llvm-project/llvm/lib/Fuzzer/FuzzerTracePC.cpp

252 lines
8.0 KiB
C++
Raw Normal View History

//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Trace PCs.
// This module implements __sanitizer_cov_trace_pc_guard[_init],
// the callback required for -fsanitize-coverage=trace-pc-guard instrumentation.
//
//===----------------------------------------------------------------------===//
#include "FuzzerCorpus.h"
#include "FuzzerDefs.h"
#include "FuzzerTracePC.h"
#include "FuzzerValueBitMap.h"
namespace fuzzer {
TracePC TPC;
void TracePC::HandleTrace(uint32_t *Guard, uintptr_t PC) {
uint32_t Idx = *Guard;
if (!Idx) return;
uint8_t *CounterPtr = &Counters[Idx % kNumCounters];
uint8_t Counter = *CounterPtr;
if (Counter == 0) {
if (!PCs[Idx % kNumPCs]) {
AddNewPCID(Idx);
TotalPCCoverage++;
PCs[Idx % kNumPCs] = PC;
}
}
if (UseCounters) {
if (Counter < 128)
*CounterPtr = Counter + 1;
else
*Guard = 0;
} else {
*CounterPtr = 1;
*Guard = 0;
}
}
void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) {
if (Start == Stop || *Start) return;
assert(NumModules < sizeof(Modules) / sizeof(Modules[0]));
for (uint32_t *P = Start; P < Stop; P++)
*P = ++NumGuards;
Modules[NumModules].Start = Start;
Modules[NumModules].Stop = Stop;
NumModules++;
}
void TracePC::PrintModuleInfo() {
Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards);
for (size_t i = 0; i < NumModules; i++)
Printf("[%p, %p), ", Modules[i].Start, Modules[i].Stop);
Printf("\n");
}
void TracePC::ResetGuards() {
uint32_t N = 0;
for (size_t M = 0; M < NumModules; M++)
for (uint32_t *X = Modules[M].Start; X < Modules[M].Stop; X++)
*X = ++N;
assert(N == NumGuards);
}
size_t TracePC::FinalizeTrace(InputCorpus *C, size_t InputSize, bool Shrink) {
if (!UsingTracePcGuard()) return 0;
size_t Res = 0;
const size_t Step = 8;
assert(reinterpret_cast<uintptr_t>(Counters) % Step == 0);
size_t N = Min(kNumCounters, NumGuards + 1);
N = (N + Step - 1) & ~(Step - 1); // Round up.
for (size_t Idx = 0; Idx < N; Idx += Step) {
uint64_t Bundle = *reinterpret_cast<uint64_t*>(&Counters[Idx]);
if (!Bundle) continue;
for (size_t i = Idx; i < Idx + Step; i++) {
uint8_t Counter = (Bundle >> (i * 8)) & 0xff;
if (!Counter) continue;
Counters[i] = 0;
unsigned Bit = 0;
/**/ if (Counter >= 128) Bit = 7;
else if (Counter >= 32) Bit = 6;
else if (Counter >= 16) Bit = 5;
else if (Counter >= 8) Bit = 4;
else if (Counter >= 4) Bit = 3;
else if (Counter >= 3) Bit = 2;
else if (Counter >= 2) Bit = 1;
size_t Feature = (i * 8 + Bit);
if (C->AddFeature(Feature, InputSize, Shrink))
Res++;
}
}
if (UseValueProfile)
ValueProfileMap.ForEach([&](size_t Idx) {
if (C->AddFeature(NumGuards + Idx, InputSize, Shrink))
Res++;
});
return Res;
}
void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) {
const uintptr_t kBits = 12;
const uintptr_t kMask = (1 << kBits) - 1;
uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits);
HandleValueProfile(Idx);
}
void TracePC::PrintCoverage() {
Printf("COVERAGE:\n");
for (size_t i = 0; i < Min(NumGuards + 1, kNumPCs); i++) {
if (PCs[i])
PrintPC("COVERED: %p %F %L\n", "COVERED: %p\n", PCs[i]);
}
}
// Value profile.
// We keep track of various values that affect control flow.
// These values are inserted into a bit-set-based hash map.
// Every new bit in the map is treated as a new coverage.
//
// For memcmp/strcmp/etc the interesting value is the length of the common
// prefix of the parameters.
// For cmp instructions the interesting value is a XOR of the parameters.
// The interesting value is mixed up with the PC and is then added to the map.
void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
size_t n) {
if (!n) return;
size_t Len = std::min(n, (size_t)32);
const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
size_t I = 0;
for (; I < Len; I++)
if (A1[I] != A2[I])
break;
size_t PC = reinterpret_cast<size_t>(caller_pc);
size_t Idx = I;
// if (I < Len)
// Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1;
TPC.HandleValueProfile((PC & 4095) | (Idx << 12));
}
void TracePC::AddValueForStrcmp(void *caller_pc, const char *s1, const char *s2,
size_t n) {
if (!n) return;
size_t Len = std::min(n, (size_t)32);
const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
size_t I = 0;
for (; I < Len; I++)
if (A1[I] != A2[I] || A1[I] == 0)
break;
size_t PC = reinterpret_cast<size_t>(caller_pc);
size_t Idx = I;
// if (I < Len && A1[I])
// Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1;
TPC.HandleValueProfile((PC & 4095) | (Idx << 12));
}
ATTRIBUTE_TARGET_POPCNT
static void AddValueForCmp(void *PCptr, uint64_t Arg1, uint64_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(PCptr);
uint64_t ArgDistance = __builtin_popcountl(Arg1 ^ Arg2) + 1; // [1,65]
uintptr_t Idx = ((PC & 4095) + 1) * ArgDistance;
TPC.HandleValueProfile(Idx);
}
static void AddValueForSingleVal(void *PCptr, uintptr_t Val) {
if (!Val) return;
uintptr_t PC = reinterpret_cast<uintptr_t>(PCptr);
uint64_t ArgDistance = __builtin_popcountl(Val) - 1; // [0,63]
uintptr_t Idx = (PC & 4095) | (ArgDistance << 12);
TPC.HandleValueProfile(Idx);
}
} // namespace fuzzer
extern "C" {
__attribute__((visibility("default")))
void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) {
uintptr_t PC = (uintptr_t)__builtin_return_address(0);
fuzzer::TPC.HandleTrace(Guard, PC);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) {
fuzzer::TPC.HandleInit(Start, Stop);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) {
uintptr_t PC = (uintptr_t)__builtin_return_address(0);
fuzzer::TPC.HandleCallerCallee(PC, Callee);
}
// TODO: this one will not be used with the newest clang. Remove it.
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1,
uint64_t Arg2) {
fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, int64_t Arg2) {
fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, int32_t Arg2) {
fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, int16_t Arg2) {
fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, int8_t Arg2) {
fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
uint64_t N = Cases[0];
uint64_t *Vals = Cases + 2;
char *PC = (char*)__builtin_return_address(0);
for (size_t i = 0; i < N; i++)
if (Val != Vals[i])
fuzzer::AddValueForCmp(PC + i, Val, Vals[i]);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_div4(uint32_t Val) {
fuzzer::AddValueForSingleVal(__builtin_return_address(0), Val);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_div8(uint64_t Val) {
fuzzer::AddValueForSingleVal(__builtin_return_address(0), Val);
}
__attribute__((visibility("default")))
void __sanitizer_cov_trace_gep(uintptr_t Idx) {
fuzzer::AddValueForSingleVal(__builtin_return_address(0), Idx);
}
} // extern "C"