llvm-project/clang/lib/CodeGen/ItaniumCXXABI.cpp

589 lines
22 KiB
C++
Raw Normal View History

//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides C++ code generation targetting the Itanium C++ ABI. The class
// in this file generates structures that follow the Itanium C++ ABI, which is
// documented at:
// http://www.codesourcery.com/public/cxx-abi/abi.html
// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
//
// It also supports the closely-related ARM ABI, documented at:
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
//
//===----------------------------------------------------------------------===//
#include "CGCXXABI.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "Mangle.h"
#include <clang/AST/Type.h>
#include <llvm/Target/TargetData.h>
#include <llvm/Value.h>
using namespace clang;
using namespace CodeGen;
namespace {
class ItaniumCXXABI : public CodeGen::CGCXXABI {
private:
const llvm::IntegerType *PtrDiffTy;
protected:
CodeGen::MangleContext MangleCtx;
bool IsARM;
// It's a little silly for us to cache this.
const llvm::IntegerType *getPtrDiffTy() {
if (!PtrDiffTy) {
QualType T = CGM.getContext().getPointerDiffType();
const llvm::Type *Ty = CGM.getTypes().ConvertTypeRecursive(T);
PtrDiffTy = cast<llvm::IntegerType>(Ty);
}
return PtrDiffTy;
}
public:
ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
CGCXXABI(CGM), PtrDiffTy(0), MangleCtx(CGM.getContext(), CGM.getDiags()),
IsARM(IsARM) { }
CodeGen::MangleContext &getMangleContext() {
return MangleCtx;
}
bool isZeroInitializable(const MemberPointerType *MPT);
const llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
llvm::Value *&This,
llvm::Value *MemFnPtr,
const MemberPointerType *MPT);
llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
const CastExpr *E,
llvm::Value *Src);
llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
const CastExpr *E);
llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
llvm::Constant *EmitMemberPointer(const FieldDecl *FD);
llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
llvm::Value *L,
llvm::Value *R,
const MemberPointerType *MPT,
bool Inequality);
llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
llvm::Value *Addr,
const MemberPointerType *MPT);
};
class ARMCXXABI : public ItaniumCXXABI {
public:
ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
};
}
CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
return new ItaniumCXXABI(CGM);
}
CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
return new ARMCXXABI(CGM);
}
const llvm::Type *
ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
if (MPT->isMemberDataPointer())
return getPtrDiffTy();
else
return llvm::StructType::get(CGM.getLLVMContext(),
getPtrDiffTy(), getPtrDiffTy(), NULL);
}
/// In the Itanium and ARM ABIs, method pointers have the form:
/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
///
/// In the Itanium ABI:
/// - method pointers are virtual if (memptr.ptr & 1) is nonzero
/// - the this-adjustment is (memptr.adj)
/// - the virtual offset is (memptr.ptr - 1)
///
/// In the ARM ABI:
/// - method pointers are virtual if (memptr.adj & 1) is nonzero
/// - the this-adjustment is (memptr.adj >> 1)
/// - the virtual offset is (memptr.ptr)
/// ARM uses 'adj' for the virtual flag because Thumb functions
/// may be only single-byte aligned.
///
/// If the member is virtual, the adjusted 'this' pointer points
/// to a vtable pointer from which the virtual offset is applied.
///
/// If the member is non-virtual, memptr.ptr is the address of
/// the function to call.
llvm::Value *
ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
llvm::Value *&This,
llvm::Value *MemFnPtr,
const MemberPointerType *MPT) {
CGBuilderTy &Builder = CGF.Builder;
const FunctionProtoType *FPT =
MPT->getPointeeType()->getAs<FunctionProtoType>();
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
const llvm::FunctionType *FTy =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
FPT->isVariadic());
const llvm::IntegerType *ptrdiff = getPtrDiffTy();
llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
// Extract memptr.adj, which is in the second field.
llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
// Compute the true adjustment.
llvm::Value *Adj = RawAdj;
if (IsARM)
Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
// Apply the adjustment and cast back to the original struct type
// for consistency.
llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
// Load the function pointer.
llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
// If the LSB in the function pointer is 1, the function pointer points to
// a virtual function.
llvm::Value *IsVirtual;
if (IsARM)
IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
else
IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
// In the virtual path, the adjustment left 'This' pointing to the
// vtable of the correct base subobject. The "function pointer" is an
// offset within the vtable (+1 for the virtual flag on non-ARM).
CGF.EmitBlock(FnVirtual);
// Cast the adjusted this to a pointer to vtable pointer and load.
const llvm::Type *VTableTy = Builder.getInt8PtrTy();
llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
VTable = Builder.CreateLoad(VTable, "memptr.vtable");
// Apply the offset.
llvm::Value *VTableOffset = FnAsInt;
if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
VTable = Builder.CreateGEP(VTable, VTableOffset);
// Load the virtual function to call.
VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
CGF.EmitBranch(FnEnd);
// In the non-virtual path, the function pointer is actually a
// function pointer.
CGF.EmitBlock(FnNonVirtual);
llvm::Value *NonVirtualFn =
Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
// We're done.
CGF.EmitBlock(FnEnd);
llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo());
Callee->reserveOperandSpace(2);
Callee->addIncoming(VirtualFn, FnVirtual);
Callee->addIncoming(NonVirtualFn, FnNonVirtual);
return Callee;
}
/// Perform a derived-to-base or base-to-derived member pointer conversion.
///
/// Obligatory offset/adjustment diagram:
/// <-- offset --> <-- adjustment -->
/// |--------------------------|----------------------|--------------------|
/// ^Derived address point ^Base address point ^Member address point
///
/// So when converting a base member pointer to a derived member pointer,
/// we add the offset to the adjustment because the address point has
/// decreased; and conversely, when converting a derived MP to a base MP
/// we subtract the offset from the adjustment because the address point
/// has increased.
///
/// The standard forbids (at compile time) conversion to and from
/// virtual bases, which is why we don't have to consider them here.
///
/// The standard forbids (at run time) casting a derived MP to a base
/// MP when the derived MP does not point to a member of the base.
/// This is why -1 is a reasonable choice for null data member
/// pointers.
llvm::Value *
ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
const CastExpr *E,
llvm::Value *Src) {
assert(E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer ||
E->getCastKind() == CastExpr::CK_BaseToDerivedMemberPointer);
if (isa<llvm::Constant>(Src))
return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
CGBuilderTy &Builder = CGF.Builder;
const MemberPointerType *SrcTy =
E->getSubExpr()->getType()->getAs<MemberPointerType>();
const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
bool DerivedToBase =
E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer;
const CXXRecordDecl *BaseDecl, *DerivedDecl;
if (DerivedToBase)
DerivedDecl = SrcDecl, BaseDecl = DestDecl;
else
BaseDecl = SrcDecl, DerivedDecl = DestDecl;
llvm::Constant *Adj =
CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
E->path_begin(),
E->path_end());
if (!Adj) return Src;
// For member data pointers, this is just a matter of adding the
// offset if the source is non-null.
if (SrcTy->isMemberDataPointer()) {
llvm::Value *Dst;
if (DerivedToBase)
Dst = Builder.CreateNSWSub(Src, Adj, "adj");
else
Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
// Null check.
llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
return Builder.CreateSelect(IsNull, Src, Dst);
}
// The this-adjustment is left-shifted by 1 on ARM.
if (IsARM) {
uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
Offset <<= 1;
Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
}
llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
llvm::Value *DstAdj;
if (DerivedToBase)
DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
else
DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
return Builder.CreateInsertValue(Src, DstAdj, 1);
}
llvm::Constant *
ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
const CastExpr *E) {
const MemberPointerType *SrcTy =
E->getSubExpr()->getType()->getAs<MemberPointerType>();
const MemberPointerType *DestTy =
E->getType()->getAs<MemberPointerType>();
bool DerivedToBase =
E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer;
const CXXRecordDecl *DerivedDecl;
if (DerivedToBase)
DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
else
DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
// Calculate the offset to the base class.
llvm::Constant *Offset =
CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
E->path_begin(),
E->path_end());
// If there's no offset, we're done.
if (!Offset) return C;
// If the source is a member data pointer, we have to do a null
// check and then add the offset. In the common case, we can fold
// away the offset.
if (SrcTy->isMemberDataPointer()) {
assert(C->getType() == getPtrDiffTy());
// If it's a constant int, just create a new constant int.
if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
int64_t Src = CI->getSExtValue();
// Null converts to null.
if (Src == -1) return CI;
// Otherwise, just add the offset.
int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
}
// Otherwise, we have to form a constant select expression.
llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
llvm::Constant *IsNull =
llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
llvm::Constant *Dst;
if (DerivedToBase)
Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
else
Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
}
// The this-adjustment is left-shifted by 1 on ARM.
if (IsARM) {
int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
OffsetV <<= 1;
Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
}
llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
if (DerivedToBase)
Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
else
Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
/*Packed=*/false);
}
llvm::Constant *
ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
const llvm::Type *ptrdiff_t = getPtrDiffTy();
// Itanium C++ ABI 2.3:
// A NULL pointer is represented as -1.
if (MPT->isMemberDataPointer())
return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
llvm::Constant *Values[2] = { Zero, Zero };
return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
/*Packed=*/false);
}
llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const FieldDecl *FD) {
// Itanium C++ ABI 2.3:
// A pointer to data member is an offset from the base address of
// the class object containing it, represented as a ptrdiff_t
QualType ClassType = CGM.getContext().getTypeDeclType(FD->getParent());
const llvm::StructType *ClassLTy =
cast<llvm::StructType>(CGM.getTypes().ConvertType(ClassType));
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(FD->getParent());
unsigned FieldNo = RL.getLLVMFieldNo(FD);
uint64_t Offset =
CGM.getTargetData().getStructLayout(ClassLTy)->getElementOffset(FieldNo);
return llvm::ConstantInt::get(getPtrDiffTy(), Offset);
}
llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
assert(MD->isInstance() && "Member function must not be static!");
MD = MD->getCanonicalDecl();
CodeGenTypes &Types = CGM.getTypes();
const llvm::Type *ptrdiff_t = getPtrDiffTy();
// Get the function pointer (or index if this is a virtual function).
llvm::Constant *MemPtr[2];
if (MD->isVirtual()) {
uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD);
// FIXME: We shouldn't use / 8 here.
uint64_t PointerWidthInBytes =
CGM.getContext().Target.getPointerWidth(0) / 8;
uint64_t VTableOffset = (Index * PointerWidthInBytes);
if (IsARM) {
// ARM C++ ABI 3.2.1:
// This ABI specifies that adj contains twice the this
// adjustment, plus 1 if the member function is virtual. The
// least significant bit of adj then makes exactly the same
// discrimination as the least significant bit of ptr does for
// Itanium.
MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
} else {
// Itanium C++ ABI 2.3:
// For a virtual function, [the pointer field] is 1 plus the
// virtual table offset (in bytes) of the function,
// represented as a ptrdiff_t.
MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
}
} else {
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
const llvm::Type *Ty;
// Check whether the function has a computable LLVM signature.
if (!CodeGenTypes::VerifyFuncTypeComplete(FPT)) {
// The function has a computable LLVM signature; use the correct type.
Ty = Types.GetFunctionType(Types.getFunctionInfo(MD), FPT->isVariadic());
} else {
// Use an arbitrary non-function type to tell GetAddrOfFunction that the
// function type is incomplete.
Ty = ptrdiff_t;
}
llvm::Constant *Addr = CGM.GetAddrOfFunction(MD, Ty);
MemPtr[0] = llvm::ConstantExpr::getPtrToInt(Addr, ptrdiff_t);
MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
}
return llvm::ConstantStruct::get(CGM.getLLVMContext(),
MemPtr, 2, /*Packed=*/false);
}
/// The comparison algorithm is pretty easy: the member pointers are
/// the same if they're either bitwise identical *or* both null.
///
/// ARM is different here only because null-ness is more complicated.
llvm::Value *
ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
llvm::Value *L,
llvm::Value *R,
const MemberPointerType *MPT,
bool Inequality) {
CGBuilderTy &Builder = CGF.Builder;
llvm::ICmpInst::Predicate Eq;
llvm::Instruction::BinaryOps And, Or;
if (Inequality) {
Eq = llvm::ICmpInst::ICMP_NE;
And = llvm::Instruction::Or;
Or = llvm::Instruction::And;
} else {
Eq = llvm::ICmpInst::ICMP_EQ;
And = llvm::Instruction::And;
Or = llvm::Instruction::Or;
}
// Member data pointers are easy because there's a unique null
// value, so it just comes down to bitwise equality.
if (MPT->isMemberDataPointer())
return Builder.CreateICmp(Eq, L, R);
// For member function pointers, the tautologies are more complex.
// The Itanium tautology is:
// (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
// The ARM tautology is:
// (L == R) <==> (L.ptr == R.ptr &&
// (L.adj == R.adj ||
// (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
// The inequality tautologies have exactly the same structure, except
// applying De Morgan's laws.
llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
// This condition tests whether L.ptr == R.ptr. This must always be
// true for equality to hold.
llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
// This condition, together with the assumption that L.ptr == R.ptr,
// tests whether the pointers are both null. ARM imposes an extra
// condition.
llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
// This condition tests whether L.adj == R.adj. If this isn't
// true, the pointers are unequal unless they're both null.
llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
// Null member function pointers on ARM clear the low bit of Adj,
// so the zero condition has to check that neither low bit is set.
if (IsARM) {
llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
// Compute (l.adj | r.adj) & 1 and test it against zero.
llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
"cmp.or.adj");
EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
}
// Tie together all our conditions.
llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
Result = Builder.CreateBinOp(And, PtrEq, Result,
Inequality ? "memptr.ne" : "memptr.eq");
return Result;
}
llvm::Value *
ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
llvm::Value *MemPtr,
const MemberPointerType *MPT) {
CGBuilderTy &Builder = CGF.Builder;
/// For member data pointers, this is just a check against -1.
if (MPT->isMemberDataPointer()) {
assert(MemPtr->getType() == getPtrDiffTy());
llvm::Value *NegativeOne =
llvm::Constant::getAllOnesValue(MemPtr->getType());
return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
}
// In Itanium, a member function pointer is null if 'ptr' is null.
llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
// In ARM, it's that, plus the low bit of 'adj' must be zero.
if (IsARM) {
llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
llvm::Value *IsNotVirtual = Builder.CreateICmpEQ(VirtualBit, Zero,
"memptr.notvirtual");
Result = Builder.CreateAnd(Result, IsNotVirtual);
}
return Result;
}
/// The Itanium ABI requires non-zero initialization only for data
/// member pointers, for which '0' is a valid offset.
bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
return MPT->getPointeeType()->isFunctionType();
}