Then block
/// %exec = S_XOR_B64 %sgpr0, %exec // Clear live bits from saved exec mask
/// S_BRANCH_EXECZ label1 // Use our branch optimization
/// // instruction again.
/// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr // Do the THEN block
/// label1:
/// %exec = S_OR_B64 %exec, %sgpr0 // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include <cassert>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "si-lower-control-flow"
namespace {
class SILowerControlFlow : public MachineFunctionPass {
private:
const SIRegisterInfo *TRI = nullptr;
const SIInstrInfo *TII = nullptr;
LiveIntervals *LIS = nullptr;
MachineRegisterInfo *MRI = nullptr;
void emitIf(MachineInstr &MI);
void emitElse(MachineInstr &MI);
void emitBreak(MachineInstr &MI);
void emitIfBreak(MachineInstr &MI);
void emitElseBreak(MachineInstr &MI);
void emitLoop(MachineInstr &MI);
void emitEndCf(MachineInstr &MI);
void findMaskOperands(MachineInstr &MI, unsigned OpNo,
SmallVectorImpl<MachineOperand> &Src) const;
void combineMasks(MachineInstr &MI);
public:
static char ID;
SILowerControlFlow() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI Lower control flow pseudo instructions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
// Should preserve the same set that TwoAddressInstructions does.
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreservedID(LiveVariablesID);
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char SILowerControlFlow::ID = 0;
INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE,
"SI lower control flow", false, false)
static void setImpSCCDefDead(MachineInstr &MI, bool IsDead) {
MachineOperand &ImpDefSCC = MI.getOperand(3);
assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef());
ImpDefSCC.setIsDead(IsDead);
}
char &llvm::SILowerControlFlowID = SILowerControlFlow::ID;
static bool isSimpleIf(const MachineInstr &MI, const MachineRegisterInfo *MRI,
const SIInstrInfo *TII) {
unsigned SaveExecReg = MI.getOperand(0).getReg();
auto U = MRI->use_instr_nodbg_begin(SaveExecReg);
if (U == MRI->use_instr_nodbg_end() ||
std::next(U) != MRI->use_instr_nodbg_end() ||
U->getOpcode() != AMDGPU::SI_END_CF)
return false;
// Check for SI_KILL_*_TERMINATOR on path from if to endif.
// if there is any such terminator simplififcations are not safe.
auto SMBB = MI.getParent();
auto EMBB = U->getParent();
DenseSet<const MachineBasicBlock*> Visited;
SmallVector<MachineBasicBlock*, 4> Worklist(SMBB->succ_begin(),
SMBB->succ_end());
while (!Worklist.empty()) {
MachineBasicBlock *MBB = Worklist.pop_back_val();
if (MBB == EMBB || !Visited.insert(MBB).second)
continue;
for(auto &Term : MBB->terminators())
if (TII->isKillTerminator(Term.getOpcode()))
return false;
Worklist.append(MBB->succ_begin(), MBB->succ_end());
}
return true;
}
void SILowerControlFlow::emitIf(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
MachineOperand &SaveExec = MI.getOperand(0);
MachineOperand &Cond = MI.getOperand(1);
assert(SaveExec.getSubReg() == AMDGPU::NoSubRegister &&
Cond.getSubReg() == AMDGPU::NoSubRegister);
unsigned SaveExecReg = SaveExec.getReg();
MachineOperand &ImpDefSCC = MI.getOperand(4);
assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef());
// If there is only one use of save exec register and that use is SI_END_CF,
// we can optimize SI_IF by returning the full saved exec mask instead of
// just cleared bits.
bool SimpleIf = isSimpleIf(MI, MRI, TII);
// Add an implicit def of exec to discourage scheduling VALU after this which
// will interfere with trying to form s_and_saveexec_b64 later.
unsigned CopyReg = SimpleIf ? SaveExecReg
: MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineInstr *CopyExec =
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), CopyReg)
.addReg(AMDGPU::EXEC)
.addReg(AMDGPU::EXEC, RegState::ImplicitDefine);
unsigned Tmp = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineInstr *And =
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_AND_B64), Tmp)
.addReg(CopyReg)
//.addReg(AMDGPU::EXEC)
.addReg(Cond.getReg());
setImpSCCDefDead(*And, true);
MachineInstr *Xor = nullptr;
if (!SimpleIf) {
Xor =
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_XOR_B64), SaveExecReg)
.addReg(Tmp)
.addReg(CopyReg);
setImpSCCDefDead(*Xor, ImpDefSCC.isDead());
}
// Use a copy that is a terminator to get correct spill code placement it with
// fast regalloc.
MachineInstr *SetExec =
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64_term), AMDGPU::EXEC)
.addReg(Tmp, RegState::Kill);
// Insert a pseudo terminator to help keep the verifier happy. This will also
// be used later when inserting skips.
MachineInstr *NewBr = BuildMI(MBB, I, DL, TII->get(AMDGPU::SI_MASK_BRANCH))
.add(MI.getOperand(2));
if (!LIS) {
MI.eraseFromParent();
return;
}
LIS->InsertMachineInstrInMaps(*CopyExec);
// Replace with and so we don't need to fix the live interval for condition
// register.
LIS->ReplaceMachineInstrInMaps(MI, *And);
if (!SimpleIf)
LIS->InsertMachineInstrInMaps(*Xor);
LIS->InsertMachineInstrInMaps(*SetExec);
LIS->InsertMachineInstrInMaps(*NewBr);
LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::EXEC, TRI));
MI.eraseFromParent();
// FIXME: Is there a better way of adjusting the liveness? It shouldn't be
// hard to add another def here but I'm not sure how to correctly update the
// valno.
LIS->removeInterval(SaveExecReg);
LIS->createAndComputeVirtRegInterval(SaveExecReg);
LIS->createAndComputeVirtRegInterval(Tmp);
if (!SimpleIf)
LIS->createAndComputeVirtRegInterval(CopyReg);
}
void SILowerControlFlow::emitElse(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
unsigned DstReg = MI.getOperand(0).getReg();
assert(MI.getOperand(0).getSubReg() == AMDGPU::NoSubRegister);
bool ExecModified = MI.getOperand(3).getImm() != 0;
MachineBasicBlock::iterator Start = MBB.begin();
// We are running before TwoAddressInstructions, and si_else's operands are
// tied. In order to correctly tie the registers, split this into a copy of
// the src like it does.
unsigned CopyReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineInstr *CopyExec =
BuildMI(MBB, Start, DL, TII->get(AMDGPU::COPY), CopyReg)
.add(MI.getOperand(1)); // Saved EXEC
// This must be inserted before phis and any spill code inserted before the
// else.
unsigned SaveReg = ExecModified ?
MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass) : DstReg;
MachineInstr *OrSaveExec =
BuildMI(MBB, Start, DL, TII->get(AMDGPU::S_OR_SAVEEXEC_B64), SaveReg)
.addReg(CopyReg);
MachineBasicBlock *DestBB = MI.getOperand(2).getMBB();
MachineBasicBlock::iterator ElsePt(MI);
if (ExecModified) {
MachineInstr *And =
BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::S_AND_B64), DstReg)
.addReg(AMDGPU::EXEC)
.addReg(SaveReg);
if (LIS)
LIS->InsertMachineInstrInMaps(*And);
}
MachineInstr *Xor =
BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::S_XOR_B64_term), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(DstReg);
MachineInstr *Branch =
BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::SI_MASK_BRANCH))
.addMBB(DestBB);
if (!LIS) {
MI.eraseFromParent();
return;
}
LIS->RemoveMachineInstrFromMaps(MI);
MI.eraseFromParent();
LIS->InsertMachineInstrInMaps(*CopyExec);
LIS->InsertMachineInstrInMaps(*OrSaveExec);
LIS->InsertMachineInstrInMaps(*Xor);
LIS->InsertMachineInstrInMaps(*Branch);
// src reg is tied to dst reg.
LIS->removeInterval(DstReg);
LIS->createAndComputeVirtRegInterval(DstReg);
LIS->createAndComputeVirtRegInterval(CopyReg);
if (ExecModified)
LIS->createAndComputeVirtRegInterval(SaveReg);
// Let this be recomputed.
LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::EXEC, TRI));
}
void SILowerControlFlow::emitBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
MachineInstr *Or = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(AMDGPU::EXEC)
.add(MI.getOperand(1));
if (LIS)
LIS->ReplaceMachineInstrInMaps(MI, *Or);
MI.eraseFromParent();
}
void SILowerControlFlow::emitIfBreak(MachineInstr &MI) {
MI.setDesc(TII->get(AMDGPU::S_OR_B64));
}
void SILowerControlFlow::emitElseBreak(MachineInstr &MI) {
MI.setDesc(TII->get(AMDGPU::S_OR_B64));
}
void SILowerControlFlow::emitLoop(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *AndN2 =
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64_term), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.add(MI.getOperand(0));
MachineInstr *Branch =
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.add(MI.getOperand(1));
if (LIS) {
LIS->ReplaceMachineInstrInMaps(MI, *AndN2);
LIS->InsertMachineInstrInMaps(*Branch);
}
MI.eraseFromParent();
}
void SILowerControlFlow::emitEndCf(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator InsPt = MBB.begin();
MachineInstr *NewMI =
BuildMI(MBB, InsPt, DL, TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.add(MI.getOperand(0));
if (LIS)
LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
MI.eraseFromParent();
if (LIS)
LIS->handleMove(*NewMI);
}
// Returns replace operands for a logical operation, either single result
// for exec or two operands if source was another equivalent operation.
void SILowerControlFlow::findMaskOperands(MachineInstr &MI, unsigned OpNo,
SmallVectorImpl<MachineOperand> &Src) const {
MachineOperand &Op = MI.getOperand(OpNo);
if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) {
Src.push_back(Op);
return;
}
MachineInstr *Def = MRI->getUniqueVRegDef(Op.getReg());
if (!Def || Def->getParent() != MI.getParent() ||
!(Def->isFullCopy() || (Def->getOpcode() == MI.getOpcode())))
return;
// Make sure we do not modify exec between def and use.
// A copy with implcitly defined exec inserted earlier is an exclusion, it
// does not really modify exec.
for (auto I = Def->getIterator(); I != MI.getIterator(); ++I)
if (I->modifiesRegister(AMDGPU::EXEC, TRI) &&
!(I->isCopy() && I->getOperand(0).getReg() != AMDGPU::EXEC))
return;
for (const auto &SrcOp : Def->explicit_operands())
if (SrcOp.isUse() && (!SrcOp.isReg() ||
TargetRegisterInfo::isVirtualRegister(SrcOp.getReg()) ||
SrcOp.getReg() == AMDGPU::EXEC))
Src.push_back(SrcOp);
}
// Search and combine pairs of equivalent instructions, like
// S_AND_B64 x, (S_AND_B64 x, y) => S_AND_B64 x, y
// S_OR_B64 x, (S_OR_B64 x, y) => S_OR_B64 x, y
// One of the operands is exec mask.
void SILowerControlFlow::combineMasks(MachineInstr &MI) {
assert(MI.getNumExplicitOperands() == 3);
SmallVector<MachineOperand, 4> Ops;
unsigned OpToReplace = 1;
findMaskOperands(MI, 1, Ops);
if (Ops.size() == 1) OpToReplace = 2; // First operand can be exec or its copy
findMaskOperands(MI, 2, Ops);
if (Ops.size() != 3) return;
unsigned UniqueOpndIdx;
if (Ops[0].isIdenticalTo(Ops[1])) UniqueOpndIdx = 2;
else if (Ops[0].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1;
else if (Ops[1].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1;
else return;
unsigned Reg = MI.getOperand(OpToReplace).getReg();
MI.RemoveOperand(OpToReplace);
MI.addOperand(Ops[UniqueOpndIdx]);
if (MRI->use_empty(Reg))
MRI->getUniqueVRegDef(Reg)->eraseFromParent();
}
bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
// This doesn't actually need LiveIntervals, but we can preserve them.
LIS = getAnalysisIfAvailable<LiveIntervals>();
MRI = &MF.getRegInfo();
MachineFunction::iterator NextBB;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; BI = NextBB) {
NextBB = std::next(BI);
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next, Last;
for (I = MBB.begin(), Last = MBB.end(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
switch (MI.getOpcode()) {
case AMDGPU::SI_IF:
emitIf(MI);
break;
case AMDGPU::SI_ELSE:
emitElse(MI);
break;
case AMDGPU::SI_BREAK:
emitBreak(MI);
break;
case AMDGPU::SI_IF_BREAK:
emitIfBreak(MI);
break;
case AMDGPU::SI_ELSE_BREAK:
emitElseBreak(MI);
break;
case AMDGPU::SI_LOOP:
emitLoop(MI);
break;
case AMDGPU::SI_END_CF:
emitEndCf(MI);
break;
case AMDGPU::S_AND_B64:
case AMDGPU::S_OR_B64:
// Cleanup bit manipulations on exec mask
combineMasks(MI);
Last = I;
continue;
default:
Last = I;
continue;
}
// Replay newly inserted code to combine masks
Next = (Last == MBB.end()) ? MBB.begin() : Last;
}
}
return true;
}