llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp

278 lines
10 KiB
C++
Raw Normal View History

//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary. For example, it turns
// the left into the right code:
//
// for (...) for (...)
// if (c) if(c)
// X1 = ... X1 = ...
// else else
// X2 = ... X2 = ...
// X3 = phi(X1, X2) X3 = phi(X1, X2)
// ... = X3 + 4 X4 = phi(X3)
// ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine. The major benefit of this
// transformation is that it makes many other loop optimizations, such as
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <map>
using namespace llvm;
namespace {
static Statistic<> NumLCSSA("lcssa",
"Number of live out of a loop variables");
class LCSSA : public FunctionPass {
public:
LoopInfo *LI; // Loop information
DominatorTree *DT; // Dominator Tree for the current Function...
DominanceFrontier *DF; // Current Dominance Frontier
std::vector<BasicBlock*> LoopBlocks;
virtual bool runOnFunction(Function &F);
bool visitSubloop(Loop* L);
void processInstruction(Instruction* Instr,
const std::vector<BasicBlock*>& exitBlocks);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG. It maintains both of these,
/// as well as the CFG. It also requires dominator information.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
}
private:
SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
Instruction *getValueDominatingBlock(BasicBlock *BB,
std::map<BasicBlock*, Instruction*>& PotDoms);
/// inLoop - returns true if the given block is within the current loop
const bool inLoop(BasicBlock* B) {
return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
}
};
RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
}
FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
const PassInfo *llvm::LCSSAID = X.getPassInfo();
/// runOnFunction - Process all loops in the function, inner-most out.
bool LCSSA::runOnFunction(Function &F) {
bool changed = false;
LI = &getAnalysis<LoopInfo>();
DF = &getAnalysis<DominanceFrontier>();
DT = &getAnalysis<DominatorTree>();
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
changed |= visitSubloop(*I);
}
return changed;
}
/// visitSubloop - Recursively process all subloops, and then process the given
/// loop if it has live-out values.
bool LCSSA::visitSubloop(Loop* L) {
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
visitSubloop(*I);
// Speed up queries by creating a sorted list of blocks
LoopBlocks.clear();
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
std::sort(LoopBlocks.begin(), LoopBlocks.end());
SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
// If no values are affected, we can save a lot of work, since we know that
// nothing will be changed.
if (AffectedValues.empty())
return false;
std::vector<BasicBlock*> exitBlocks;
L->getExitBlocks(exitBlocks);
// Iterate over all affected values for this loop and insert Phi nodes
// for them in the appropriate exit blocks
for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
E = AffectedValues.end(); I != E; ++I) {
processInstruction(*I, exitBlocks);
}
return true;
}
/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
/// eliminate all out-of-loop uses.
void LCSSA::processInstruction(Instruction* Instr,
const std::vector<BasicBlock*>& exitBlocks)
{
++NumLCSSA; // We are applying the transformation
std::map<BasicBlock*, Instruction*> Phis;
// Add the base instruction to the Phis list. This makes tracking down
// the dominating values easier when we're filling in Phi nodes. This will
// be removed later, before we perform use replacement.
Phis[Instr->getParent()] = Instr;
// Phi nodes that need to be IDF-processed
std::vector<PHINode*> workList;
for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
BBE = exitBlocks.end(); BBI != BBE; ++BBI)
if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) {
PHINode *phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
(*BBI)->begin());
workList.push_back(phi);
Phis[*BBI] = phi;
}
// Phi nodes that need to have their incoming values filled.
std::vector<PHINode*> needIncomingValues;
// Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
// necessary. Keep track of these new Phi's in the "Phis" map.
while (!workList.empty()) {
PHINode *CurPHI = workList.back();
workList.pop_back();
// Even though we've removed this Phi from the work list, we still need
// to fill in its incoming values.
needIncomingValues.push_back(CurPHI);
// Get the current Phi's DF, and insert Phi nodes. Add these new
// nodes to our worklist.
DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
if (it != DF->end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P) {
if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) {
Instruction *&Phi = Phis[*P];
if (Phi == 0) {
// Still doesn't have operands...
Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
(*P)->begin());
workList.push_back(cast<PHINode>(Phi));
}
}
}
}
}
// Fill in all Phis we've inserted that need their incoming values filled in.
for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(),
IVE = needIncomingValues.end(); IVI != IVE; ++IVI) {
for (pred_iterator PI = pred_begin((*IVI)->getParent()),
E = pred_end((*IVI)->getParent()); PI != E; ++PI)
(*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis),
*PI);
}
// Find all uses of the affected value, and replace them with the
// appropriate Phi.
std::vector<Instruction*> Uses;
for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
UI != UE; ++UI) {
Instruction* use = cast<Instruction>(*UI);
// Don't need to update uses within the loop body.
if (!inLoop(use->getParent()))
Uses.push_back(use);
}
for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
II != IE; ++II) {
if (PHINode* phi = dyn_cast<PHINode>(*II)) {
for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) {
if (phi->getIncomingValue(i) == Instr) {
Instruction* dominator =
getValueDominatingBlock(phi->getIncomingBlock(i), Phis);
phi->setIncomingValue(i, dominator);
}
}
} else {
Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis);
(*II)->replaceUsesOfWith(Instr, NewVal);
}
}
}
/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
/// are used by instructions outside of it.
SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
// FIXME: For large loops, we may be able to avoid a lot of use-scanning
// by using dominance information. In particular, if a block does not
// dominate any of the loop exits, then none of the values defined in the
// block could be used outside the loop.
SetVector<Instruction*> AffectedValues;
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
BB != E; ++BB) {
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
if (!inLoop(UserBB)) {
AffectedValues.insert(I);
break;
}
}
}
return AffectedValues;
}
/// getValueDominatingBlock - Return the value within the potential dominators
/// map that dominates the given block.
Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB,
std::map<BasicBlock*, Instruction*>& PotDoms) {
DominatorTree::Node* bbNode = DT->getNode(BB);
while (bbNode != 0) {
std::map<BasicBlock*, Instruction*>::iterator I =
PotDoms.find(bbNode->getBlock());
if (I != PotDoms.end()) {
return (*I).second;
}
bbNode = bbNode->getIDom();
}
assert(0 && "No dominating value found.");
return 0;
}